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Abstract. This paper is a survey on arc spaces, a recent topic in algebraic
geometry and singularity theory. The geometry of the arc space of an algebraic
variety yields several new geometric invariants and brings new light to some
classical invariants.

1. Introduction

For an algebraic variety X over the field C of complex numbers, one considers the
arc space L(X), whose points are the C[[t]]-rational points on X, and the truncated
arc spaces Ln(X), whose points are the C[[t]]/tn+1-rational points on X. The
geometry of these spaces yields several new geometric invariants of X and brings
new light to some classical invariants. For example, Denef and Loeser [13] showed
that the Hodge spectrum of a critical point of a polynomial can be expressed in
terms of geometry on arc spaces, yielding a new proof and a generalization [15]
of the Thom-Sebastiani Theorem for the Hodge spectrum due to Varchenko [42]
and Saito [33, 34]. In a different direction, Batyrev [6] used arc spaces to prove
a conjecture of Reid [30] on quotient singularities (the McKay correspondence),
and to construct his stringy Hodge numbers [5] appearing in mirror symmetry.
All these developments are based on Kontsevich’s construction [23] of a measure
on the arc space L(X), the motivic measure, which is an analogue of the p-adic
measure on a p-adic variety.

In section 2 we define the arc spaces L(X) and Ln(X) of an algebraic variety
over any field k of characteristic zero. The first question that appears is how Ln(X)
and πn(Ln(X)) change with n, where πn denotes the truncation map from L(X)
to Ln(X). As a partial answer to this question we will see in theorem 2.1 that the
power series

J(T, χ) :=
∑
n≥0

χ(Ln(X))Tn, P (T, χ) =
∑
n≥0

χ(πn(L(X)))Tn

are rational (i.e. a quotient of two polynomials), for any reasonable generalized
Euler characteristic χ. This is a direct consequence of results of Denef and
Loeser [14]. Instead of working with particular generalized Euler characteristics,
such as the topological Euler characteristic, the Hodge polynomial or the Hodge
characteristic, it is more general to work with the universal Euler characteristic
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which associates to any algebraic variety X over k its class [X] in the Grothendieck
group K0(Vark) of algebraic varieties over k. This is the abelian group generated
by symbols [X], for X a variety over k, with the relations [X] = [Y ] if X and Y are
isomorphic, and [X] = [Y ] + [X \Y ] if Y is Zariski closed in X. There is a natural
ring structure on K0(Vark), the product of [X] and [Y ] being equal to [X × Y ].
We denote by Mk the ring obtained from K0(Vark) by inverting the class of A1

k.
The above rationality result applied to the universal Euler characteristic says that
the power series

J(T ) :=
∑
n≥0

[Ln(X)]Tn, P (T ) :=
∑
n≥0

[πn(L(X))]Tn

in Mk[[T ]] are rational.
Power series like J(T ) and P (T ), with coefficients in Mk[[T ]], are called

“motivic”, because they specialize to power series over the Grothendieck group
K0(Motk) of the category of Chow motives over k. Actually in several of our
papers on arcs we work over K0(Motk) instead of over Mk[[T ]].

In section 3 we introduce the motivic zeta function Z(T ) associated to a
morphism f from an nonsingular algebraic variety X to the affine line, cf. [18]. A
naive version of it is the power series over Mk defined by

Znaive(T ) :=
∑
n≥1

[Xn] [A1
k]

−nd Tn .

Here Xn denotes the set of arcs ϕ in L(X) with f(ϕ) a power series of order n.
The motivic zeta function of f contains a wealth of geometric information about
f . For example the Hodge spectrum of any critical point of f can be expressed in
terms of limT→∞ Z(T ). This limit is a well defined element of Mk, and can be
considered as the “virtual motivic incarnation” of the Milnor fibers of f . All this
is explained in section 3.5. In section 3.4 we also show that the topological zeta
functions of Denef and Loeser [12] can be expressed in terms of the motivic zeta
function.

We explain in section 4 the notion of motivic integration on L(X), due
to Kontsevich [23], and further developed by Batyrev [5, 6], Denef and
Loeser [13]–[18], and Looijenga [27]. This notion plays a key role in the present
paper. Kontsevich used it to prove that two birationally equivalent Calabi-Yau
manifolds have the same Hodge numbers. This result, together with some other
direct applications of motivic integration, is discussed in section 4.4.

One of the most striking applications of arc spaces and motivic integration
is Batyrev’s proof [6] of the conjecture of Reid on the generalized McKay corre-
spondence. We will not treat this material in the present paper, but refer to the
Bourbaki report of Reid [30], see also [16] and [27].

In section 5 we explain how the relation between the Hodge spectrum and
the motivic zeta function yields a new proof of Varchenko’s and Saito’s Thom-
Sebastiani Theorem which expresses the Hodge spectrum of f(x) + g(y) in terms
of the Hodge spectra of f(x) and g(y). Our method [15] actually yields a much
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stronger result which relates the “virtual motivic incarnations” of the Milnor fibers
of these three functions. In our paper [15] we obtained this result only at the level
of Chow motives, and is was Looijenga [27] who showed how to work at the level
of the Grothendieck ring of algebraic varieties.

Finally in section 6 we briefly discuss the connections with the p-adic case.
Considering motivic integration as an analogue of p-adic integration, several arith-
metical results in the p-adic case find their natural counterpart in complex geom-
etry and in the theory of motives.

In the present paper we have avoided to work with Chow motives (with one
important exception in section 6). Indeed, the more recent material in [18] and
[27] shows that this is possible except for the functional equation in section 3 of
[13] and the results in [17].

2. The Arc Space of a Variety

We fix a base field k of characteristic zero. The reader may choose to only consider
the case where k is the field C of complex numbers. Let X be an algebraic variety
over k, not necessarily irreducible, i.e. X is a reduced separated scheme of finite
type over k.

2.1. The arc space of X

For each natural number n we consider the space Ln(X) of arcs modulo tn+1

on X. This is an algebraic variety over k, whose K-rational points, for any field
K containing k, are the K[t]/tn+1K[t]-rational points of X. For example when
X is an affine variety with equations fi(�x) = 0, i = 1, . . . ,m, �x = (x1, . . . , xn),
then Ln(X) is given by the equations, in the variables �a0, . . . ,�an, expressing that
fi(�a0 + �a1t + · · · + �ant

n) ≡ 0 mod tn+1, i = 1, . . . ,m.
Taking the projective limit of these algebraic varieties Ln(X) we obtain the

arc space L(X) of X, which is a reduced separated scheme over k. In general, L(X)
is not of finite type over k (i.e. L(X) is an “algebraic variety of infinite dimension”).
The K-rational points of L(X) are the K[[t]]-rational points of X. These are called
K-arcs on X. For example when X is an affine complex variety with equations
fi(�x) = 0, i = 1, . . .m, �x = (x1, . . . , xn), then the C-rational points of L(X) are
the sequences (�a0,�a1,�a2, . . . ) ∈ (Cn)N satisfying fi(�a0 + �a1t + �a2t

2 + . . . ) = 0, for
i = 1, . . . ,m. For any n, and for m > n, we have natural morphisms

πn : L(X) → Ln(X) and πmn : Lm(X) → Ln(X) ,

obtained by truncation. Note that L0(X) = X and that L1(X) is the tangent
bundle of X. For any arc γ on X (i.e. a K-arc for some field K containing k), we
call π0(γ) the origin of the arc γ.

