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Abstract. The human genome project, and the parallel genome projects for
other species, will soon produce data that will require entirely novel math-
ematical and statistical analyses, as well as completely new computer algo-
rithms. Here I review mathematical and statistical aspects of what has become
by far the most frequently used statistical analysis used in genome sequence
data analysis so far, namely the BLAST (Basic Local Alignment Search Tool)
statistical analysis.

1. Background

BLAST is a method for
(i) finding high-scoring similarity segments of two aligned DNA or protein se-

quences,
(ii) assessing the statistical significance of any given segment score.

Our interest here is in (ii).
Although BLAST is most frequently used to compare two protein (that is,

amino acid) sequences, it is convenient to nucleotide (DNA) sequences first, to
establish the principles involved.

Consider the simple case of the two aligned DNA sequences given in (1):

g g a g a c t g t a g a c a g c t a a t g c t a t a
c a a c g c c c t a g c c a c g a g c c c t t a t c

(1)

Suppose we give a score +1 if the two nucleotides in corresponding positions match
(i.e. are the same) and a score of −1 if they do not match. Then as we go along
comparing the two sequences, starting at the left, the accumulated score performs
a two-dimensional random walk. In the above example, this walk is depicted in
figure 1.

The null hypothesis asserts that there is no similarity between the two se-
quences, that is that one is generated at random with respect to the other. It is
assumed that the null hypothesis probability p of a match at any site is less than
the probability q = 1 − p of a mismatch. (If all four nucleotides are equally fre-
quent, p = 1/4, so that in this case the inequality requirement certainly holds.) If
the null hypothesis is true, the walk then generally drifts downwards to the right.
As it does so it passes through a sequence of ladder points, shown in figure 1 as
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Figure 1

filled-in circles, and indicating a sequence of new minima sequentially achieved by
the walk.

After reaching any ladder point the walk has the potential of making an
“upwards to the right” excursion, and such an excursion will arise for any sub-se-
quence of the DNA where there is some similarity between the two sequences being
compared. Any such excursion will achieve a maximum height Y above the ladder
point from which it starts, perhaps after some zig-zags, and we denote the height
of the upward excursion after ladder point i by Yi. (We denote the origin as ladder
point 0.) If the walk proceeds immediately from ladder point i to ladder point
i + 1, the value of Yi is zero. In figure 1, for example, the observed values of Y0,
Y1, Y5, Y6 and Y7 are all zero, while Y2 = Y3 = 1 and Y4 = 4.

BLAST theory assesses whether there is a significant similarity betwen the
two sequences by using as test statistic the maximum Ymax of these excursion
heights, and referring the observed value of Ymax to its null hypothesis probability
distribution for significance.

In the case just described, this null hypothesis distribution is found by con-
sidering the properties of a simple random walk with step sizes ±1, the theory for
which is well known. It is however useful to review some of this theory. We denote
the size of any step taken in the walk by S. Then S = +1 with probability p and
S = −1 with probability q = 1 − p, so that the mean E(S) of S is p − q and the
moment-generating function of S is

m(θ) = qe−θ + pe+θ . (2)

The (unique real positive) value of θ for which this moment-generating function
takes the value 1 is denoted by λ. It is immediate in this case that

λ = log
q

p
. (3)
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It is a standard result of random walk theory that if Y is the maximum height
achieved by the walk after reaching any ladder point and before reaching the next,
then asymptotically

Prob (Y ≤ y − 1) ∼ 1 − Ce−λy (4)

where C = 1 − e−λ. The asymptotic relation (4) is in a form similar to that
of a geometric distribution, and we call the distribution of Y a “geometric-like”
distribution.

Since the test statistic used in BLAST is Ymax, it is necessary to find the null
hypothesis mean number of ladder points in the walk, since the null hypothesis
probability distribution of Ymax will depend on this mean. This mean depends on
the length of the two sequences being compared, and we denote this length by N .

