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Abstract. This paper gives a review of recent developments in this field and
discusses some questions.

1. Introduction

The history of counting points on curves over finite fields goes back at least to
C. F. Gauss who counted the number of points on several types of curves defined
over the prime field Z/pZ. For example, in §358 of his Disquisitiones of 1801 he
counts the number of points on the Fermat curve

x3 + y3 + z3 ≡ 0 (mod p) (1)

with p an odd prime greater than 3 and gives a beautiful answer: if p 6≡ 1 (mod 3)
then the number #C(Fp) of Fp-rational points on the projective curve C defined by
(1) is p+ 1, while if p ≡ 1 (mod 3) there is a unique way of writing 4p = a2 + 27b2

with a and b integers and a ≡ 1 (mod 3) and then #C(Fp) = p + 1 + a. Note
that one has |a| < 2

√
p. Also Jacobi worked on the number of solutions of such

congruences because he wanted to obtain estimates for Gauss sums. After them
the problem sunk into oblivion for a long time.

In his 1924 thesis E. Artin introduced a zeta function ζF (s) for hyperelliptic
function fields F = Fq(x, y) over a finite field Fq, with q odd, where y satisfies y2 =
f(x), in analogy with the Dedekind zeta function ζK(s) =

∑
a
N(a)−s for a number

field K. Artin noticed that by substituting t = q−s this zeta function became a
rational function ZF (t) of t and that it satisfied a functional equation relating ζF (s)
and ζF (1−s). He also advanced a conjecture as analogue of the Riemann hypothesis
saying that the zeros of ZF (t) satisfy |t| = q−1/2. Artin formulated everything in
terms of ideals and ideal classes, but shortly afterwards F. K. Schmidt introduced a
more geometric point of view and wrote the zeta function for a smooth (absolutely)
irreducible projective curve X defined over Fq in the form

ZX(t) = exp(
∞∑
r=1

c(r)
tr

r
)
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with c(r) = #X(Fqr ) and observed that the theorem of Riemann-Roch implied
that for a curve of genus g the functionZX(t) is of the form

ZX(t) =
PX(t)

(1− t)(1− qt) , (2)

with P (t) a polynomial of degree 2g, and that it satisfies a functional equation

ZX(1/qt) = q1−gt2−2gZX(t) .

Around 1932 Hasse noticed that the conjecture by Artin implied

|#X(Fq)− (q + 1)| ≤ 2g
√
q (3)

and proved it for g = 1 using correspondences. Deuring observed then that in order
to extend this proof to higher genus one needed a theory of correspondences. This
theory was developed by A. Weil and within 16 years after Artin put forward his
conjecture it was proved by Weil. He showed that the polynomial PX(t) in (2) is a
polynomial with integral coefficients of the form PX(t) =

∏2g
i=1(1−αit), where the

αi are algebraic integers with |αi| =
√
q and this implies the famous Hasse-Weil

bound (3). One also finds the formula

#X(Fqr ) = qr + 1−
2g∑
i=1

αri . (4)

Note that there exist curves which attain this bound over Fq2 ; for example the
so-called hermitian curves defined by

xq+1 + yq+1 + zq+1 = 0

have genus g = q(q − 1)/2 and satisfy #X(Fq2) = q3 + 1 = q2 + 1 + 2gq.
After Weil obtained his result interest waned again, but it was brought back

by coding theory.

2. Error Correcting Codes

The theory of error-correcting codes was born out of frustration about the frequent
stops made by early computers every time these observed an inaccuracy when
a parity check failed. Early pioneers like Hamming, Golay and others invented
schemes to add redundancy with which inaccuracies due to noise could be repaired
and tried to do this efficiently. They found some beautiful mathematical structures
while doing this. For a review of the history and the results we refer to [24].

Fix a finite field Fq of cardinality q and consider the Fq-vector space Fnq .
The set Fq is called the alphabet, the elements of Fnq are called words and the
integer n is called the word length. The Hamming distance on Fnq is the distance
function with d(x, y) = #{i : 1 ≤ i ≤ n, xi 6= yi}. The weight w(x) of a word x is
its distance to the origin.