By a theorem of Greenberg [20], given an algebraic variety X over k, there
exists a number c > 0, such that for any n and for any field K containing k we
have

πn(L(X)(K)) = πcnn (Lcn(X)(K)) ,
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writing Y (K) to denote the set of K-rational points on any variety Y over k. This
implies that πn(L(X)) is a constructible subset of the algebraic variety Ln(X). If
X is smooth, then we can take c = 1 and πn is surjective. Moreover, in that case,
πmn is a locally trivial fibration with fiber A

(m−n) dimX
k . Here Ad

k denotes the affine
space of dimension d over k.

Probably Nash [28] was the first to study arc spaces in a systematic way
(his paper was written in 1968, but published only recently). For a singular point
P on X, he considered the space L{P}(X) := π−1

0 (P ) of arcs on X with origin
P , and its subspace N{P}(X) of arcs with origin P which are not contained in
the singular locus of X. He proved that the number of irreducible components
of the Zariski closure of πn(N{P}(X)) stabilizes for n big enough, and associated
to each irreducible component of this closure (when n 
 0), in a canonical and
injective way, an irreducible component of the preimage of P in any resolution
of singularities of X. Moreover he conjectured that any irreducible component of
the preimage of P in a given resolution of X, which “appears” in all resolutions
of X, is obtained in that way. For other results concerning arc spaces we refer to
[24, 21, 25].

2.2. How do Ln(X) and πn(L(X)) change with n?

The work of Nash [28] is the first result towards the question of how the geometry
of πn(L{P}(X)) changes with n. Recently we investigated how the topological
Euler characteristic χtop (case k = C), and generalized Euler characteristics of the
spaces Ln(X), πn(L(X)), πn(L{P}(X)) change with n.

With a generalized Euler characteristic on the category Vark of algebraic va-
rieties over k, we mean a map χ from Vark to some commutative ring R such
that χ(X) = χ(Y ) when X ∼= Y, χ(X) = χ(Y ) + χ(X \ Y ) when Y is a Zariski
closed subvariety of X, and χ(X × Y ) = χ(X) · χ(Y ). Clearly χ = χtop satisfies

the above requirements with R = Z, when k = C. Another example of a gener-
alized Euler characteristic, when k = C, is given by χhp : VarC → Z[u, v] : X �→∑

i,p,q(−1)ihip,qu
pvq, where hip,q is the dimension of the (p, q)-component of the

mixed Hodge structure on Hi
c(X,C). One calls χhp(X) the Hodge polynomial of

X. For example, χhp(A1
C) = uv. We refer to 3.1.2 for the Hodge characteristic

χh which takes values in the Grothendieck group K0(HS) of the abelian cate-
gory of Hodge structures. There are many other examples of generalized Euler
characteristics. For example, to mention an exotic one, when k = Q, there is the
conductor c(X) of X, which yields a generalized Euler characteristic c : V arQ →
Q>0 : X �→ c(X) :=

∏
i(ci)

(−1)i+1
, where ci denotes the conductor of the &-adic

representation of Gal(Q̄,Q) on the étale cohomology Hi
c(XQ̄,Q�), where & is a

fixed prime and Q̄ an algebraic closure of Q; see e.g. [36]. Here Q>0 is the mul-
tiplicative group of positive rational numbers with ring structure inherited by
Q>0

∼= ⊕p primeZ : x �→ (ordpx)p. For example, when X is an elliptic curve, c(X)
is the usual conductor of X, related to the primes at which X has had reduction.
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Theorem 2.1. ([14]) Let χ : Vark → R be a generalized Euler characteristic, and
suppose that χ(A1

k) is not a zero divisor in R. Then the power series

J(T, χ) :=
∑
n≥0

χ(Ln(X))Tn, P (T, χ) =
∑
n≥0

χ(πn(L(X)))Tn

are rational (i.e. a quotient of two polynomials). Actually the denominators are
products of polynomials of the form 1 − (χ(A1

k))
aT b, with b ∈ N \ {0}, a ∈ Z.

In 2.3 below, we will construct the universal Euler characteristic Vark →
K0(Vark) : X �→ [X], where K0(Vark) denotes the Grothendieck group of varieties
over k (see 2.3). Any generalized Euler characteristic on Vark factorizes over this
universal one. So it suffices to prove theorem 2.1 with R the ring Mk obtained from
K0(Vark) by inverting [A1

k]. The rationality of J(T, χ) follows from the material
we will discuss in section 3, when X is an affine hypersurface, see 3.3.1. The
proof of the rationality of P (T, χ) is more complicated and uses a theorem of Pas
[29] on quantifier elimination for power series rings. If f : X → Y is a morphism of
algebraic varieties, then the image f(A) in L(Y ) of a constructible subset A (cf. 4.1
below) of L(X) is generally not constructible. The theorem of Pas implies that
f(A) still has a “simple description” and is in fact what is called a semi-algebraic
subset of L(Y ), cf. [14]. This plays a key role in the proof of the rationality of
P (T, χ). For a survey on applications of quantifier elimination results for valued
fields, see [11].

2.3. Grothendieck groups of varieties

Let S be an algebraic variety over k. By an S-variety we mean a variety X together
with a morphism X → S. The S-varieties from a category denoted by VarS , the
arrows are the morphisms that commute with the morphisms to S.

We denote by K0(VarS) the Grothendieck group of S-varieties. It is an abelian
group generated by symbols [X], for X an S-variety, with the relations [X] = [Y ]
if X and Y are isomorphic in VarS , and [X] = [Y ] + [X \ Y ] if Y is Zariski closed
in X. There is a natural ring structure on K0(VarS), the product of [X] and [Y ]
being equal to [X ×S Y ]. Sometimes we will also write [X/S] instead of [X], to
emphasize the role of S. We write L to denote the class of A1

k × S in K0(VarS),
where the morphism from A1

k×S to S is the natural projection. We denote by MS

the ring obtained from K0(VarS) by inverting L. When A is a constructible subset
of some S-variety, we define [A/S] in the obvious way, writing A as a disjoint union
of a finite number of locally closed subvarieties Ai. Indeed [A/S] :=

∑
i[Ai/S] does

not depend on the choice of the subvarieties Ai.
When S consists of only one geometric point, i.e. S = Spec(k), then we will

write K0(Vark) instead of K0(VarS) (to denote the Grothendieck group of algebraic
varieties over k), and Mk instead of MS . Clearly the map Vark → K0(Vark) is
the universal generalized Euler characteristic, in the sense that any generalized
Euler characteristic on Vark factors through it.

