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Abstract. We study a free boundary problem governing the motion of two
immiscible viscous capillary fluids. The fluids occupy the whole space R

3 but
one of them should have a finite volume. Every liquid may be of both types:
compressible and incompressible.

Local (with respect to time) unique solvability of the problem is obtained
in the Sobolev-Slobodetskǐı spaces. After the passage to Lagrangian coordi-
nates, one obtains a nonlinear, noncoercive initial boundary-value problem
the proof of the existence theorem for which is based on the method of suc-
cessive approximations and on an explicit solution of a model linear problem
with a plane interface between the liquids.

Some restrictions to the fluid viscosities appear in the case when at least,
one of the liquids is compressible.

1. Introduction

In this paper, we summarize of the study in the Sobolev spaces of the solvability
of problems governing the motion of two viscous liquids separated by an unknown
closed interface. Every fluid may be of both types: compressible and incompress-
ible. They occupy the whole space R

3. On the interface, we take the capillary
forces into account. All results remain valid for noncapillary fluids too.

The main result of this investigation is the unique solvability of the problems
mentioned above in sufficient small time intervals. As auxiliary results, one can
consider the proof of existence of unique solutions for linearized problems in any
finite time interval and global unique solvability in the weighted Sobolev spaces
of linear model problems with a plane interface between the liquids. We compare
explicit solutions in the dual spaces of these linear problems. We make passage
to the limit from the solution of the problem for two compressible fluids through
the solution of the “mixed type” system to the solution of the problem for two
incompressible liquids. We remark that there is no restriction to the fluid viscosities
for the last problem whereas for the “mixed type” problem the stated results are
proved only if the dynamic viscosities of the fluids are not different more than in
two times. As for two compressible liquids, these results are valid only for fluids
with low viscosity.
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2. Statement of the Problems and Formulation of the Main Results

First, we formulate the most complicated problem, for the case of two liquids of
different types. A study of this problem is made in [2].

Let, for definitness, at the initial moment t = 0, the compressible fluid have a
finite volume and be situated in a bounded domain Ω+

0 ⊂ R
3 inside incompressible

one occupying the domain Ω−
0 ≡ R

3 \ Ω+
0 .

Let µ+ > 0, λ+ > 0 be the dynamic viscosities of the compressible liquid.
We denote the kinematic viscosity of the incompressible fluid by constant ν− > 0
and its density coefficient by ρ− > 0. We consider that the compressible fluid is
barotrpic. We note that we could also suppose the compressible fluid to be exterior
to the incompressible one.

For t > 0, it is necessary to find Γt, the free interface between the liquids
evolving in the domains Ω−

t and Ω+
t . Besides, it is required to find the density

function ρ+(x, t) > 0 of the compressible fluid, the pressure function p−(x, t)
of the incompressible fluid, as well as the velocity vector field of both liquids
v(x, t) = (v1, v2, v3) satisfying the initial-boundary value problem for the Navier-
Stokes system:

ρ±(Dtv + (v · ∇)v) −∇T = ρ±f , Dtρ
± + ∇ · (ρ±v) = 0 in Ω−

t ∪ Ω+
t ,

v|t=0 = v0 in Ω−
0 ∪ Ω+

0 , (1)

ρ+|t=0 = ρ+
0 , in Ω+

0 ; v−−−→
|x|→∞

0 , p− −−−→
|x|→∞

0 ; (2)

[v]
∣∣∣∣
Γt

≡ lim
x→x0∈Γt,

x∈Ω+
t

v(x) − lim
x→x0∈Γt,

x∈Ω−
t

v(x) = 0 , [Tn]
∣∣∣∣
Γt

= σHn on Γt . (3)

Here Dt = ∂/∂t, ∇ = (∂/∂x1, ∂/∂x2, ∂/∂x3), function ρ± is equal to ρ+(x) in Ω+
t

and to the constant ρ− in Ω−
t ; the stress tensor is

T =

{
(−p+(ρ+) + λ∇ · v) I + µ+

S(v) in Ω+
t ,

−p−I + µ−S(v) in Ω−
t ,

(4)