By a linear code we shall mean a linear subspace C of Fnq . We say that C ⊆ Fnq
is a (n, k, d)-code if its dimension is k and the minimum weight of a non-zero word
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in C is d. A rough gauge of the quality of a code is provided by two invariants: the
transmission rate R = k/n and the relative distance δ = d/n. In essence coding
theory is a game where one tries to find codes that optimize these invariants. We
shall restrict ourselves to linear codes.

If C ⊆ Fnq is a linear code, then

C⊥ = {x ∈ Fnq : 〈x, y〉 = 0, for all y ∈ C}
with 〈x, y〉 =

∑n
i=1 xiyi is called the dual code.

An important problem of coding theory is the determination of the weight
distribution of a code, that is, of the polynomial∑

c∈C
Xw(c) ∈ Z[X] .

The weight distribution and that of the dual code can be expressed in each other
by the MacWilliams identities.

The notion of weight of a word admits an extension to the weight of a subspace
of C. If D ⊆ C is a linear subspace of dimension r we define the weight of D as the
number of coordinate places for which C contains a codeword with a non-vanishing
coordinate at that place, or equivalently as

w(D) =
1

qr − qr−1

∑
c∈D

w(c) .

The weight hierarchy of C is the set {dr(C) : 1 ≤ r ≤ n} of generalized Hamming
weights dr(C) defined by

dr(C) = min{w(D) : D ⊆ C,dim(D) = r} .
The numbers dr(C) are a measure for the reliability of a transmission channel
where part of the data fall prey to hostile eavesdroppers, cf. [39].

An important class of codes is given by the generalized Reed-Muller codes.
Consider the set of polynomials

Ps = {f ∈ Fq[X1, . . . , Xr] : deg(f) ≤ s} .
Here the degree is the total degree. We can evaluate elements of Ps at the points
of affine r-space over Fq:

β : Ps → Fnq , f 7→ (f(P )P∈Frq ) ,

where n = qr. The image β(Ps) of this map is the generalized q-ary Reed-Muller
code Rq(s, r). These codes were studied intensively from the middle of the 20th
century. The weight of a code word β(f) is n − #Hf (Fq), with Hf (Fq) the set
of Fq-rational points on the hypersurface Hf given by f = 0. Determining the
weight distribution of this code is equivalent to determining the distribution of
the number of points in the family of all hypersurfaces of degree ≤ s in Frq. This
makes the difficulty of the problem apparent and it will be no surprise that the
weight distribution of Rq(s,m) in general is not known for s ≥ 3.
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3. Asymptotically Good Sequences of Codes

There are classical bounds on the parameters of codes, like the simple Singleton
bound k + d ≤ n+ 1 for codes with dimension k and minimum distance d, which
show that the parameters of codes underly certain restrictions.

A central problem of coding theory from its early beginnings has been to find
long codes which can correct a fixed percentage of errors per codeword and which
have a strictly positive transmission rate. To a linear code one can associate the
pair (δ = d/n,R = k/n) ∈ [0, 1]2 of relative parameters. Let U lin

q be the set of
limit points of the set of all such pairs coming from linear codes. The region U lin

q is
called the domain of codes. It is bounded in the unit square by the sides of the unit
squares on the δ- and R-axis and by the graph of a function αlin

q : [0, 1] → [0, 1]
defined by

αlin
q (δ) = sup{R : (δ,R) ∈ U lin

q } .

A sequence of codes (Ci) with parameters (ni, ki, di) such that the ratios di/ni and
ki/ni converge to δ and R with δR > 0 is called an asymptotically good sequence.

Define the entropy function Hq(δ) by

Hq(δ) =

{
0 δ = 0 ,
δ logq(q − 1)− δ logq(δ)− (1− δ) logq(1− δ) 0 < δ ≤ (q − 1)/q .

We denote by bq(n, d) the number of points in a ball of radius d in Fnq . Gilbert made
the simple observation that, if qn > qk−1bq(n, d − 1), there exists a (n, k, d)-code
over Fq. This together with the fact that limn→∞(logq bq(n, [δn]))/n equals the
entropy function for 0 ≤ δ ≤ (q − 1)/q implies the following bound.