In our papers [13]–[18], we always work with K0(Vark), but recently E.
Looijenga, in his Bourbaki talk [27], introduced the relative Grothendieck ring
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K0(VarS), stating some of our results in a stronger form. For example, consider-
ing Ln(X) as an X-variety through the morphism πn0 , our proof of theorem 2.1
actually yields the slightly stronger

Theorem 2.2. Let X be a variety over k, then the power series

J(T ) :=
∑
n≥0

[Ln(X)/X]Tn, P (T ) :=
∑
n≥0

[πn(L(X))/X]Tn

in MX [[T ]] are rational, with denominator a product of polynomials of the form
1 − LaT b, with b ∈ N \ {0}, a ∈ Z.

2.4. Equivariant Grothendieck groups

We need some technical preparation in order to take care of the monodromy actions
in the next section.

For any positive integer n, let µn be the group of all n-th roots of unity (in
some fixed algebraic closure of k). Note that µn is actually an algebraic variety
over k, namely Spec(k[x]/(xn−1)). The µn form a projective system, with respect
to the maps µnd → µn : x �→ xd. We denote by µ̂ the projective limit of the µn.
Note that the group µ̂ is not an algebraic variety. It is called a pro-variety.

Let X be an S-variety. A good µn-action on X is a group action µn×X → X
which is a morphism of S-varieties, such that each orbit is contained in an affine
subvariety of X. This last condition is automatically satisfied when X is a quasi
projective variety. A good µ̂-action on X is an action of µ̂ on X which factors
through a good µn-action, for some n.

The monodromic Grothendieck group Kµ̂
0 (VarS) is defined as the abelian

group generated by symbols [X, µ̂] (also denoted by [X/S, µ̂], or simply [X]), for
X an S-variety with good µ̂-action, with the relations [X, µ̂] = [Y, µ̂] if X and Y
are isomorphic as S-varieties with µ̂ -ction, and [X, µ̂] = [Y, µ̂] + [X \ Y, µ̂] if Y is
Zariski closed in X with the µ̂-action on Y induced by the one on X, and moreover
[X×V, µ̂] = [X×An

k , µ̂] where V is the n-dimensional affine space over k with any
good µ̂-action, and An

k is taken with the trivial µ̂-action. There is a natural ring
structure on Kµ̂

0 (VarS), the product being induced by the fiber product over S.
We write L to denote the class in Kµ̂

0 (VarS) of A1
k × S with the trivial µ̂-action.

We denote by Mµ̂
S the ring obtained from Kµ̂

0 (VarS) by inverting L. When
A is a constructible subset of X which is stable under the µ̂-action, then we
define [A, µ̂] in the obvious way. When S consists of only one geometric point,
i.e. S = Spec(k), then we will write Kµ̂

0 (Vark) instead of Kµ̂
0 (VarS). The group

Kµ̂
0 (Vark) was first introduced in [18].

Note that for any s ∈ S(k) we have natural maps Kµ̂
0 (VarS) → Kµ̂

0 (Vark)
and Mµ̂

S → Mµ̂
k given by [X, µ̂] → [Xs, µ̂], where Xs denotes the fiber at s of

X → S.
Although Mµ̂

k is a very complicated ring, there are many interesting mor-
phisms from it to simpler rings. For example when k = C, for any character α of µ̂
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(i.e. a group homomorphism α : µ̂ → C×), there is a natural ring homomorphism

χtop(−, α) : Mµ̂
k −→ Z : X �−→

∑
q≥0

(−1)qdimHq(X,C)α ,

where H∗(X,C)α is the part of H∗(X,C) on which µ̂ acts by multiplication by α.

3. The Motivic Zeta Function of a Regular Function

Let X be a nonsingular irreducible algebraic variety over k of dimension d and
f : X → A1

k a non constant morphism. In this section we introduce several new
invariants of f . These are constructed using arc spaces. We first recall in 3.1 some
classical invariants associated to f . In what follows we denote by X0 the locus of
f = 0 in X.

3.1. The monodromy zeta function and the Hodge spectrum

In this subsection 3.1 we suppose that k = C. Let x be a point of X0 = f−1(0).
We fix a smooth metric on X.

3.1.1. Monodromy We set X×
ε,η := B(x, ε) ∩ f−1(D×

η ), with B(x, ε) the open
ball of radius ε centered at x and D×

η := Dη \{0}, with Dη the open disk of radius
η centered at 0. For 0 < η � ε � 1, the restriction of f to X×

ε,η is a locally trivial
fibration, called the Milnor fibration, onto D×

η with fiber Fx, the Milnor fiber at
x. The action of a characteristic homeomorphism of this fibration on cohomology
gives rise to the monodromy operator

Mx : H ·(Fx,Q) → H ·(Fx,Q) .

For any natural number n, we consider the Lefschetz number

Λ(Mn
x ) :=

∑
q≥0

(−1)q Trace (Mn
x , H

q(Fx,Q)) ,

of the n-th iterate of Mx. These numbers are related to the monodromy zeta
function of f at x

Zmon
x (T ) :=

∏
q≥0

Det (Id− TMx, H
q(Fx,Q))(−1)q

as follows if one writes Λ(Mn
x ) =

∑
i|n si for n ≥ 1, then Zmon

x (T ) =
∏

i≥1(1 −
ti)si/i. The monodromy zeta function of f at x (or equivalently the Lefschetz num-
bers) is an important topological invariant of f which has been studied intensively.
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3.1.2. Hodge structures A Hodge structure is a finite dimensional Q-vector-
space H together with a bigrading H ⊗ C = ⊕p,q∈ZH

p,q, such that Hq,p is the
complex conjugate of Hp,q and each weight m summand, ⊕p+q=mHp,q, is defined
over Q. The Hodge structures, with the evident notion of morphism, form an
abelian category HS with tensor product. The elements of the Grothendieck group
K0(HS) of this abelian category are representable as a formal difference of Hodge
structures [H] − [H ′], and [H] = [H ′] iff H ∼= H ′. Note that K0(HS) becomes a
ring with respect to the tensor product.

A mixed Hodge structure is a finite dimensional Q-vector space V with a finite
increasing filtration W•V , called the weight filtration, such that the associated
graded vector space GrW• (V ) underlies a Hodge structure having GrWm (V ) as weight
m summand. Note that V determines in a natural way an element [V] in K0(HS),
namely [V ] :=

∑
m[GrWm (V )].