To find the mean number of ladder points we first find the mean number of
steps in the walk (or comparisons of the two DNA sequences) between one ladder
point and the next. This calculation is best approached using Wald’s identity.
Suppose that j is the (random) number of steps from one ladder point to the next,
and define Tj as the sum of the sizes of these steps. Differentiating throughout in
Wald’s identity

E
(
eθTj (m(θ))−j

)
= 1 (5)

with respect to θ and then setting θ = 0, we obtain the equation

E(Tj) = E(j)E(S) . (6)

Equation (6) enables us to find E(j) immediately for the random walk. The even-
tual total displacement Tj in the walk is identically −1, since any one ladder point
is unit distance below the previous one. Since E(S) = p − q, E(j) = (q − p)−1.
This implies that the mean number µ of ladder points along the entire sequence
comparison of length N is given by

µ = N/E(j) = N(q − p) . (7)

Thus Ymax can be taken as the maximum of µ random variables, each having the
asymptotic distribution given by (4).

Unfortunately there is no limiting (N → +∞) probability distribution for
Ymax. However bounds for the distribution of Y can be found by bounding the
properties of the geometric-like distribution by those of two continuous exponen-
tial-like random variables. From this, if y is the observed value of Ymax, then
anticipating the statistical use of these limiting distributions,

1 − e−µC e−λy

≤ P-value ≤ 1 − e−µC e−λ(y−1)
(8)

where the P-value is that associated with an observed value y of the random
variable Ymax. Often a conservative P-value is wanted, that is to say a number
known to be greater than or equal to the true P-value. The inequalities (8) show
immediately that, for large values of y,

conservative P-value ≈ 1 − e−µC e−λ(y−1)
. (9)
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In many applied cases µC e−λ(y−1) is quite small. When this is so,

approximate conservative P-value ≈ µC e−λ(y−1) . (10)

Once the values of C and λ are known, this P-value can be calculated immediately.

2. Protein Sequences

In practice BLAST theory relates to cases that are much more complicated than
the simple DNA example described above. First it is normally applied to the com-
parison of two protein sequences, that is sequences of amino acids, and uses scores
other than the simple scores +1 and −1 for matches and mismatches discussed
above. There are 20 amino acids and thus 400 possible amino acid comparisons
at any position in the comparison of two protein sequences. If the 20 amino acids
are numbered as amino acids 1, 2, . . . , 20 in some agreed order, these scores are
described by the entries in a 20 × 20 “substitution matrix”, with a score S(j, k)
being allocated at any position if amino acid j occurs in the first sequence and
amino acid k occurs in the second sequence at that position. It is always true in
such a matrix that any main diagonal entry S(j, j) is positive, and for compara-
tively rare amino acids this score is usually comparatively large. Mismatch scores
are usually negative, although mismatch scores for two amino acids having similar
properties are sometimes small and positive. Since the score for any amino acid
comparison is used to define to upward or downward movement of the random
walk describing the accumulated score for that protein comparison, they lead to
random walks more complex than that depicted in figure 1. For example, if

S(1, 4) = −2 , S(1, 8) = +1 , S(5, 9) = −4 ,

S(11, 11) = +15 , S(14, 14) = +5 , S(6, 6) = +7 ,

and if two (short) aligned amino acid sequences are (in terms of the agreed amino
acid enumeration system)

14 1 1 11 5 6
14 4 8 11 9 6 (11)

the accumulated score performs a random walk successively going through the
points

(1, 5), (2, 3), (3, 4), (4, 19), (5, 15), (6, 22) . (12)
To discuss BLAST it is necessary to consider arbitrary scoring schemes (that is,
arbitrary 20× 20 substitution matrices), and thus aspects of the general theory of
random walks. The question of the choice of the scoring scheme will be taken up
later, and for the moment we take the scoring scheme as given.