Proposition 3.1. (Gilbert-Varshamov bound) For 0 ≤ δ ≤ (q − 1)/q the func-
tion αlin

q satisfies αlin
q (δ) ≥ 1−Hq(δ).

Another elementary bound from coding theory, the Plotkin bound, implies

αlin
q (δ) ≤ 1− (

q

q − 1
)δ for 0 ≤ δ ≤ (q − 1)/q ,

and

αlin
q (δ) = 0 for (q − 1)/q ≤ δ ≤ 1 .

Thus on the interval [0, (q − 1)/q] the function αlin
q is bounded from below and

above by the graphs of 1 − Hq(δ) and 1 − (q/(q − 1))δ. Manin showed moreover
that αlin

q is a continuous function of δ which is decreasing on [0, (q − 1)/q].
For a long time coding theorists were unable to construct explicit sequences

of codes with limit points on or above the Gilbert-Varshamov bound and they
were thus led to suspect that αlin

q (δ) = 1−Hq(δ) for 0 ≤ δ ≤ (q − 1)/q.
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4. Goppa Codes

In 1973 V. D. Goppa succeeded in constructing sequences of codes attaining the
Gilbert-Varshamov bound. The codes were obtained by taking as entries of their
parity check matrix the values of rational functions. When he tried to improve
upon this he had the idea of taking values of rational functions on algebraic curves
and thus discovered around 1980 an unexpected relationship between algebraic
curves and codes, see [14, 15].

If X a a smooth irreducible projective curve of genus g defined over a field Fq
with a given set P = {P1, . . . , Pn} of n distinct Fq-rational points and if L ⊂
Fq(X) is a Fq-linear subspace of the function field Fq(X) such that no f ∈ L has
a pole in the points Pi we can define an evaluation map

α : L→ Fnq , f 7→ (f(Pi)ni=1) .

The image of L under α is then a code. In case

L = L(D) = {f ∈ k(X)∗ : (f) +D ≥ 0} ∪ {0}
with D a Fq-divisor we find the code C(D,P ). Invariants of these codes, like the
dimension k and minimum distance d, can be expressed in terms of properties of
the curve; for example, one has the elementary result:

Theorem 4.1. If D is a divisor defined over Fq of degree g ≤ degD ≤ n and with
supp(D)∩P = ∅, then we have k ≥ deg(D)+1−g with equality if deg(D) ≥ 2g−1.
Moreover, d ≥ n− deg(D).

If we fix the ratio deg(D)/n then the transmission rate R = k/n increases
with the ratio n/g. Therefore to obtain good codes one has to construct curves
with as many points as possible.

If X` is a sequence of curves defined over Fq such that their genera g` tend
to∞ and such that lim`→∞#X`(Fq)/g` = γ > 0 then the part of the line δ+R =
1 − 1/γ in the positive quadrant is contained in the domain U lin

q . This follows
by taking divisors D` of degree [#X`(Fq)(1 − δ)] and evaluating the functions
in L(D`) in the rational points X`(Fq). Then theorem 4.1 tells us that for the
geometric Goppa codes C` = C((D`, X`(Fq)) we have

R` + δ` ≥ 1 + (1− g`)/#X`(Fq)

which tends to 1−1/γ. Hence this sequence of codes has a limit point on or above
the line R+ δ = 1− 1/γ.

The fact that for q a square there exists a sequence of curves X` defined over
Fq of genus g` with the ratio #X`(Fq)/g` tending to

√
q − 1 was observed by

Ihara (see [16]) and independently by Tsfasman, Vladuts and Zink who applied
it to coding theory, see [37]. They used modular curves X0(N) and the rational
points on them provided by the supersingular points.