When X is an algebraic variety over k = C, the simplicial cohomology groups
Hi
c(X,Q) of X, with compact support, underly a natural mixed Hodge structure,

and the Hodge characteristic χh(X) of X (with compact support) is defined by

χh(X) :=
∑
i

(−1)i[Hi
c(X,Q)] ∈ K0(HS) .

This yields a map χh : VarC → K0(HS), which is a generalized Euler characteristic,
and which factors through Mk, because χk(A1

k) is actually invertible in the ring
K0(HS). When X is proper an smooth, the mixed Hodge structure on Hi

c(X,Q)
is in fact a Hodge structure, the weight filtration being concentrated in weight i.
We refer to [41] for an introduction to Hodge structures.

3.1.3. The Hodge spectrum The cohomology groups Hi
c(Fx,Q) of the Milnor

fiber Fx carry a natural mixed Hodge structure ([39, 31, 32]), which is compatible
with the monodromy operator Mx. Hence we can define the Hodge characteristic
χh(Fx) of Fx by

χh(Fx) :=
∑
i

(−1)i[Hi(Fx,Q)] ∈ K0(HS) .

Actually by taking into account the monodromy action we can consider χh(Fx) as
an element of the Grothendieck group K0(HSmon) of the abelian category HSmon of
Hodge structures with a quasi-unipotent endomorphism. (Quasi-unipotent means
that some power of it is unipotent.) Again K0(HSmon) is a ring by the tensor
product.

There is a natural linear map, called the Hodge spectrum

hsp: K0(HSmon) → Z[t1/N] := ∪n≥1Z[t1/n, t−1/n] ,

with hsp([H]) :=
∑

α∈Q∩[0,1[ t
α(

∑
p,q∈Z dim(Hp,q)α)tp, for any Hodge structure H

with a quasi-unipotent endomorphism, where Hp,q
α is the generalized eigenspace

of Hp,q with respect to the eigenvalue e2π
√
−1α. Note that hsp is not a ring homo-

morphism, although it becomes one when we endow K0(HSmon) with a different
ring multiplication, namely the one induced by the operation ∗ in section 5.
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We recall that hsp(f, x) := (−1)d−1hsp(χh(Fx) − 1) is called the Hodge
spectrum of f at x. It is a very important invariant, with remarkable properties,
see [39, 40, 42].

3.2. The motivic zeta function

Let n ≥ 1 be an integer. The morphism f : X → A1
k induces a morphism fn :

Ln(X) → Ln(A1
k).

Any point α of L(A1
k), resp. Ln(A1

k), yields a K-rational point, for some field
K containing k, and hence a power series α(t) ∈ K[[t]], resp. α(t) ∈ K[[t]]/tn+1.
This yields maps

ordt : L(A1
k) → N ∪ {∞}, ordt : Ln(A1

k) → {0, 1, . . . , n,∞}, ,

with ordtα the largest e such that te divides α(t).
We set

Xn := {ϕ ∈ Ln(X) | ordtfn(ϕ) = n}, .
This is a locally closed subvariety of Ln(X). Note that Xn is actually an X0-variety,
through the morphism πn0 : Ln(X) → X. Indeed πn0 (Xn) ⊂ X0, since n ≥ 1. We
consider the morphism

f̄n : Xn → Gm,k := A1
k \ {0}, ,

sending a point ϕ in Xn to the coefficient of tn in fn(ϕ). There is a natural action
of Gm,k on Xn given by a · ϕ(t) = ϕ(at), where ϕ(t) is the vector of power series
corresponding to ϕ (in some local coordinate system). Since f̄n(a · ϕ) = anf̄n(ϕ)
it follows that f̄n is a locally trivial fibration.

We denote by Xn,1 the fiber f̄−1
n (1). Note that the action of Gm,k on Xn

induces a good action of µn (and hence of µ̂) on Xn,1. Since f̄n is a locally trivial
fibration, the X0-variety Xn,1 and the action of µn on it, completely determines
both the variety Xn and the morphism

(f̄n, πn0 ) : Xn → Gm,k ×X0 .

Indeed it is easy to verify that Xn, as a (Gm,k ×X0)-variety, is isomorphic to the
quotient of Xn,1 × Gm,k under the µn-action defined by a(ϕ, b) = (aϕ, a−1b).

Definition 3.1. The motivic zeta function of f : X → A1
k, is the power series over

Mµ̂
X0

defined by

Z(T ) :=
∑
n≥1

[Xn,1/X0, µ̂] L−nd Tn .

Moreover we define the naive motivic zeta function of f as the power series over
MX0 defined by

Znaive(T ) :=
∑
n≥1

[Xn/X0] L−nd Tn .
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Theorem 3.2 and corollary 3.3 below show that Z(T ) and Znaive(T ) are ra-
tional. In 3.4 and 3.5 we will see that Z(T ) and Znaive(T ) give rise to interesting
new invariants of f . The definition of Z(T ) goes back to [18] (in the non-relative
version working in Mµ̂

k). Many related motivic zeta functions, and Znaive(T ), were
first introduced in [13], inspired by work of Kontsevich [23]. The idea of rather
working in the relative Grothendieck group was introduced by Looijenga [27].

3.3. A formula for the motivic zeta function

We recall that X0 denotes the locus of f = 0 in X. Let (Y, h) be a resolution of
f . By this, we mean that Y is a nonsingular and irreducible algebraic variety over
k, h : Y → X is a proper morphism, that the restriction h : Y \h−1(X0) → X \X0

is an isomorphism, and that h−1(X0) has only normal crossings as a subvariety of
Y .

We denote by Ei, i ∈ J , the irreducible components (over k) of h−1(X0). For
each i ∈ J , denote by Ni the multiplicity of Ei in the divisor of f ◦ h on Y , and
by νi − 1 the multiplicity of Ei in the divisor of h∗dx, where dx is a local non
vanishing volume form at any point of h(Ei), i.e. a local generator of the sheaf
of differential forms of maximal degree. For i ∈ J and I ⊂ J , we consider the
nonsingular varieties E◦

i := Ei \ ∪j �=iEj , EI = ∩i∈IEi, and E◦
I := EI \ ∪j∈J\IEj .

Let mI = gcd(Ni)i∈I . We introduce an unramified Galois cover Ẽ◦
I of E◦

I ,
with Galois group µmI

, as follows. Let U be an affine Zariski open subset of Y ,
such that, on U , f ◦ h = uvmI , with u a unit on U and v a morphism from U to
A1
k. Then the restriction of Ẽ◦

I above E◦
I ∩ U , denoted by Ẽ◦

I ∩ U , is defined as

{(z, y) ∈ A1
k × (E◦

I ∩ U)|zmI = u−1} .
Note that E◦

I can be covered by such affine open subsets U of Y . Gluing together
the covers Ẽ◦

I ∩ U , in the obvious way, we obtain the cover Ẽ◦
I of E◦

I which has a
natural µmI

-action (obtained by multiplying the z-coordinate with the elements
of µmI

). This µmI
-action on Ẽ◦

I induces an µ̂-action on Ẽ◦
I in the obvious way.

