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Abstract. We study a mathematical model describing phase transformations
in alloys with kinetics driven by mass transport and stress. To describe the
dynamics, a Cahn-Hilliard system taking elastic effects into account is studied.
Existence and uniqueness results for the resulting singular elliptic-parabolic
system are given.

In the Cahn-Hilliard model, phase boundaries are described by a dif-
fuse interface with small positive thickness. In the stationary case we identify
the sharp interface free boundary problem that arises when the interfacial
thickness tends to zero. In particular, we obtain a geometric partition prob-
lem generalizing variants of isoperimetric problems to situations where elastic
interactions cannot be neglected.

1. Introduction

Many problems involving free boundaries arise in the theory of phase transitions.
In this context the interfaces separating two or more phases are the boundaries
that have to be determined as part of the problem. We will consider phase trans-
formations in alloys with kinetics driven by mass transport and stress. Different
phases in such systems are characterized by certain distinct mixtures of the alloy
components. For example if the alloy consists of just two types of atoms, A and
B, and if two phases are possible, then one phase, which is called the α phase,
has a higher concentration of A atoms then the other which is called the β phase.
The interest now lies in a mathematical description of interfaces between different
phases. We will first mathematically study a theory describing the evolution in
such systems and then we will analyze stationary solutions that arise as absolute
minimizer of an underlying energy.

Classical mathematical theories for phase transformations describe interfaces
as hypersurfaces across which certain quantities, e.g. the mass density or certain
components of the stress tensor, suffer jump discontinuities. These models lead
to free boundary problems. The domains occupied by the individual phases are a
priori unknown, i.e. the boundaries of the phase regions are free boundaries that
have to be determined. In the interior of the phase domains, partial differential
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equations have to hold and on the boundaries certain conditions, e.g. jump condi-
tions ensuring mass or energy conservation, are prescribed. Through the boundary
conditions the solutions in the individual phases are coupled. Models of this type
are called sharp interface models and a classical example is the Stefan problem
describing melting and solidification (see e.g. the book of Meirmanov [11]).

In another approach phase boundaries are modeled by transition layers with
a small positive thickness. In these theories usually all quantities describing the
physical system are continuous. Some of the quantities involved might have steep
gradients in the interfacial layers. That are those quantities that would jump in a
sharp interface model. Models of this type are called diffuse interface models and
an example are the phase field models that are the diffuse interface counterpart of
Stefan problems (see e.g. Caginalp [1]).

To study sharp interface models analytically or computationally one has to
somehow resolve the hypersurfaces making up the free boundary. This can lead
to serious difficulties when the phase boundaries develop singularities and/or un-
dergo topological changes during the evolution. Diffuse interface models instead
use quantities that are smooth in the whole domain and at least conceptionally
they handle topological changes without difficulties.

Our goal in the first part of this contribution is to mathematically analyze
a diffuse interface model describing the motion of interfaces in alloys in which
stresses caused by an elastic misfit have a pronounced effect on the evolution (see
e.g. Leo, Lowengrub and Jou [10] and Garcke, Rumpf and Weikard [6] for numerical
simulations on the basis of such models). The evolution will be governed by a fourth
order parabolic system resulting from mass balance laws for the alloy components
coupled to an elliptic system describing mechanical equilibrium. In a second part
we will show that the energies related to the diffuse interface model converge in
the sense of Γ-limits to the energy related to the sharp interface model when the
interfacial thickness tends to zero. Moreover, we can show that minimizer converge
(along subsequences) and it is also possible to pass to the limit in the first variation
formula. The results on this limit are the first rigorous results relating a diffuse
interface model to a sharp interface model in the case of alloys with elastic misfit.

This contribution is a review of results obtained by the author in his habilita-
tion thesis [5]. Readers who are interested in more details may contact the author
directly for a copy of the thesis.

2. The Diffuse Interface Model

Let us consider an alloy that consists of N components. We denote by ck (k =
1, . . . , N) the concentration of component k. Therefore the vector c = (ck)k=1,... ,N

has to fulfill the constraint
∑N
k=1 ck = 1, i.e. c lies in the affine hyperplane

Σ := {c′ = (c′k)k=1,... ,N ∈ RN |
N∑
k=1

c′k = 1} .
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To describe elastic effects we define the displacement field u(x), i.e. a material
point x in the undeformed body will be at the point x + u(x) after deformation.
Since in phase separation processes the displacement gradient usually is small, we
consider an approximative theory based on the linearized strain tensor

E(u) =
1
2
(
∇u + (∇u)t

)
.