Theorem 4.2. (Tsfasman, Vladuts, Zink) Let q be a square. There exists a sequence
of geometric Goppa codes over Fq with limit point on or above the line R + δ =
1− 1/(

√
q − 1).
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For q ≥ 49 this line comes above the Gilbert-Varshamov bound and one thus
gets asymptotically good sequences of codes above the Gilbert-Varshamov bound,
and this came at that time as quite a surprise for coding theorists.

Goppa’s discovery led to renewed interest in curves over finite fields and drew
attention to new aspects of these curves.

5. Upper Bounds for the Number of Points on a Curve

The new interest for curves over finite fields soon paid its dividends. It was noted
by Ihara (see [17]) that the Hasse-Weil bound (3) could be improved. He did this by
comparing #X(Fq) and #X(Fq2) using (4) and the Cauchy-Schwartz inequality.
His bound

#X(Fq2) ≤ q + 1 + [(
√

(8q + 1)g2 + 4(q2 − q))g − g)/2]

is better than the Hasse-Weil bound for g > (q − √q)/2. Drinfeld and Vladuts
generalized this idea by using all extensions Fqr/Fq instead of just the quadratic
one (see [38]). Let us define

Nq(g) := maximum value of #X(Fq) , (5)

where X runs through all curves of genus g defined over Fq. Moreover, we define

A(q) := lim sup
g→∞

Nq(g)/g .

The result of Drinfeld and Vladuts says that A(q) ≤ √q − 1.
Serre started the study of the actual value of Nq(g), see [32]. He improved

the Hasse-Weil bound slightly by applying some arithmetic to the αi (cf. (4)):

Nq(g) ≤ q + 1 + g[2
√
q] . (6)

Serre also transplanted the ‘formules explicites’ from number theory. He takes a
trigonometric polynomial

f = 1 + 2
∑
n≥1

un cosnθ

with real coefficients un ≥ 0 such that f(θ) ≥ 0 for all θ ∈ R and sets ψ =∑
n≥1 unt

n. Then he gets the estimate

Nq(g) ≤ afg + bf

with

af =
1

ψ(1/
√
q)

and bf = 1 +
ψ(
√
q)

ψ(1/
√
q)
.

Finding the optimal choices for such functionsf is a linear programming problem
which was solved by Oesterlé, see [34], or [30] for an exposition. The resulting
bounds are called Oesterlé bounds.
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6. Asymptotics

Combining the result of Drinfeld and Vladuts A(q) ≤ √q − 1 with the result of
Ihara shows that

A(q) =
√
q − 1 for q a square .

In 1996 Garcia and Stichtenoth constructed an explicit tower of curves X` defined
over Fq2 . This tower starts with the rational line X1 with coordinate x1 and
consists of successive Artin-Schreier extensions defined by

yq`+1 + y` = xq+1
` ,

where x` is defined recursively by

x` = y`/x`−1

and for which the ratio #X`(Fq2)/g(X`) tends to q− 1. Later Elkies showed that
these towers are modular towers, cf. [2].

For q not a square the situation is yet unclear. Zink used in [40] degenerations
of Shimura surfaces to show that if q = p3 then there exists a sequence of curves
over Fq with γ = limX`/g` ≥ 2(p2−1)/(p+ 2). In certain cases one can construct
explicit towers of curves reaching this bound γ, cf. [13].

In any case we know since the 1980’s by work of Serre who used class field
towers that A(q) > c log q for an absolute constant c > 0. We refer to the paper
by Hajir and Maire in this volume for a survey of asymptotically good towers.

These results make use of towers where the genera that occur may be rather
sparse. If one insists on using all sufficiently large genera the problem becomes
more difficult.

In [18] it is shown that Nq(g) goes to ∞ with g:

Theorem 6.1. ([18]) For fixed q we have limg→∞Nq(g) =∞.

The following question suggests itself:

Question 6.2. What is lim infg→∞Nq(g)/g?

It follows from the work [3] that lim infg→∞Nq(g)/g ≥ (
√
q − 1)/3 if q is a

square.
The following results gives restrictions for the number Nq(g) for all g:

Theorem 6.3. ([18]) For fixed q there are constants eq and fq depending on q with
0 < eq < fq such that for every g > 0 one has eqg < Nq(g) < fqg.