Theorem 3.2. ([18, 27]) With the previous notations, the following relation holds
in Mµ̂

X0
[[T ]]

Z(T ) =
∑

∅�=I⊂J
(L − 1)|I|−1 [Ẽ◦

I /X0, µ̂]
∏
i∈I

L−νiTNi

1 − L−νi TNi
.

From the above theorem one easily deduces (using e.g. Lemma 5.1 in [27])
the following corollary, which is basically a special case of Theorem 2.2.1 in [13].

Corollary 3.3. With the previous notations, the following relation holds in
MX0 [[T ]]

Znaive(T ) =
∑

∅�=I⊂J
(L − 1)|I| [E◦

I /X0]
∏
i∈I

L−νiTNi

1 − L−νi TNi
.
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3.3.1. Proof of the rationality of J(T ) We defined J(T ) in theorem 2.2
above. We will now discuss the proof of the rationality of J(T ) in the special case
when the variety X in theorem 2.2 is the locus X0 of a polynomial f in the affine
space Ad

k. Let Znaive(T ) be the naive motivic zeta function of f : Ad
k → A1

k. It is
straightforward to verify that J(TL−d) = [X0]−Znaive(T )

1−T . Hence the rationality of
J(T ) is a direct consequence of corollary 3.3.

3.4. The topological zeta functions

Let MS,loc resp. Mµ̂
S,loc, be the ring obtained from MS , resp. Mµ̂

S , by inverting
the elements [Pik] = 1 + L + L2 + · · ·+ Li, for i = 1, 2, 3, . . . , where Pik denotes the
i-dimensional projective space over k.

We keep the notations of 3.3, but take k = C. For any integer s ≥ 1, eval-
uating Znaive(T ) at T = L−s yields a well-defined element of MX0,loc, namely∑

∅�=I⊂J [E◦
I /X0]

∏
i∈I [P

sNi+νi−1]−1. Applying the topological Euler characteris-
tic χtop we obtain

Ztop(s) := χtop(Znaive(L−s)) :=
∑

∅�=I⊂J
χtop(E◦

I )
∏
i∈I

1
sNi + νi

. (∗)

We call Ztop(s), considered as a rational function in the variable s, the untwisted
topological zeta function of f : X → A1

k.
Evaluating (L − 1)Z(T ), instead of Znaive(T ), at T = L−s, and applying the

equivariant topological Euler characteristic χtop(−, α), with α : µ̂ → C a character
of order e, we obtain the twisted topological zeta function (for any integer e ≥ 1)

Z
(e)
top(s) :=χtop((L − 1)Z(L−s), α)

:=
∑

∅�=I⊂J, e|mI

χtop(E◦
I )

∏
i∈I

1
sNi + νi

(∗∗)

Note that, if we would define the topological zeta functions by the right-hand-
side of (∗) and (∗∗), then it would be not at all clear that this is independent of
the choosen resolution. It is the intrinsic definition using the motivic zeta function
(which is based on the notion of arc spaces) that makes this independence obvious.
The topological zeta functions were first introduced by Denef and Loeser in [12]
using p-adic integration and the Grothendieck-Lefschetz trace formula to prove
their independence of the choosen resolution. Our approach using arc spaces first
appeared in [13].

The topological zeta functions are quite subtle invariants of f , and have been
further investigated by Veys [45, 46]. There are some fascinating conjectures about
them.

Conjecture 3.4. (Monodromy conjecture for Z
(e)
top) If s is a pole of Z

(e)
top(s) then

e2π
√
−1s is an eigenvalue of the monodromy action on the cohomology of the Milnor

fiber at some point of the locus of f .
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Conjecture 3.5. Holomorphy conjecture for Z
(e)
top The function Z

(e)
top(s) is a po-

lynomial in s, unless there is an eigenvalue with order divisible by e of the mon-
odromy action on the cohomology of the Milnor fiber at some point of the locus
of f .

Loeser [26] and Veys [44] proved that these conjectures are true when X =
A2

C. A lot of experimental evidence has been obtained by Veys [43] when X = A3
C.

We refer to [46] and [47] for very interesting generalizations.

3.5. Relations with monodromy and the motivic Milnor fiber

The Lefschetz numbers Λ(Mn
x ) of f at x, which we recalled in 3.1.1 can be ex-

pressed in terms of a resolution of f , by the following formula of A’Campo.

Theorem 3.6. (A’Campo, [1]) Let k = C. Assume the notations of 3.1 and 3.3.
Then for any integer n ≥ 0 we have

Λ(Mn
x ) =

∑
Ni|n

Ni χtop(E◦
i ∩ h−1(x)) .

In particular we see that the right-hand-side of the above formula is indepen-
dent of the choosen resolution h. Note that the material in 3.3 and 3.4 yields many
other expressions which are independent of the chosen resolution, but A’Campo’s
result was probably the first in this direction.

Applying the natural map Fiberx : Mµ̂
X0

→ Mµ̂
k : [A/X0, µ̂] �→ [A×X0 {x}, µ̂],

followed by the equivariant topological Euler characteristic χtop(−, 1), on the co-
efficients of Z(T ) and using theorem 3.2, we obtain the following theorem.

Theorem 3.7. ([18]) Let k = C, then for any integer n ≥ 1 we have Λ(Mn
x ) =

χtop(Xn,1,x), where
Xn,1,x := Xn,1 ×X0 {x} .

Thus we see that the monodromy zeta function of f at x is completely deter-
mined by the motivic zeta function Z(T ). Next, we will see that also the Hodge
spectrum of f at x is determined by Z(T ).

Definition 3.8. ([13, 18]) Expanding the rational function Z(T ) as a power series
in T−1 and taking minus its constant term, yields a well defined element of Mµ̂

X0
,

namely
S := − lim

T→∞
Z(T ) :=

∑
∅�=I⊂J

(1 − L)|I|−1[Ẽ◦
I ] .

Moreover we set Sx := Fiberx(S) ∈ Mµ̂
k . Instead of S and Sx we will also write

Sf and Sf,x. These definitions hold for any field k of characteristic zero.

Note again that the most right-hand-side of the above formula is independent
of the choosen resolution (because of its relation to Z(T )), although a priori this
is not at all evident.

