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Abstract. The aim of this talk is to give a survey of the known methods for
constructing contact structures on manifolds of dimension greater than three.
We give an extensive list of contact manifolds that can be constructed via
these methods, including some recent examples of contact structures on 5-di-
mensional manifolds found by a combination of contact surgery and cobordism
theoretic techniques.

1. Introduction

Let M be a differentiable manifold of odd dimension 2n − 1. A codimension one
distribution ξ on M (i.e. a smooth tangent hyperplane field) is called a contact
structure if any differential 1-form α that locally defines ξ as ξ = ker α satisfies
the condition that α ∧ (dα)n−1 is nowhere zero. This condition is independent of
the choice of α: Replacing α by fα with f some nowhere zero function, we have
fα ∧ (d(fα))n−1 = fnα ∧ (dα)n−1.

If ξ is coorientable, such an α exists globally (by a partition of unity argu-
ment) and is then called a contact form. For convenience we restrict attention to
orientable manifolds and coorientable contact structures.

In the present survey we concentrate on the question as to what can be said
about the existence of contact structures, in particular on manifolds of dimension
greater than three. For a discussion of contact topology in a wider context of its
recent and not so recent history see [8, 14].

2. Some Classical Constructions

In this section we briefly recall the constructions of contact manifolds known before
the early 1990s. According to the usage of C. T. C. Wall, as related to me by
C. B. Thomas, the attribute ‘classical’ may be employed with reference to any
result prior to one’s thesis.

2.1. Hypersurfaces in symplectic manifolds
Let (V, ω) be a symplectic manifold of dimension 2n. This means that ω is a
closed 2-form (dω = 0) of maximal rank (ωn 6= 0). A vector field X on V is called
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a Liouville vector field if LXω = ω. With the help of Cartan’s formula for the Lie
derivative LX = d ◦ iX + iX ◦ d this may be rewritten as d(iXω) = ω. Then the
1-form α = iXω defines a contact form on any hypersurface M in V transverse
to X. Indeed,

α ∧ (dα)n−1 = (iXω) ∧ (d(iXω))n−1 = iXω ∧ ωn−1 =
1
n

iX(ωn) ,

which restricts to a volume form on M ⊂ V provided M is transverse to X. This
is how contact structures arise on suitable energy hypersurfaces in Hamiltonian
systems.

Example 2.1. M = S2n−1 ⊂ R2n with ω =
∑n

i=1 dxi ∧ dyi and Liouville vector
field X = 1

2

∑n
i=1(xi∂xi + yi∂yi), whence α = 1

2

∑

i(xidyi − yidxi). Notice that
if we regard S2n−1 as the unit sphere in Cn with complex structure J , then ξ =
ker α defines at each point x ∈ S2n−1 the (n− 1)-dimensional complex subspace of
TxS2n−1, since α = − 1

2r dr ◦ J in terms of the radial coordinate r. The hermitian
form dα( · , J · ) on ξ is called the Levi form of the hypersurface S2n−1 ⊂ Cn, and
the contact condition for α corresponds to the positive definiteness of that Levi
form, or the strict pseudoconvexity of the hypersurface.

Example 2.2. The cotangent bundle T ∗N of an arbitrary manifold N of dimension
n carries a canonical symplectic form ω which in local coordinates qi on N and
dual coordinates pi can be written as

∑n
i=1 dpi∧dqi. The radial vector field in fibre

direction, X =
∑n

i=1 pi∂pi , is a Liouville vector field on (T ∗N, ω). So the unit
cotangent bundle of N (with respect to any Riemannian metric on N) inherits a
contact form, given in local coordinates by α =

∑n
i=1 pidqi.

2.2. S1-bundles
Let (B, ω) be a symplectic manifold such that ω defines an integral de Rham coho-
mology class, i.e. [ω] lies in the image of the natural homomorphism H2(B;Z) ↪→
H2(B;R) ∼= H2

dR(B). Let M be the total space of the S1-bundle over B with Euler
class e = [ω]. Then, as observed by Boothby and Wang [4], one can find a connec-
tion 1-form α for this bundle such that the curvature equation reads dα = π∗ω,
where π : M → B is the bundle projection. This easily implies that α is a contact
form on M .

Example 2.3. We can recover example 2.1 by considering the generalised Hopf
fibration π : S2n−1 → CPn−1, where CPn−1 is equipped with its standard Fubini-
Study symplectic form. By computing the Betti numbers of S1-bundles over certain
Kähler manifolds with integral Kähler class, Boothby and Wang produced the first
systematic examples of contact manifolds that are not spheres or cotangent bundles.

This construction was extended by C. B. Thomas [31] to certain Seifert fi-
brations. As an application, he could show that most simply connected, indecom-
posable 5-dimensional spin manifolds carry a contact structure, since they can be
realised as Seifert S1-bundles over CP 2.
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2.3. Brieskorn manifolds

In the mid 1970s several teams of authors (see [26, 30, 1]) observed that Brieskorn
manifolds

Σ(a0, . . . , an) =
{

(z0, . . . , zn) ∈ Cn+1| za0
0 + · · ·+ zan

n = 0
}

∩ S2n+1

(here the aj are natural numbers ≥ 2) admit a contact structure. One of the several
equivalent ways of writing this contact structure is as the kernel of the contact
form

α =
i
4

n
∑

j=0

(zjdzj − zjdzj) .