7. Maximal Curves

We shall call a curve X defined over Fq maximal if #X(Fq) = q+ 1 + 2g
√
q, i.e. if

the curve attains the Hasse-Weil bound. Then q is a square if the genus is not
zero and since the Ihara bound improves the Hasse-Weil bound if g > (q−√q)/2,
this can only happen if g ≤ (q − √q)/2. If X is a maximal curve and Y a curve
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dominated by X then Y is also a maximal curve, since the Jacobian of Y is an
isogeny factor of the Jacobian of X.

For a maximal curve X the action of Frobenius F on the Jacobian is by
−√q. Choose a Fq2-rational point P0 on X and map X to the Jacobian Jac(X)
by P 7→ [P − P0]. If F (P ) is the Frobenius image of P on X then one has

−√q[P − P0] = [F (P )− P0]

in the Jacobian, so for any point P the divisor
√
qP + F (P ) is linearly equivalent

to (
√
q + 1)P0 and this gives a canonically defined linear system on such curves.

Fuhrmann and Torres and Garcia applied ideas of Stöhr and Voloch ([36]; see
also section 8 below) to this linear system to prove the following restrictions on
the genera of maximal curves. Let g0 = g0(q) = (q − √q)/2 and g1 = g1(q) =
(
√
q − 1)2/4.

Theorem 7.1. ([4, 5]) If X is a maximal curve of genus g over Fq then either
g = g0 or g ≤ g1. Moreover, if q is odd and (

√
q − 1)(

√
q − 2)/4 < g ≤ g1 then

g = g1.

A natural question arises:

Question 7.2. Determine the genera for which there are maximal curves. Charac-
terize these curves.

Maximal curves with g = g0 or g = g1 have been characterized: for genus g =
g0 the curve is the hermitian curve, for g = g1 it is given by yq + y = x

√
q+1)/2,

which is dominated by a hermitian curve. For curves of genus g2 = (
√
q− 1)(

√
q−

3)/8 there are two non-isomorphic types of maximal curves for
√
q ≡ 3(mod 4),

the Fermat curve of degree (
√
q + 1)/2 and the Artin-Schreier curve y

√
q + y =

x(
√
q+1)/4. It is not known whether there are other types. We refer to the paper

by Garcia in this volume for more details.
The maximal curves that we know all seem to come from the hermitian

curve, although this has not been verified for all of them, which could motivate
the following question, but the evidence is limited.

Question 7.3. (Stichtenoth) Is every maximal curve the image under a dominant
map of a hermitian curve?

8. The Function Nq(g)

For each pair (q, g) there is the constant of nature Nq(g) defined by (5). Besides
the asymptotic behavior the actual value of Nq(g) for relatively small q and g is
interesting, just as a test for our knowledge on curves over finite fields, but also
with an eye to practical applications in coding theory or cryptography.

The Hasse-Weil bound and its improvements (Ihara, Serre, Oesterlé) give
us an upper bound for Nq(g). To see how good this upper bound is one has to
construct curves with as many points as possible. In practice this results in an
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interval [a, b] to which Nq(g) is constrained. Here b the best upper bound we know
and a is the largest number of points we know to occur for a curve of genus g over
Fq.

Serre determined the actual value of Nq(g) for a number of small values of g
and q. For example he determined Nq(2) for all q and Nq(g) for certain pairs (q, g)
with q = 2.

In some cases for small genera certain values of Nq(g) can be eliminated by
listing all the possibilities of the zeta function and showing that zeta functions
in this list imply a decomposition of the Jacobian as a product of principally
polarized abelian varieties, which contradicts the irreducibility of the theta divisor
of the curve, cf. [34, 20, 21].

Furthermore, a result of Serre says that for a curve of genus ≥ 3 with
#X(Fq) < q + 1 + g[2

√
q] one has #X(Fq) ≤ q − 1 + g[2

√
q].

Sometimes one can rule out that Nq(g) equals the Serre bound (6) by a
specific argument, like Galois descent. This works e.g. for (q = 27, g = 3) and
(q = 8, g = 4), cf. [34, 21].