We strongly believe that Sx is the correct virtual motivic incarnation of the
Milnor fiber Fx of f at x (which is in itself not at all motivic). We will see below
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(theorem 3.10) that this is indeed true for the Hodge realization. A similar result
holds for &-adic cohomology, see [10]. Moreover we strongly believe that S is the
virtual motivic incarnation of the so called complex of nearby cycles ψf of f ,
which is a complex of sheaves on X0. For the definition of ψf and the complex φf
of vanishing cycles, we refer to [35], Exp. XIII; but we will not need these notions
in the present survey. Inspired by the notation φf from the theory of vanishing
cycles, we introduce the following

Notation 3.9. We set Sφ
f :=(−1)d−1(Sf− [X0]) ∈ Mµ̂

X0
and Sφ

f,x :=(−1)d−1(Sf,x−
1) ∈ Mµ̂

k .

We regard Sφ
f as the virtual motivic incarnation of the complex φf [d− 1].

Assume now again that k = C. We denote by χh the canonical ring homo-
morphism (called the Hodge characteristic)

χh : Mµ̂
k → K0(HSmon) ,

which associates to any complex algebraic variety Z, with a good µn-action, its
Hodge characteristic as defined in 3.1.2, together with the endomorphism induced
by Z → Z : z �→ e2π

√
−1/nz. (For the definition of K0(HSmon), see 3.1.3.)

Theorem 3.10. ([13]) Assume the above notation with k = C, and the notation
of 3.1. Then we have the following equality in K0(HSmon)

χh(Fx) = χh(Sx) .

Moreover this theorem can be enhanced as an equality in the Grothendieck
group of the abelian category of variations of Hodge structures with a quasi-
unipotent endomorphism, when we replace Sx by S, and Fx by ψf .

Theorem 3.10 yields that hsp(f, x) = hsp(χh(Sφ
f,x)). Thus the motivic zeta

function Z(T ) completely determines the Hodge spectrum of f at x.

4. Motivic Integration and the Proof of Theorem 3.2

The notion of motivic integration on L(X) is due to Kontsevich [23], who dis-
covered its basic properties when X is nonsingular. This subject has been further
developed by Batyrev [5, 6] and Denef-Loeser [13, 14, 15, 16, 17, 18]. See also the
recent report by Looijenga [27] which contains some substantial improvements.
Actually the best way to understand motivic integration is to consider it as being
an analogue of p-adic integration, cf. section 6.

Let X be an algebraic variety over k of pure dimension d, not necessarily
nonsingular. Let Xsing denote the singular locus of X.
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4.1. Naive motivic integration

A subset of A of L(X) is called constructible if A = π−1
n (C) with C a constructible

subset of Ln(X) for some integer n ≥ 0. A subset A of L(X) is called stable if it is
constructible and A ∩ L(Xsing) = ∅. If A ⊂ L(X) is stable, then [πn(A)]L−(n+1)d,
considered as an element of Mk, stabilizes for n big enough, and

µ̃(A) := lim
n→∞

[πn(A)]L−(n+1)d ∈ Mk

is called the naive motivic measure of A. When X is nonsingular, this claim follows
from the fact that the natural maps Ln+1(X) → Ln(X) are locally trivial fibrations
with fiber Ad

k. In the general case, the claim follows from [14], Lemma 4.1.
When θ : A → Mk is a map with finite image whose fibers are stable sub-

sets of L(X), we define the integral
∫
A
θdµ̃ :=

∑
c∈Image θ cµ̃(θ−1(c)). The most

fundamental result in the theory of arc spaces is the following change of variables
formula, which was first obtained by Kontsevich [23] when X is nonsingular.

Theorem 4.1. ([23, 14, 16]) Let h : Y → X be a morphism of algebraic varieties
over k. Suppose that h is birational and proper. Let A ⊂ L(X) be stable and
suppose that ordtJach is bounded on h−1(A) ⊂ L(Y ). Then

µ̃(A) =
∫
h−1(A)

L−ordtJachdµ̃ .

In the above theorem, ordtJach, for y ∈ L(Y ), denotes the t-order of the Ja-
cobian of h at y. When X and Y are nonsingular this is the ordt of the determinant
of the Jacobian matrix of h at y with respect to any system of local coordinates
on X and on Y . For the definition of ordtJach, in the general case, we refer to [14]
and [16].

4.2. About the proof of theorem 3.2

The proof of theorem 3.2 consists of an explicit calculation of [Xn,1/X0, µ̂] ∈ Mµ̂
X0

for each n. Note that in Mk we have the equality

[Xn,1] = L(n+1)dµ̃(π−1
n (Xn,1)) .

Thus using the change of variables formula (theorem 4.1), we see that [Xn,1] is
equal to an integral over a stable subset of L(Y ), where h : Y → X is a resolution
of f as in 3.3. Because f ◦ h is locally a monomial, that integral can be explicitely
calculated and yields an explicit expression for [Xn,1] as an element of Mk. Taking
into account the µn-action on Xn,1 and the natural map Xn,1 → X0, one actually
obtains a similar formula for [Xn,1/X0, µ̂], which yields theorem 3.2.

4.3. Motivic integration

Let A be a constructible subset of L(X). When A is not stable, [πn(A)]L−(n+1)d

will not always stabilize. However it is easy to prove (see [14]) that the limit

µ(A) := lim
n→∞

[πn(A)]L−(n+1)d
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exists in the completed Grothendieck group M̂k, which is the completion of Mk

with respect to the filtration FmMk,m ∈ Z, where FmMk is the subgroup of Mk

generated by the elements [S]L−i, with S ∈ Vark, i− dimS ≥ m. The completed
Grothendieck ring Mk was first introduced by Kontsevich. (In a similar way one
can define the completions M̂S and M̂µ̂

S of MS and Mµ̂
S .) The element µ(A) of

M̂k is called the motivic measure of A. This yields a σ-additive measure µ on the
Boolean algebra of constructible subsets of L(X). Actually all the above still works
when A is a semi-algebraic subset of L(X), cf. [14]. It is even possible to define
the notion of a measurable subset of L(X) and to integrate measurable functions
on L(X), see [5, 16].

The change of variables formula (theorem 4.1) remains true with µ̃ replaced
by µ, for any constructible (or measurable) subset of L(X), without assuming that
ordtJach is bounded on h−1(A).

It is not known whether the natural map Mk → M̂k is injective, but the
topological Euler characteristic, the Hodge-Deligne polynomial, the Hodge char-
acteristic, and many other important generalized Euler characteristics all factor
through the image M̄k of Mk in M̂k (after inverting the image of L in the target
ring).