A free energy of alloy systems taking elastic interactions into account is of
the form

E(c,u) =
∫

Ω

{γ
2
|∇c|2 + Ψ(c) +W (c, E(u))

}
(1)

where Ω ⊂ Rn, n ∈ N, is a bounded domain with Lipschitz boundary and γ > 0
is a small positive constant. The first term in the energy is the gradient part
penalizing rapid spatial variations in the concentrations. The second summand Ψ
is the chemical energy of the system and in the case of phase separation Ψ is a
non-convex function of c. The non-convexity in Ψ gives rise to the appearance of
different phases. Roughly speaking one can say that local minima of Ψ correspond
to different phases in the system. The last term in the free energy takes elastic
effects into account. The dependence on c reflects the fact that the stress free strain
depends on the concentration. As the concentration is typically inhomogeneous in
space, the stress free strain will vary in space.

To describe evolution phenomena, we consider mass diffusion for the individ-
ual components leading to diffusion equations for the concentrations. Mechanical
equilibrium is attained on a much faster time scale than diffusion takes place.
Therefore, we will assume a quasi-static equilibrium for u, i.e. for all times

∇ · S = 0 ,

where

S = W,E(c, E(u))

is the stress tensor. Here and below we will denote by W,E , W,c, Ψ,c, . . . the
derivative with respect to the variable appearing as a subscript. We point out that
c in general is time dependent, and hence the solution of the elastic system will
also depend on time.

The diffusion equations for the concentrations ck (k = 1, . . . , N) are based
on mass balances for the individual components. To define the evolution equations
for the concentrations we need to introduce the vector of generalized chemical
potential differences w which is given by the first variation of the energy E with
respect to c. Since values of c are restricted to lie on the affine hyperplane Σ, we
need to take this constraint into account when computing the first variation. One
obtains

w = P (−γ∆c + Ψ,c(c) +W,c(c, E(u)))
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where P is the euclidian projection of RN onto

TΣ = {d′ = (d′k)k=1,... ,N ∈ RN |
N∑
k=1

d′k = 0}

which is the tangent space to Σ. Using the projection P is one way of taking the
Lagrange multiplier associated to the constraint

∑N
k=1 ck = 1 into account. Since

w serves as a diffusional potential, the balance law for mass becomes ∂tc = ∆w.
Altogether we obtain the system of equations

∂tc = ∆w , (2)

w = P (−γ∆c + Ψ,c(c) +W,c(c, E(u))) , (3)

∇ ·W,E(c, E(u)) = 0 . (4)

In the case of two components the equations (2)–(4) were first stated by Larché
and Cahn [9] for γ = 0 and for nonzero γ by Onuki [12].

We will consider the system (2)–(4) together with initial conditions for c

c(x, 0) = c0(x) (5)

and boundary conditions

∇w · n = 0 , (6)

∇c · n = 0 , (7)

S · n = 0 (8)

where n is the outer unit normal to Ω.
Two simple properties of the above system are:

i) mass conservation: i.e., for all t > 0 it holds∫
Ω

c(x, t)dx =
∫

Ω

c0(x)dx ,

and
ii) decay of the free energy: for all t2 > t1 ≥ 0 it holds

E ((c,u) (t2)) +
∫ t2

t1

|∇w|2 = E ((c,u) (t1)) .

3. Existence for the Diffuse Interface System

To keep the presentation relatively simple, we present the existence result for
a specific case which is of physical interest and still contains all mathematical
difficulties. A chemical energy Ψ derived from a mean-field theory is the sum of a
logarithmic entropy term and a pairwise interaction term and has the form

Ψ(c) =
N∑
k=1

ck ln ck + 1
2c ·Ac , (9)
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where the entries of the matrix A = (Akl)k,l=1,... ,N are the constant parameters
that describe pairwise interactions between the components. A typical form for
the free energy density is

W (c, E) =
1
2

(E − E?(c)) : C(c) (E − E?(c)) . (10)

Here, C(c) is the concentration dependent elasticity tensor mapping symmetric
tensors in Rn×n into itself. We require C(c) to be symmetric, positive definite and
bounded. The quantity E?(c) is the symmetric stress free strain (or eigenstrain)
at concentration c. This is the value the strain tensor attains if the material were
uniform with concentration c and unstressed. For simplicity, we assume that E?
grows at most linearly in c. Finally, for matrices A and B we use the notation A :
B = tr (AtB).