We give a sample of results thus obtained.

Proposition 8.1. One has the following explicit results:

1) N2(7) = 10;
2) N3(5) ≤ 13 and N3(7) = 16;
3) N4(4) = 15 and N9(4) = 30;
4) N27(3) = 56.

It seems not unlikely that with such methods many more results can be
obtained, maybe even of a general nature.

A look at tables for Nq(g) (see [11]) suggests the following question.

Question 8.2. Is the function Nq(g) a non decreasing function of g for fixed q?

Instead of studying the maximum value of #X(Fq) for all curves of genus g
one could restrict to curves of a specific type. For example, for hyperelliptic curves
one has the obvious bound #X(Fq) ≤ 2(q + 1). One could try to generalize this
to bounds for the maximum number of points on a curve of genus g with given
gonality. The gonality vector γ(X) = (γ1, γ2, . . . ) of a curve X over an algebraically
closed field k is given by

γr(X) = min{d : 1 ≤ d ≤ g − 1, there exists a grd on X} ,
where grd stands for a linear system of degree d and dimension r. A curve of genus g
admits a map of degree ≤ [(g + 3)/2] to the projective line, so the geometric
gonality γ1(X) is bounded by ≤ [(g + 3)/2]. But this map need not be defined
over our ground field. For example, a non-hyperelliptic curve of genus 4 over Fq
has a map of degree 3 to P1 over Fq2 , but not necessarily over Fq, depending on
whether the two rulings of the quadric containing the canonical curve are defined
over Fq or not.
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Question 8.3. What is the maximum number of rational points on a curve of
genus g and gonality γ defined over Fq?

In [36] Stöhr and Voloch present a sort of answer to this question, namely an
upper bound for the maximum number of points on a curve over Fq which does
not only depend on the genus g, but also on a given linear system defined over
Fq. It uses an infinitesimal approach which counts points on a curve, embedded
in projective space with such a linear system, such that the Frobenius image of a
point lies in the osculating hyperplane of the curve at that point. As a special case
this provides a new proof of the Hasse-Weil bound.

Quite a lot of people have tried to construct curves with many points in
order to test how good the upper bounds on Nq(g) are. A variety of methods have
been used for this, like methods from class field theory (Serre, Schoof, Lauter,
Niederreiter, Xing and Auer), methods from Drinfeld modules (Niederreiter and
Xing), fibre products of Artin-Schreier curves (Van der Geer and Van der Vlugt,
Shabat), Kummer curves (Van der Geer and Van der Vlugt) and various other
methods. We refer to [9] and [11] for a summary of the methods and results.

9. Another Relationship between Curves and Codes

A relationship between curves and codes quite different from the one discovered
by Goppa, but not less important arises from the observation that many classical
codes are trace codes of the form Tr(C ′), where C ′ is a code over a field Fqs
obtained from evaluating functions f at points Pi of the affine line and Tr =
Trqs/q is the trace from Fqs to Fq. To give an example, the classical dual Melas
codes M(q)⊥ over Fp are codes of length q − 1 with words of the form

ca,b = (TrFq/Fp(ax+ b/x))x∈F∗q with a, b ∈ Fq .

Since TrFq/Fp(u) = 0 if and only if there exists an element v ∈ Fq with vp− v = u
we see that the weight of a word ca,b equals

q − 1− 1
p

(#Xa,b(Fq)− 2) ,

where Xa,b is the (smooth projective) curve given by yp − y = ax+ b/x.
More generally, we consider a Goppa code C ′ = C(D,P ) over Fqs associated

to some triple (X,D,P ) as above. Since the words of Trqs/q(C ′) are of the form

Tr(f(Pi))ni=1 for f ∈ L(D)

we see that there is a simple relation between the weight of a word Tr(α(f)) =
Tr(f(Pi))ni=1 and the number of rational points on the curve defined by yq−y = f .
In this way we obtain a one-to-one correspondence between words in a trace code
of a Goppa code and curves in a k-dimensional family of curves. Linear subspaces
correspond then to fibre products of curves. The weight distribution in the code
is directly related to the distribution of the number of points in this family. For
example, the weight distribution of the quadratic Reed-Muller code Rq(2, r) is
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related to a family of supersingular curves given by equations of the form yp −
y = xR(x) with R running through a family of linearized polynomials of the
form R =

∑h
i=0 aix

pi . These curves are thus related to quadric hypersurfaces and
the fact that we are dealing with quadrics enables one to determine the weight
distribution.