We can consider the motivic volume of the whole arc space L(X), namely
µ(L(X)). Clearly, when X is nonsingular, µ(L(X)) = [X]L−d in M̂k. Here and in
what follows, we denote the image of [X], resp. L, in M̂k again by [X], resp. L.
When X is not necessarily nonsingular, we can calculate µ(L(X)) using a suitable
resolution of singularities h : Y → X of X. More precisely we have the following

Theorem 4.2. Let h : Y → X be a proper birational morphism with Y nonsingular.
Assume that the exceptional locus of h has normal crossings and that the image
of h∗(Ωd

X) in Ωd
Y is an invertible sheaf, where Ωd

X and Ωd
Y denote the sheaf of

differential forms of maximal degree. Let Ej , j ∈ J , be the k-irreducible components
of the exceptional locus of h. For any subset I of J , set E◦

I = (∩i∈IEi)\∪j∈J\IEj.
For i ∈ I, let νi−1 be the multiplicity along Ei of the divisor associated to h∗(Ωd

X).
Then, in M̂k, we have

µ(L(X)) = L−d
∑
I⊂J

[E◦
I ]

∏
i∈I

[Pνi−1]−1 .

In particular we see that µ(L(X)) ∈ M̄k,loc ⊂ M̂k, where M̄k,loc denotes
the ring obtained from M̄k by inverting the elements 1 + L + · · · + Li, for all
i = 1, 2, 3, . . . .

About the proof of this theorem, we remark that µ(L(X))=
∫
L(Y )

L−ordtJachdµ,
by the change of variables formula. Because Jach is locally a monomial, this integral
can be easily calculated, which yields the theorem.

4.4. Applications

4.4.1. New invariants of singular varieties Suppose k = C. Since χtop

and χhp factor through M̄k, we have natural maps χtop : M̄k,loc → Q and
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χhp : M̄k,loc → Z[[u, v]][u−1, v−1]. Hence we can consider χtop(L(X)) ∈ Q and
(uv)dχhp(L(X)) ∈ Z[[u, v]], which are new invariants of X when X is singular.
When X is nonsingular, these invariants equal χtop(X), resp. χhp(X). We call the
coefficients of (uv)dχhp(L(X)) (with an appropriate sign change) the arc-Hodge
numbers of X. When X has only canonical Gorenstein singularities, Batyrev [5]
introduced the so called stringy Hodge numbers of X, which are obtained in a sim-
ilar way, replacing µ(L(X)) by

∫
L(X)

L−ordtωXdµ, where ωX denotes the canonical
class of X. The stringy Hodge numbers play an important role in the work of
Batyrev on mirror symmetry, see [5, 7, 3, 2]. Other fascinating related invariants
were obtained by Veys [46, 47].

4.4.2. Calabi-Yau manifolds Let X and Y be two Calabi-Yau manifolds, i.e.
nonsingular proper complex algebraic varieties which admit a nonvanishing dif-
ferential form of maximal degree, which we denote respectively by ωX and ωY .
Kontsevich [23] proved that X and Y have the same Hodge numbers and the same
Hodge structure on their cohomology, when X and Y are birationally equivalent.
The proof goes as follows There exists a nonsingular proper complex algebraic
variety Z and birational morphisms hX : Z → X and hY : Z → Y . Note that
(hY ◦ h−1

X )∗(ωY ) equals c ωX for some c ∈ C× because ωX has no zeroes. Hence
c h∗

X(ωX) = h∗
Y (ωY ). Thus ordtJachX

= ordtJachY
on L(Z), and by the change

of variables formula both µ(L(X)) and µ(L(Y )) equal the same integral on L(Z).
Because µ(L(X)) = [X]L−d and µ(L(Y )) = [Y ]L−d, this implies that [X] = [Y ]
in M̄k, which finishes the proof.

Actually Batyrev [4] first proved that X and Y have the same Betti numbers
using p-adic integration and the Weil conjectures, and Kontsevich invented motivic
integration to prove that X and Y have the same Hodge numbers.

4.4.3. Euler characteristics and modifications Let h : Y → X be a mod-
ification of nonsingular algebraic varieties over k, meaning that h is a proper
birational morphism. Assume that the exceptional locus of h has normal cross-
ings, and let J,Ei, E

◦
I and νi be as in theorem 4.2. Because X is nonsingular,

µ(L(X)) = [X]L−d and theorem 4.2 yields the following equality in M̄k,loc:

[X] =
∑
I⊂J

[E◦
I ]

∏
i∈I

[Pνi−1]−1. (∗)

a) When k = C, applying the topological Euler characteristic on (∗) yields
χtop(X) =

∑
I⊂J χ(E◦

I )/
∏

i∈I νi. This surprising formula about the Euler charac-
teristic of modifications was first obtained in [12] using p-adic integration and the
Grothendieck-Lefschetz trace formula.

b) When k = Q, applying the conductor (with respect to &-adic cohomology,
see section 2.2 yields the following remarkable formula for the conductor c(X) of X

c(X) =
∏
I⊂J

c(E◦
I )

1/
∏

i∈I νi .
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5. The Motivic Thom-Sebastiani Theorem

Let k be a field of characteristic zero, X and Y nonsingular irreducible algebraic
varieties over k, f : X → A1

k, g : Y → A1
k non constant morphisms, and x ∈

X(k), y ∈ Y (k). We denote by f ∗ g the morphism

f ∗ g : X × Y → A1
k : (x, y) �→ f(x) + g(y) .

The following theorem was first proved by A. Varchenko [42], when x and y are
isolated singular points of f and g, and by M. Saito [33, 34] in the general case. A
similar but much weaker result for the eigenvalues of monodromy was first proved
by Thom and Sebastiani [37].

Theorem 5.1. (Thom-Sebastiani Theorem for the Hodge spectrum) Assume the
notation of 3.1.3, with k = C. We have the following equality in Z[t1/N] :

hsp(f ∗ g, (x, y)) = hsp(f, x) hsp(g, y) .

We recall that hsp(f, x) = hsp(χh(Sφ
f,x)), with the notation of 3.9. We will see

next that the above theorem is a direct consequence of a much stronger result which
expresses Sφ

f∗g,(x,y) in terms of Sφ
f,x and Sφ

g,y. Below, we define a binary operation

∗ on Mµ̂
k which yields an alternative ring structure on Mµ̂

k , such that hsp ◦ χh
becomes a homomorphism of rings (which is not true for the usual multiplication
on Mµ̂

k).
Using the theory of arc spaces and the definition of Sf in terms of the mo-

tivic zeta function Z(T ), work of Denef, Loeser and Looijenga yields the following
theorem

Theorem 5.2. (Motivic Thom-Sebastiani Theorem) Let k be a field of character-
istic zero. Then Sφ

f∗g,(x,y) and Sφ
f,x ∗ Sφ

g,y are equal in Mµ̂
k , where the operation ∗

is defined below.