(S(v))ik = ∂vi/∂xk + ∂vk/∂xi, i, k = 1, 2, 3; I is the unit matrix; µ− = ν−ρ−;
p+(ρ+) is the pressure of the compressible fluid given by a smooth function of
its density; f is the given vector field of mass forces; v0 is the initial value of
the velocity vector field; ρ+

0 is the initial density distribution of the compressible
fluid; σ � 0 is the surface tension coefficient, n is the outward normal vector to
Ω+
t , H(x, t) is twice the mean curvature of Γt (H < 0 at the points where Γt is

convex towards Ω−
t ); ∇T means the vector with the components (∇T)j = ∂Tij

∂xi
,

Tij = (T)ij , j = 1, 2, 3. We imply the summation from 1 to 3 with respect to
repeated indices. A Cartesian coordinate system {x} is introduced in R

3. The
central dot denotes the scalar product. We mark the vectors and the vector spaces
by boldface letters.
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Since we suppose the liquids to be immiscible it is natural to impose on Γt a
condition excluding the mass transportation through this surface. Mathematically,
this condition means that Γt consists of the points x(ξ, t) whose radius vector
x(ξ, t) is a solution of the Cauchy problem

Dtx = v(x(ξ, t), t) , x(ξ, 0) = ξ , ξ ∈ Γ , t > 0 , (5)

where Γ ≡ Γ0 = ∂Ω+
0 is a surface given at the initial moment. Hence, Ω±

t = {x =
x(ξ, t)|ξ ∈ Ω±

0 }.
Condition (5) completes system (1)–(3).
For two compressible fluids, the problem formulation differs from (1)–(5) by

conditions (2) that look as follows

ρ−|t=0 = ρ−0 in Ω−
0 ; ρ+|t=0 = ρ+

0 in Ω+
0 ; v−−−→

|x|→∞
0 . (6)

The stress tensor in this case is

T =

{
(−p+(ρ+) + λ∇ · v) I + µ+

S(v) in Ω+
t ,

(−p−(ρ− − +λ∇ · v) I + µ−S(v) in Ω−
t .

(7)

This problem has been studied in [3].
In the case of two incompressible liquids, we would have (2) in the form

v−−−→
|x|→∞

0, p−−−→
|x|→∞

0 . (8)

The stress tensor would be given by

T =

{
−pI + µ+

S(v) in Ω+
t ,

−pI + µ−S(v) in Ω−
t .

(9)

One has analysed the latter problem in [1, 5, 4].
We present an investigation scheme common for all three problems consider-

ing the example of (1)–(5). This technique was proposed by V. A. Solonnikov in
[6, 7] for the study of the drop evolution in vacuum and it was modified by him
and A. Tani in [8] for the case of the bubble motion in vacuum.

We transform the Eulerian coordinates {x} into the Lagrangian ones {ξ} by
the formula

x(ξ, t) = ξ +

t∫
0

u(ξ, τ)dτ ≡ Xu(ξ, t) (10)

where u(ξ, t) is the velocity vector field in the Lagrangian coordinates.
The Jacobian of transformation (10) Ju(ξ, t) = det{aij}3

i,j=1, aij(ξ, t) =

δij +
t∫
0

∂ui

∂ξj
dτ, being a solution of the Cauchy problem

DtJu(ξ, t) = Aij
∂ui
∂ξj

≡ Ju(ξ, t)(∇ · v|x=Xv ) , Ju(ξ, 0) = 1 ,
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is expressed by the formula

Ju(ξ, t) = exp(

t∫
0

∇ · v|x=Xu
dτ) ≡ exp(

t∫
0

∇u · u dτ) . (11)

Here we use the standard notation {δij}3
i,j=1 for the Kronecker symbols and also

∇u ≡
{

∂ξi

∂xk

∂
∂ξi

}3

k=1
= J−1

u A∇; A ≡ {Aij}3
i,j=1 is the cofactors matrix of the

Jacobi matrix {aij} in (10). We note that Ju(ξ, t) ≡ 1 in the domains with incom-
pressible fluid.