3. The BLAST Protein Sequence Random Walk

As just noted, the comparison of two protein sequences induces a random walk
similar to, but much more complicated than, the DNA sequence comparison shown
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in figure 1. Nevertheless the basic features described in the DNA sequence com-
parison continue to hold. The walk goes through a sequence of ladder points, and
after reaching any ladder point has the potential to make an upward excursion.
As above, we define the maximum height achieved by the excursion starting at
ladder point i and before reaching ladder point i + 1 by Yi, with Yi being taken
as zero if the walk proceeds immediately from ladder point i to ladder point i + 1.
In this more general case the asymptotic distribution of each Y is again given by
the relation (4), but with new definitions of the parameters C and λ.

It is also necessary to generalize the parameter µ of equation (7). In prac-
tice the sequence comparison is usually between a comparatively short “query”
sequence of length N1 which is of interest to the investigator and a very long data-
base sequence of length N2. All possible alignments of the short sequence to the
long one are made, resulting in some N1N2 amino acid comparisons. The random
walk thus continues for approximately N1N2 steps, and the test statistic is again
taken as Ymax, the maximum of the Yi values in this extremely long random walk.

4. Parameter Determination

The parameter λ for the protein sequence random walk is found from a direct
generalization of the procedure that led to (3) for the DNA case. If the frequency
of amino acid j in the query sequence is pj and the frequency of amino acid k in
the database sequence is p′k, λ is defined as the unique non-zero solution of the
equation ∑

j,k

pjp
′
keλS(j,k) = 1 . (13)

We require the mean score
∑

j,k pjp
′
kS(j, k) to be negative, and this implies that

λ > 0. It also implies that the random walk induced by the sequence comparison
generally drifts down to the right, passing as it does so through a sequence of
ladder points. In this more general case it is no longer necessary that ladder point
i + 1 is unit distance below ladder point i.

The parameter C is more difficult to determine. Suppose that the possible
step sizes in the random walk, that is the set of scores in the substitution matrix,
are

−c, −c + 1, . . . , 0, . . . , d− 1, d , (14)
and that these steps have respective probabilities

p−c, p−c+1, . . . , pd . (15)

All the analyses below consider a walk starting at the origin. It is convenient to
start by considering an unrestricted random walk with no stopping points. Such
a walk must eventually drift down to −∞, since the mean step size is negative.
Before doing so, however, it might visit various positive values. We let Qk be the
probability that the walk visits the positive value +k before reaching any other
positive value and before eventually drifting down to −∞. Since it is possible
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that the walk never visits any positive value,
∑+∞

k=1 Qk < 1, and we write Q̄ =
1−Q1 −Q2 −Q3 − . . . . Wald’s identity (5) with θ = λ can be used to show that

d∑
k=1

Qkekλ = 1 . (16)

We next consider a restricted walk where the walk which stops once it reaches one
or other of the possible ladder points, that is one or other of the points −c, −c +
1, . . . , −1. Let R−j be the probability that the first ladder point is at −j. Then
it can be shown, after considerable analysis, that

C =
Q̄

(
1 −

∑c
j=1 R−je

−jλ
)

(1− e−λ)(
∑d

k=1 kQ+k ekλ)
, (17)

the sums in the numerator and the denominator extending over the finite set of
values of j and k for which R−j and Q+k are respectively non-zero.

We next calculate A, the mean number of steps that the walk takes before first
reaching either −c, −c+1, or . . . or −1. To do this we once again use equation (6).
The mean net dispacement when the walk stops is

∑c
j=1−jR−j , where R−j is

the probability that the walk finishes at −j. The mean step size E(S) is
∑

j jpj ,
assumed to be negative. Thus A, the mean number of steps taken before the walk
reaches the first ladder point, is given by

A =

∑c
j=1 jR−j

−
∑

j jpj
. (18)

The calculation of both C and A requires calculation of the R−j values and that
of C requires also the calculation of the Q+k values. Fortunately various methods
exist for these calculations, including rapidly converging series approximations.