Actually Denef and Loeser [15] first proved the above equality in the com-
pleted Grothendieck group of Chow motives. Later Looijenga [27] introduced the
operation ∗ and proved, using basically the same method, an equality which is
similar to theorem 5.2. The proof of theorem 5.2 uses arc spaces in a very essential
way by deriving first a formula relating the motivic zeta functions of f ∗ g, f and
g, and taking afterwards the limit for T → ∞. More precisely, set

Zφ
f (T ) := (−1)d−1

[
Zf (T ) + [X0] +

Znaive
f (T ) − [X0]

1 − T

]
,

where Zf (T ), resp. Znaive
f (T ), is the motivic, resp. naive motivic, zeta function

of f , X0 is the locus of f = 0 in X, and d is the dimension of X. Let Zφ
f,x(T )

be obtained from Zφ
f (T ) by applying the map fiberx to its coefficients. Clearly

− limT→∞ Zφ
f (T ) is Sφ

f . One proves that

Zφ
f∗g,(x,y)(T ) = Zφ

f,x(T ) ∗ Zφ
g,y(T )
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in Mµ̂
k , where ∗ is defined coefficientswise. This implies theorem 5.2 because

− limT→∞ commutes with ∗ on such power series without constant terms.
Finally, we explain the definition of the operation ∗ on Mµ̂

k . Let X and Y be
algebraic varieties over k with good µn-action, for some integer n ≥ 1. Let Jn be the
Fermat curve in (A1

k\{0})2 defined by un+vn = 1. There is an action of µn×µn on
Jn given by (ξ, ξ′) · (u, v) := (ξu, ξ′v). We define Jn(X,Y ) in Vark as the quotient
of Jn×X×Y under the equivalence relation given by (ξu, ξ′v, x, y) = (u, v, ξx, ξ′y)
for all ξ, ξ′ ∈ µn. We let µn act on Jn(X,Y ) by ξ · (u, v, x, y) := (ξu, ξv, x, y). This
yields an element [Jn(X,Y )] in Mµ̂

k . If m is a divisor of n, and the action of µn
on X and Y factors through µm, then Jm(X,Y ) = Jn(X,Y ). Thus, in this way,
we obtain a binary operation J : Mµ̂

k ×Mµ̂
k → Mµ̂

k , which was first introduced by
Looijenga [27]. The operation J is commutative and bilinear over Mk, considering
Mµ̂

k as a module over Mk through the natural map Mk → Mµ̂
k . One verifies that

J(a, 1) = (L − 1)ā − a, where a �→ ā : Mµ̂
k → Mk is the morphism induced by

[Z] → [space of µ̂-orbits of Z], for any k-variety Z with good µ̂-action, cf. [27].
In particular we see that 1 is not a neutral element for the operation J . For this
reason it is natural to introduce the operation ∗ on Mµ̂

k given by

a ∗ b = −J(a, b) + (L − 1)ab ,

for a and b in Mµ̂
k . Clearly the operation ∗ is commutative and bilinear over Mk,

and a ∗ 1 = a for all a in Mµ̂
k . Moreover one easily verifies that hsp ◦ χh is a ring

homomorphism with respect to the alternative ring structure on Mµ̂
k given by ∗.

6. The Arithmetic Motivic Poincaré Series Parith(T )

6.1. The p-adic case

Assume that X is an algebraic variety over Z, i.e. a reduced separated scheme of
finite type over Z. Let p be a prime number. We consider the Poincaré series

Jp(T ) =
∑
n∈N

#X(Z/pn+1Z)Tn, Pp(T ) =
∑
n∈N

#(πn(X(Zp)))Tn ,

where Zp denotes the ring of p-adic integers and πn is the natural projection
πn : Zp → Z/pn+1Z. Igusa [22], resp. Denef [8], proved that Jp(T ), resp. Pp(T ), is
a rational function of T . The proofs are based on p-adic integration, resolution of
singularities, and for Pp(T ) also the theory of p-adic semi-algebraic sets. Actually
the proof of theorem 2.2 about the rationality of J(T ) and P (T ) was very much
inspired by the proofs of the rationality of Jp(T ) and Pp(T ), replacing p-adic
integration by motivic integration. As a matter of fact, for all the material discussed
in the previous sections, p-adic counterparts exist which were discovered first,
see [9] for a survey.
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6.2. Comparing J(T ) and Jp(T )
For any rational power series G(T ) over K0(VarQ) (with denominator a product of
polynomials of the form 1−LaT b, b ∈ N \ {0}, a ∈ Z) we choose representatives in
K0(VarZ) for the coefficients in K0(Vark) of numerator and denominator. In this
way we find a power series over K0(VarZ), and, for any prime number p, we can
apply to each coefficient the operation Np : K0(VarZ) → Z : [X] �→ #X(Z/pZ).
This yields a power series over Z which we will denote by Np(G(T )). If we choose
other representatives in K0(VarZ), the resulting power series Np(G(T )) will be the
same for almost all p (i.e. for all but finitely many prime numbers p).

Comparing the proof of the rationality of J(T ) and Jp(T ) actually yields the
following

Theorem 6.1. Assume the notation of 6.1 and 6.2. For almost all p we have
Jp(T ) = Np(J(T )).

Also the motivic zeta functions Z(T ) and Znaive(T ), have similar arithmetic
interpretations, related to Igusa’s local zeta functions, see [13]. However it is not
true in general that Np(P (T )) = Pp(T ) for almost all p. Indeed Np(P (T )) does
not count the elements of X(Z/pn+1Z) which can be lifted to X(Zp), but counts
(for almost all p) the elements of X(Z/pn+1Z) which can be lifted to X(Zunram

p ),
where Zunram

p is the maximal unramified extension of Zp. Note that the residue
field of Zunram

p is the algebraic closure of Z/pZ.

6.3. The motivic Poincaré series Parith(T )
The above discussion leads to the question of defining in a canonical way a power
series Parith(T ) over (some localization of) K0(VarQ) such that Np(Parith)(T ) =
Pp(T ) for almost all p.

In our recent paper [17], we construct, for any algebraic variety over k, in
a canonical way, a rational power series Parith(T ) over K0(Motk) ⊗ Q, such that
if k = Q then Np(Parith(T )) = Pp(T ) for almost all p. Here Motk denotes the
category of Chow motives over k. We refer to [38] for the definition of this im-
portant category, and we only remark here that there is a natural ring morphism
K0(Vark) → K0(Motk), see [19]. Actually the coefficients of Parith(T ) are in the
image of K0(Vark) ⊗ Q. We need to work at the level of Chow motives, to make
our construction canonical.

The proof of our result is rather complicated and uses several results from
mathematical logic (quantifier elimination for valued fields and finite fields). For a
survey on such relations between logic, geometry and arithmetic, we refer to [11].
Examples seem to suggest that Parith(T ) captures more geometric information
than P (T ), but very little is presently known about it!
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