This relationship between codes and families of curves leads to difficult ques-
tions on the behavior of the zeta function in families of curves.

10. Distribution of Traces of Frobenius and Weights

Although most of the attention so far focused on determining or bounding the
function Nq(g) one may ask more generally:

Question 10.1. For given pair (q, g) which values can the number of points on a
smooth projective irreducible curve of genus g over Fq assume?

In a given family of curves over Fq we can ask for the frequencies with which
a given number of points is assumed. Here we count the contribution of each
curve X defined over Fq with multiplicity 1/# AutFq (X). The most basic families
are the universal families over a cover of the moduli space Mg of smooth irreducible
complete curves of genus g.

Question 10.2. Determine the frequencies of the number of points in such (univer-
sal) families.

Note that this is a difficult question in general since the information given by
these frequencies suffices to determine the number of points on Mg,n(Fq), where
Mg,n is the universal n-pointed curve for all n. In joint work with S. del Baño and
C. Faber we have determined the frequencies for the genus 2 moduli spaces M2⊗Fp
for all primes p ≤ 181.

11. Strata on the Moduli Spaces

To an abelian variety in characteristic p > 0 we can associate the characteris-
tic polynomial of Frobenius (acting on H1

et(X,Q`) with p 6= `) and the Newton
polygon of this characteristic polynomial. As the Newton polygon goes up under
specialization this leads to a stratification on moduli spaces of (polarized) abelian
varieties. For an abelian variety over a finite field the isogeny class of X is de-
termined by the characteristic polynomial as Tate showed and by work of Tate
and Honda it is known which characteristic polynomials can occur. We restrict
ourselves to principally polarized abelian varieties. The two extreme cases in this
stratification on the moduli space Ag⊗Fp of principally polarized abelian varieties
of dimension g are the ordinary case and the supersingular case; the corresponding
strata have dimension g(g + 1)/2 and [g2/4], respectively, see [22]. Intermediate
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cases are the strata given by the condition that the p-rank equals r. These strata
have codimension g − r in Ag.

By associating to a curve its Jacobian variety this induces also a stratification
on the moduli space Mg⊗Fp of curves in characteristic p > 0. But unlike the case of
abelian varieties it is not known which Newton polygons can occur. We know that
the generic curve is ordinary, but for example for general p it is not known whether
for every genus g there exists a curve defined over a finite field of characteristic p
which is supersingular. For p = 2 it was proven in [12] that for every g there
exists a supersingular curve of genus g defined over F2. A similar construction in
characteristic p > 2 gives supersingular curves for genera whose p-adic expansion
uses 0 and (p−1)/2 only. This motivates the following questions, which can also be
specialized to finite fields, but one may ask them as well in a more general setting.

Question 11.1. For which genera does there exists a supersingular curve in char-
acteristic p?

Question 11.2. Which Newton polygons occur for Jacobians?

Since the characteristic polynomial of Frobenius is an isogeny invariant we can
ask more generally the following important question that belongs to the folklore
of the field:

Question 11.3. Which isogeny classes of abelian varieties contain a jacobian vari-
ety?

It is proved in [6] that the stratum of curves of p-rank r has codimension g−r
in the moduli space of curves Mg ⊗ Fp.

It might well be that the following final question admits unexpected answers
over finite fields.

Question 11.4. Can one give an effective procedure for deciding whether or not a
polarized abelian variety is a jacobian?
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fini. Comptes Rendus Acad. Sci. Paris 296 (1983), pp. 397–402.

[32] J-P. Serre: Nombre de points des courbes algébriques sur Fq. Sém. de Théorie des
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