The mean number µ of ladder points is then equal to N1N2/A, and the
test statistic Ymax is then the maximum of µ random variables, each having the
geometric-like probability distribution (4), with λ now defined in (13) and C now
defined in (17). Bounds and conservative approximations for P-values associated
with an observed value y of Ymax are given by (8), (9) and (10), with these new
definitions of µ, C and λ.

5. The BLAST Testing Procedure

The above calculations are all that is needed to define the statistical testing in-
volved in a BLAST testing procedure if Ymax is used as test statistic. The null
hypothesis being tested is that the two protein sequences are random with respect
to each other and the alternative hypothesis, for the moment, is that there is a
tendency for matching between identical amino acids. Fortunately some simplifi-
cations are possible in the calculations. Thus if K = Ce−λ/A, the approximate
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conservative P-value given in equation (10) becomes

approximate conservative P-value = N1N2K e−λy . (19)

K can often be calculated quite quickly, thus obviating the need to compute C
and A.

It can be argued that use of Ymax as test statistic ignores the information
provided by high-scoring sub-subsequences other than that associated with Ymax.
A generalization of the testing procedure is available by using a “normalized score”.
It is clear that the value of Ymax would be doubled if all entries in the substitution
matrix were doubled. The expression

λ Ymax − log(N1N2K) , (20)

denoted here by S′, is called the normalized score, and is not subject to the same
comment, since as the definition of λ implicit in equation (13) shows that dou-
bling the entries in the substitution matrix halves the value of λ. An approximate
conservative P-value associated with an observed value s′ of S′ is, from (19),

approximate conservative P-value = e−s′ . (21)

Denote the jth highest normalized score by S′(j), so that S′ = S′(1), and write
TN = S′(1) + S′(2) + . . .+S′(N). The density function f(t) of TN is, approximately,

f(t) =
e−t

N !(N − 2)!

∫ +∞

0

y(N−2) exp(−e(y−t)/N ) dy . (22)

This density function can be used to find the approximate expression

Prob (TN ≥ tN ) ≈
e−tN tN−1

N

N !(N − 1)!
(23)

for the P -value for any observed value tN of TN . In the case N = 1, this is identical
to the approximation for the P-value of the observed value s′ of S′ given in (21).

6. The Substitution Matrix

So far we have taken the elements in the substitution matrix as given. It is possible
to view the testing procedure as a non-parametric one and to regard these entries
as simply reasonable scores. However it is also possible to derive these entries from
likelihood ratio principles. A stochastic evolutionary model is set up and from this
one can calculate, for some agreed degree of evolutionary time divergence between
the two sequences examined, a log likelihood ratio

log
q(j, k)
pjp′k

, (24)

where q(j, k) is the probability of amino acid j in the query sequence and amino
acid k in the database sequence under the evolutionary model chosen. Then the
(j, k) entry in the substitution matrix is proportional to this log likelihood ratio.
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Under this approach it is possible to assess the implications of making incorrect
assumptions in the evolutionary model chosen.

7. Further Work

The BLAST model described in above is the simplest one possible, and the versions
of BLAST that are used in practice are more sophisticated than that described
here. Further, extensions even of these more sophisticated versions continue to ap-
pear. An important generalization allows gaps in the sequence alignments. Some
of the parameter calculations for these do not follow from explicit theory but fol-
low rather from simulations and approximations derived from statistical regression
theory. A full generalization of the theory to cover such cases is one central area of
current research. The development of gapped BLAST makes the use of sum scores
such as TN , derived from two or more well-matching subsequences, of lesser im-
portance than before. A second generalization is to PSI (position specific iterated)
BLAST, again having very complex theory. Another generalization is to the case
of Markov-dependent protein sequences, a necessary generalization since Markov
dependence does appear to be the case. All of these extensions will require further
difficult theoretical analysis and support.
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