After tranformation (10), we can integrate the second equation in (1) for the
compressible liquid. Then we obtain the following expression for the density ρ+ in
the Lagrangean coordinates:

ρ̂+(ξ, t) = ρ+
0 (ξ) exp(−

t∫
0

∇u · u dτ) = ρ+
0 (ξ)J−1

u (ξ, t) .

Next, we use the well-known formula for twice the surface mean curvature:

Hn = ∆(t)x = ∆(t)Xu

where ∆(t) is the Beltrami-Laplace operator on Γt. Moreover, we separate the last
boundary condition in (3) on the tangential and normal components. To this end,
we project it first onto the tangent plane of Γt and then onto that of Γ by means
of projectors Π and Π0, respectively.

Let n0 be the outward normal to Γ. It is connected with n by the relation
n = J−1

u An0

|J−1
u An0|

= An0
|An0| .

As a result of the above transformation, we obtain the system:

Dtu − 1
ρ+
0 (ξ)

A∇T
′
u(u) = f(Xu, t) −

1
ρ+
0 (ξ)

A∇p+(ρ+
0 J−1

u ) in Q+
T ≡ Ω+

0 × (0, T ) ,

Dtu − ν−∇2
uu +

1
ρ−

∇uq = f(Xu, t) , ∇u · u = 0 in Q−
T ≡ Ω−

0 × (0, T ) ,

u

∣∣∣∣
t=0

= v0 in Ω−
0 ∪ Ω+

0 , u−−−→
|ξ|→∞

0, q−−−→
|ξ|→∞

0 , (12)

[u]
∣∣∣∣
GT

= 0, [µ±Π0ΠSu(u)n]
∣∣∣∣
GT

= 0 (GT ≡ Γ × (0, T )) ,

[n0 · T
′
u(u, q)n]

∣∣∣∣
GT

− σn0 · ∆(t)Xu

∣∣∣∣
GT

= (n0 · n)p+(ρ+
0 J−1

u )
∣∣∣∣
GT

,
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which is equivalent to (1)–(5) provided that n · n0 > 0. In (12) we used the
notation: q(ξ, t) was the pressure function in the Lagrangian coordinates;

(T′
u(w, q))i,j =

{
(λ+∇u · w)δij + µ+(Su(w))ij in Q+

T ,
−δijq + µ−(Su(w))ij in Q−

T ;

(Su(w))ij = J−1
u

(
Aik

∂wj

∂ξk
+Ajk

∂wi

∂ξk

)
;

Π0ω = ω − (n0 · ω)n0, Πω = ω − (n · ω)n .

We shall use the ordinary normalization for the Sobolev-Slobodetskǐı spaces
Wm

2 (Ω) for m > 0, Ω being a domain in R
n, n ∈ N. ‖ · ‖Ω is the norm of L2(Ω).

The anisotropic space Wm,m/2
2 (QT ) consists of functions defined in the cylin-

der QT = Ω × (0, T ), 0 < T � ∞, and having finite norm

‖u‖
W

m,m/2
2 (QT )

=

 T∫
0

‖u‖2
Wm

2 (Ω)dt+
∫
Ω

‖u‖2

W
m/2
2 (0,T )

dx

1/2

.

Now we define three norms necessary for formulating the main result of this
paper. The first of them is

‖u‖(m,m/2)

Q−
T ∪Q+

T

=

(
‖u‖2 ⋃

i=−,+
W

m,m/2
2 (Qi

T )
+ T−m‖u‖2

R3
T

)1/2

.

It is equivalent to ‖u‖2⋃
i
W

m,m/2
2 (Qi

T )
for ∀T < ∞. The square of the second one is

determined by the formula(
‖u‖(2+l,1+l/2)

Q−
T ∪Q+

T

)2

= ‖u‖2 ⋃
i=−,+

W
2+l,1+l/2
2 (Qi

T )
+ T−l

{
‖Dtu‖2

Q−
T ∪Q+

T

+

+
∑
|α|=2

‖Dα
x u‖2

Q−
T ∪Q+

T

}
+ sup

t≤T
‖u(·, t)‖2⋃

i
W 1+l

2 (Ωi
0)
.