The main purpose of this section is to present a result on existence of weak
solutions to the problem (2)–(8). Main difficulties in proving such a result are the
facts that Ψ,c, a term entering the equation for the chemical potential differences
(see (3)), is singular if ck tends to zero and that W,c growths quadratically in ∇u.
We remark that the boundary condition (8) for the elasticity system only specifies
the displacement u up to infinitesimal rigid displacements (i.e. translations and
infinitesimal rotations). We note that the strain E(u) is uniquely determined and
hence in the evolution equation for c the non-uniqueness of u will not play any
role. To fix the freedom for the displacement we introduce the space

X2 := {u ∈ H1(Ω,Rn) | (u,v)H1 = 0 for all v ∈ Xird} = X⊥ird ,

where Xird is the space of all infinitesimal rigid displacements (see e.g. [3]).
Let us state the definition of weak solutions we will use.

Definition 3.1. (Weak solution) A triple

(c,w,u) ∈ L2(0, T ;H1(Ω,RN ))× L2(0, T ;H1(Ω,RN ))× L2(0, T ;X2)

with PΨ,c(c) ∈ L1(ΩT ) is called a weak solution of (2)–(8) if and only if
(i)

−
∫

ΩT

∂tξ · (c− c0) +
∫

ΩT

∇w : ∇ξ = 0 (11)

for all ξ ∈ L2(0, T ;H1(Ω,RN )) with ∂tξ ∈ L2(ΩT ) and ξ(T ) = 0,
(ii) ∫

ΩT

w · ζ =
∫

ΩT

{∇c : ∇ζ + PΨ,c(c) · ζ + PW,c(c, E(u)) · ζ} (12)

for all ζ ∈ L2(0, T ;H1(Ω,RN )) ∩ L∞(ΩT ,RN ), and
(iii) ∫

ΩT

W,E(c, E(u)) : ∇η = 0 (13)

for all η ∈ L2(0, T ;H1(Ω,Rn)).
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In the following theorem the existence result is stated.

Theorem 3.2. Let Ψ and W be of the form (9) and (10) respectively, with smooth C
and E?. In addition, assume that c0 ∈ H1(Ω,Σ) fulfill c0k ≥ 0 and −

∫
Ω
c0k > 0 for

k = 1, . . . , N .
Then there exists a weak solution of the elastic Cahn-Hilliard system which

has the following properties:
(i) c ∈ C0, 14 ([0, T ];L2(Ω)),
(ii) ∂tc ∈ L2

(
0, T ;

(
H1(Ω)

)∗),

(iii) there exists a p > 2 such that u ∈ L∞
(
0, T ;W 1,p(Ω,Rn)

)
,

(iv) there exists a q > 1 such that for k ∈ {1, . . . , N}
ln ck ∈ Lq(ΩT ) .

In particular, ck > 0 almost everywhere.

We remark that the assumptions on c0 are physical. As c0 represents concen-
trations only non-negative values for c0k are physically meaningful. Furthermore, if
−
∫

Ω
c0k = 0, the component k would not be present at all and the system could be

reduced to N − 1 components.

Idea of the proof. The proof is rather technical and we only sketch the methods. A
full proof can be found in [5]. First of all one has to regularize the logarithmic part
of Ψ by approximating smooth functions. Then one obtains time discrete solutions
to the regularized problems by the method of implicit time discretisation. To solve
the time discrete problems, one can use that the system is the H−1-gradient flow
with respect to the variable c. This observation allows it to use variational methods
to show existence of time discrete solutions. The free energy decay property stated
in section 2 has a discrete counterpart that gives first important a priori estimates.
Anyhow, these are not not enough to use compactness arguments to pass to the
limit. To proceed, one has to show a higher integrability property for ∇u (see
(iii) in theorem 3.2). This is necessary since ∇u appears quadratically on the right
hand side in the equation for the chemical potential (see equation (3)). This can be
achieved by using a perturbation technique introduced by Giaquinta and Modica
(see [7]). Finally, one has to use that the non-smooth term appearing in Ψ is convex
to obtain higher integrability of ln ck (see (iv) in theorem 3.2). The properties (iii)
and (iv) together with more or less standard compactness arguments are then
enough to pass to the limit in the time discrete version of the regularized problem
with both the time step and the regularizing parameter.