For β ∈ (0, 1) we will consider the following Hoelder norm of u ∈ R
3
T ≡ R

3× (0, T )

‖|u|‖R3
T

= sup
R3

T

|u| + max
k

sup
(x,t)∈R3

T

|Dxk
u(x, t)| + sup

(x,t),τ≤T

|u(x, t) − u(x, τ)|
|τ − t|β .

Let Bd be the ball {x : |x| < d}. We choose a coordinate system {x} so that
Ω+

0 is contained in the ball Bd, d <∞, and we set B−
dT ≡ (Bd \ Ω+

0 ) × (0, T ).

Theorem 2.1. Assume that for some l ∈ (1/2, 1) we have Γ ∈ W
5/2+l
2 , ρ+

0 ∈
W 1+l

2 (Ω+
0 ), 0 < R0 � ρ+

0 (ξ) � R∞ <∞, ξ ∈ Ω+
0 , p+ ∈ C3(R+), f ∈ W

l,l/2
2 (R3

T ),
0 < T < ∞, f(·, t) ∈ C2(R3) for ∀t ∈ [0, T ], f(ξ, ·), ∇f(ξ, ·) ∈ Cβ(0, T ) for
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∀ξ ∈ R
3 with some β ∈ (1/2, 1). In addition, let the initial velocity vector v0 ∈⋃

i=−,+

W 1+l
2 (Ωi

0) satisfy the compatibility conditions

∇ · v0 = 0 in Ω−
0 , [v0]

∣∣∣∣
Γ

= 0, [Π0S(v0)n0]
∣∣∣∣
Γ

= 0 ,

and for the viscosities of the liquids, the inequalities

µ− > µ+, ν− < µ+/R∞ (13)

hold.
Under these hypotheses, there exists a constant T0 ∈ (0, T ] such that prob-

lem (12) is uniquely solvable on the interval (0, T0) and its solution (u, q) has
the properties: u ∈

⋃
i=−,+

W
2+l,1+l/2
2 (Qi

T0
), q ∈ W

l,l/2
2,loc(Q

−
T0

), ∇q ∈ W
l,l/2
2 (Q−

T0
),

q|GT0
∈W l+1/2,l/2+1/4

2 (GT0) and

‖u‖(2+l,1+l/2)

Q−
T0

∪Q+
T0

+ ‖∇q‖(l,l/2)

Q−
T0

+ ‖q‖(l,l/2)

B−
dT0

+ ‖q‖
W

l+1/2,l/2+1/4
2 (GT0 )

�

� c1(c2 + c3T
1−l
2

0 ‖v0‖⋃
i

W 1+l
2 (Ωi

0)
)
{
‖|f |‖R3

T0
+ ‖v0‖⋃

i
W 1+l

2 (Ωi
0)

+

+ σ‖H0‖W l+1/2
2 (Γ)

+ ‖ 1
ρ+
0

∇p+(ρ+
0 )‖W l

2(Ω+
0 ) + ‖p+(ρ+

0 )‖W 1+l
2 (Ω+

0 )

}
.

The value T0 depends on the norms of f , v0, ρ0, p+ and on the curvature value
of Γ.

This theorem is proved by successive approximations in the same way as the
analogous theorems for the case of a single incompressible fluid [7] or for the case
of a single compressible one [8]. The role of the successive approximations is played
by the solutions of the following linearized problems:

Dtw − 1
ρ+
0 (ξ)

A∇T
′
u(w) = f in Q+

T ,

Dtw − ν−∇2
uw +

1
ρ−0

∇us = f , ∇u · w = r in Q−
T ,

w

∣∣∣∣
t=0

= w0 in Ω−
0 ∪ Ω+

0 , w−−−→
|ξ|→∞

0, s−−−→
|ξ|→∞

0 , (14)

[w]
∣∣∣∣
GT

= 0, [µ±Π0ΠSu(w)n]
∣∣∣∣
GT

= Π0a ,

[n0 · T
′
u(w, s)n]

∣∣∣∣
Γ

− σn0 · ∆(t)

t∫
0

w

∣∣∣∣
Γ

dτ = b+ σ

t∫
0

B dτ, t ∈ (0, T ) .
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The proof of the existence theorem for problem (14) is also based on the
successive approximation method, the solution of system (14) with u = 0 being
taken as the first approximation.

Existence of a unique solution of the latter problem and its smoothness may
be proved by constructing a regularizer [7, 8] or by means of generalized solution
[5]. Both these methods are based on the Schauder estimates of the solution and
considering a model problem with plane interface Γ.

For problem (14), a theorem on the unique solvability takes place for an
arbitrary finite time interval (0, T ) and for a vector u ∈

⋃
i=−,+

W
2+l,1+l/2
2 (Qi

T )

being continuous across the boundary Γ, such that the inequality

T 1/2‖u‖(2+l,1+l/2)

Q−
T ∪Q+

T

� δ

holds with a sufficiently small number δ.
For one-type liquid problems, similar results take place too. We note that in

the case of two incompressible fluids, they are formulated without any restrictions
to the liquid viscosities [4]. As for two compressible fluids, we have the inequalities

µ−

2
� µ+ � 2µ−, 0 < λ± � µ± (15)

instead of (13). A theorem similar to theorem 2.1 can be found in [3].

3. The Model Problem with a Plane Interface between the Fluids

In this section, we consider the problem

Dtv − ν+∇2v +
1
ρ+
0

∇p = 0, ∇ · v = 0, in D+
∞ = R

3
+ × (0,∞) ,

Dtv − ν−∇2v − (ν− + κ−)∇(∇ · v) = 0 in D−
∞ = R

3
− × (0,∞) ,

v

∣∣∣∣
t=0

= 0 on R
3
− ∪ R

3
+, v−−−→

|x|→∞
0, p−−−→

|x|→∞
0 , (16)

[v]
∣∣∣∣
x3=0

= 0, −
[
µ±

(
∂vα
∂x3

+
∂v3
∂xα

)]∣∣∣∣
x3=0

= bα(x′, t), α = 1, 2 ;

−p− λ−∇ · v +
[
2µ±

∂v3
∂x3

]∣∣∣∣
x3=0

+ σ∆′
t∫

0

v3dτ

∣∣∣∣
x3=0

=b3 + σ

t∫
0

B dτ ≡ b′3 on R
2
∞ .

Here we have used the notation: R
3
± = {±x3 > 0}, R

2
∞ = R

2×(0,∞), κ− = λ−/ρ−0 ,
ρ−0 = constant > 0, ν− = µ−/ρ−0 , ∆′ = ∂2/∂x2

1 + ∂2/∂x2
2, x

′ = (x1, x2).
We take the Fourier transform on the tangent space variables (x1, x2) = x′

and the Laplace transform on t. We denote the dual variables by ξ = (ξ1, ξ2)
and s, respectively. The problem (16) then goes over into the system of ordinary
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differential equations with unknown functions ṽ, p̃. We solve this system and we
write a solution in the form convenient for the following estimates:

ṽ = W e±0 + V ±e±1 , ±x3 > 0 , (17)

p̃ = −C+
3 ρ

+
0 se

−|ξ|x3 = −µ+C+
3 (r+ − |ξ|)(r+ + |ξ|)e−|ξ|x3 , x3 > 0 ,

where r± =
√

s
ν± + ξ2, r−1 =

√
s

(2+β−)ν− + ξ2, |ξ| =
√
ξ21 + ξ22 , | arg

√
z| < π/2

for ∀z, β− = κ−/ν− ; e±0 = e∓r±x3 , e+1 = e−r+x3−e−|ξ|x3

r+−|ξ| , e−1 = er−x3−er
−
1 x3

r−−r−1
,

W =

 ω1

ω2

ω3

 , V + = −C+
3 (r+−|ξ|)

 iξ1
iξ2
−|ξ|

 , V − = −C−
3 (r−−r−1 )

 iξ1
iξ2
r−1

 ,

C+
3 = − A

{[
2µ+r+ + σ

s ξ
2
]
(r−r−1 − ξ2) + µ−r+(r−

2 − 2r−r−1 + ξ2) + ρ−0 sr
−}

(r+ − |ξ|)P

− b̃′3
{
µ+(r−r−1 − ξ2)(r+2

+ ξ2) + µ−ξ2(r−
2
+ ξ2 − 2r−r−1 ) + ρ−0 sr

+r−1
}

(r+ − |ξ|)P ,

C−
3 = − A

P

{
µ+

[
r+(r+ + |ξ|) + r−(r+ − |ξ|)