Remark 3.3. a) A uniqueness result can be shown by an energy method in
the case that C does not depend on c (see [5]).

b) If N = 2, if C does not depend on c and if Ψ is assumed to have polynomial
growth with a strictly positive leading term, an existence and uniqueness
result was shown independently by Carrive, Miranville and Piétrus [2].
However, the main difficulties in our study arise due to the facts that C
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is concentration dependent and that the chemical energy Ψ contains non-
smooth logarithmic terms and these cases are not covered by the analysis
of [2].

4. The Sharp Interface Limit

In this section we study solutions of the variational problems.
(Pε) Find a minimizer (c,u) ∈ X1 ×X2 of

Eε(c,u) :=
∫

Ω

(
ε|∇c|2 +

1
ε
Ψ(c) +W (c, E(u))

)
, ε > 0 ,

subject to the constraint −
∫

Ω
c = m.

Here m ∈ Σ is a fixed constant. Under some natural assumptions it turns
out that minimizers of the above variational problem are, roughly speaking, of
the following form. In most of Ω the solution is close to values that minimize Ψ
and the regions where the solution is close to minimizers of Ψ are separated by
transition layers which are of a thickness proportional to ε. It is the goal of this
section to study the limiting behaviour of Eε and its minimizers as ε tends to zero.
The scaling in ε (i.e. γ → ε2, W → εW , E → 1

εE) is motivated by former studies
for the case when no elastic contributions are present and by formally matched
asymptotic expansions by Leo, Lowengrub and Jou [10].

For the rest of this section we assume that the chemical energy Ψ is such that

Ψ ≥ 0 and Ψ(c′) = 0 ⇔ c′ ∈ {p1, . . . ,pM} , (14)

where p1, . . . ,pM ∈ Σ are mutually different and M ≥ 2. Under the assump-
tion (14) it is energetically favourable for c to attain the values p1, . . . ,pM . And
in fact minimizers of Eε in most of the domain Ω have values close to p1, . . . ,pM .
The values p1, . . . ,pM correspond to M different phases and if c is close to a pk
we say that c is in phase k. It turns out that minimizers of Eε converge (along
subsequences) to minimizers of the functional

E0 : L1(Ω,Σ)×X2 → R ∪ {∞}
with

E0(c,u) =



M∑
k,l=1
k<l

σklHn−1 (∂∗ {c = pk} ∩ ∂∗ {c = pl}) +
∫

Ω

W (c, E(u))

if c ∈ BV (Ω), Ψ(c) = 0 a.e., −
∫

Ω

c = m ,

∞ otherwise .

Here, {c = pk} := {x ∈ Ω | c(x) = pk}, BV (Ω) is the space of functions with
bounded variation and ∂∗D is the reduced boundary of a set D (for more details
on these concepts we refer to Giusti [8]). The real numbers σkl are the surface
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tensions of the interfaces between phases k and l and they are defined via the
chemical energy Ψ (see [5] for details).

Theorem 4.1. Let W be of the form (10) with smooth C and E? and assume that
Ψ ∈ C1(RN ,R) growths at least quadratically for large c. Then the variational
problems (Pε) possess minimizers (cε,uε) ∈ H1(Ω,Σ)×X2 provided that ε is small
enough. Furthermore, there exists a sequence {εκ}κ∈N ⊂ R+ with limκ→∞ εκ = 0
and a (c,u) ∈ L2(Ω,Σ)×H1(Ω,Rn) such that

i)

cε
κ → c in L2(Ω,Σ) ,

uε
κ → u in H1(Ω,Rn) ;

ii) (c,u) is a global minimizer of E0.

Remark 4.2. i) To obtain the convergence result above, one shows that the
energy Eε converges in the sense of Γ-limits to the energy E0. In a sec-
ond step one has to show compactness for the sequence of minimizers
(cε,uε)ε>0. With respect to the concentration c one uses the L2-topology
for the Γ-limit and for the compactness argument.

ii) In the binary case, i.e. N = 2, it is also possible to analyze the limit-
ing behaviour of the Euler-Lagrange equation for minimizers of the elastic
Ginzburg-Landau energies as the interfacial thickness tends to zero. In
[5] it is shown that the Lagrange multiplier entering the Euler-Lagrange
equations converge and in the sharp interface limit we obtain a weak for-
mulation of the Gibbs-Thomson relation, which is one of the conditions
that has to hold on the free boundary.
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