]
+ 2µ−r−|ξ| + σ

s
|ξ|3

}
+ (18)

+
b̃′3
P

{
µ+

[
r+|ξ|(r− + |ξ|) + (r− − |ξ|)ξ2

]
+ µ−(r−

2
+ ξ2)|ξ|

}
,

ωα =

{
b̃α + iξα

[
µ+(r+ − |ξ|)C+

3 + µ−(r− − r−1 )C−
3 + (µ+ − µ−)ω3

]}
µ+r+ + µ−r−

,

α = 1, 2,

ω3 =
−(r+ − |ξ|)|ξ|C+

3 + (r−r−1 − ξ2)C−
3

r+ + r−
.

In formulas (18) we have used the notation: A = iξ1b̃1 + iξ2b̃2, b̃′3 = b̃3 + σ
s B̃,

P = µ+s(r+ + |ξ|){ρ+
0 (r−r−1 − ξ2) + ρ−0 (r−|ξ| + r+r−1 + 2ξ2)} + ρ−

2

0 s2|ξ| +
+4(µ+ − µ−)ξ2{µ+r+(r−r−1 − ξ2) − µ−r−(r− − r−1 )|ξ|} +

+
σ|ξ|3
s

{µ+(r+ + |ξ|)(r−r−1 − ξ2) + ρ−0 r
−
1 s} .

We observe that solution (17), (18) may be obtained by the passage to the
limit r+1 → |ξ| from a solution of the model problem with a plane interface between
two compressible fluids (see [3]). On the other hand, it goes over as r−1 → |ξ| into
a solution of the corresponding problem for two incompressible liquids [1]. This
passage may also be demonstrated in the equations. Let us turn r−1 to |ξ| that cor-
responds to β− → ∞. In this case, the Navier-Stokes equations for a compressible
fluid in the domain {x3 < 0} become the equations for the incompressible one.
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The estimates of solution (17), (18) has been considered in detail in [2]. We
remark only that C+

3 is contained in all the expressions with multiplier (r+ −
|ξ|), which is cancelled with the denominator of C+

3 . Hence, the evaluation of
solution (17), (18) depends only on the lower bound of |P |.

It should be noted also that the uniqueness of solution (17), (18) for γ �
γ0 > 0 is guaranteed by the fact that in this case |P | is separated from zero.

Lemma 3.1. Assume that for the viscosities of the fluids the inequalities

ν+ < ν−, µ+ > µ− (19)

hold and that σ � 0. Then for ∀ξ ∈ R
2, ∀s ∈ C, Re s = γ > 0,

|P | � c
(
|s|2 + |s|3/2|ξ| + |s|ξ2 + σ|ξ|3

) (
|s|1/2 + |ξ|

)
.

The main difficulty in the evaluation of |P | has been to find an universal
multiplier q for P in the following sense: the quotient of the division of P by q has
a positive real part. There are many ways to write down P . We has needed to find

such expression for P =
m∑
j=1

Ij that Re Ij

q � 0, j = 1, . . . ,m, and we could apply

the inequality

|P | ≥ |q|

∣∣∣∣∣∣Re

 m∑
j=1

Ij
q

∣∣∣∣∣∣ � |q|
m∑
j=1

Re
Ij
q
> 0 .

We observe that it is the polynomial multiplier of the term with σ|ξ|3/s what
plays the role of such multiplier q in all three cases. For example, in the case of
two incompressible fluids [1] q = µ+(r+ + |ξ|) + µ−(r− + |ξ|).
Remark 3.1. We note that inequalities (13) follow from (19) so as for the case
of two compressible fluids: restrictions (15) appear in the estimate process of the
corresponding denominator P (see [3]).

The author is grateful to the organizers and personally to Professor J.-F. Ro-
drigues for a possibility to attend so significant meeting and to give here a talk.
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