Example 2.4. Every odd dimensional homotopy sphere that bounds a parallelisable
manifold can be realised as a Brieskorn manifold, see [22], and hence admits a
contact structure. This includes all 28 seven-dimensional and all 992 eleven-di-
mensional homotopy spheres.

Example 2.5. Using the Brieskorn examples, and the connected sum construction
for contact manifolds due to Meckert [28] (this will be discussed below in the context
of contact surgery), C. B. Thomas [32] proved the existence of contact structures
on a range of (n− 1)-connected (2n + 1)-manifolds.

2.4. 3-dimensional constructions

Our main emphasis is on higher dimensions, but for completeness we mention some
3-dimensional constructions, so that below we can see to what extent they have
higher-dimensional analogues. For more detailed surveys see [8, 17, 33].

The existence of contact structures on every closed, orientable 3-manifold was
first shown by Martinet [27], using the surgery presentation for 3-manifolds due to
Lickorish and Wallace. In dimension 3, surgery preserving a contact structure can
be performed on any S1 embedded transversely to a given contact structure (and
with any framing), and the standard contact structure on S3 provides the starting
point.

Thurston and Winkelnkemper [34] gave a short alternative proof using the
Alexander open book decomposition for 3-manifolds, and Gonzalo [20] obtained
the same result from a branched covering description of 3-manifolds due to Hilden,
Montesinos, and Thickstun.

A further proof of the existence of contact structures on every closed, ori-
entable 3-manifold M was given by Altschuler [2]. His proof is based on a para-
bolic deformation of 1-forms. Starting from a nowhere zero 1-form α which satisfies
α∧ dα ≥ 0 but not α∧dα ≡ 0 (plus some additional restrictions), a heat equation
is used to diffuse the ‘positivity’ of the form over the whole 3-manifold. Eliash-
berg and Thurston [10] considerably extended these ideas, using more geometric
arguments.
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3. Contact Surgery and Cobordism Theory
In 1990 Eliashberg [6] proved a remarkable theorem about the topology of Stein
manifolds (affine complex analytic manifolds). As was known from the work of
Lefshetz, Serre, Frankel-Andreotti and Milnor, a Stein manifold of real dimension
2n admits a proper Morse function with all critical points of index ≤ n, so in
particular it has the homotopy type of an n-dimensional CW complex. Eliashberg’s
theorem says that the converse is true provided n ≥ 3.

Theorem 3.1. (Eliashberg) Let (W,J) be a 2n-dimensional compact almost complex
manifold with boundary ∂W . If n ≥ 3 and W admits a Morse function constant
on the boundary and with all critical points of index ≤ n, then J is homotopic to
an integrable almost complex structure J ′ such that ∂W is strictly J ′-convex and
the interior of W is Stein.

The situation for n = 2 is more complicated, see [19].

3.1. Contact surgery
As mentioned in example 2.5, in 1982 Meckert had given a proof that the connected
sum of two contact manifolds also admits a contact structure, but her construction
did not seem to allow any simple generalisation to surgeries along higher-dimen-
sional spheres (observe that the connected sum of two manifolds may be thought
of as a surgery along a zero-dimensional sphere S0, one each of the two points
constituting S0 being embedded in the two manifolds).

Recall from example 2.1 that the strict J-convexity of a hypersurface M in an
almost complex manifold (V, J) is equivalent to saying that the J-invariant hyper-
planes in the tangent spaces of M define a contact structure on M . So theorem 3.1
may be interpreted as a statement about contact surgery. Weinstein [36] gave an
alternative description of this aspect of Eliashberg’s theorem, using hypersurfaces
transverse to a Liouville vector field. The basic idea in Weinstein’s construction is
strikingly simple.

We illustrate this idea for connected sums of 3-manifolds, see figure 1. Con-
sider R4 with coordinates x, y, z, t and standard symplectic form ω = dx ∧ dy +
dz ∧ dt. The vector field X = 1

2x∂x + 1
2y∂y + 2z∂z − t∂t is a Liouville vector field

for ω. We can find a smooth handle, with boundary transverse to X, joining the
hyperplanes {t = 1} and {t = −1}. Thus α = ω(X, · ) induces a contact form on
these hyperplanes and the (boundary of) the smooth handle joining them.

On {t = ±1}, this 1-form α restricts to 1
2x dy − 1

2y dx± dz. By the Darboux
theorem for contact forms, any contact form can in suitable local coordinates be
written exactly like that. Thus, by choosing the handle in figure 1 thin enough, we
can glue its ends into two given contact 3-manifolds to perform a connected sum
(or a 0-surgery on one component).

By replacing the coordinate axes in this picture by higher-dimensional eu-
clidean spaces, one obtains the corresponding handle for surgeries along higher-di-
mensional isotropic spheres (i.e. spheres tangent to a given contact structure).
Notice that an isotropic submanifold in (M2n−1, ξ) has dimension at most n− 1.
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Figure 1. Handle used in contact surgery.

Thanks to an h-principle for isotropic embeddings (cf. [21, 6, 11]), and a neigh-
bourhood theorem for isotropic submanifolds in place of the Darboux theorem,
the question which kinds of surgeries can be performed as contact surgeries now
essentially becomes a problem in algebraic topology.

It is important to bear in mind that there are two questions that need to be
adressed when trying to perform a contact surgery:

(1) Can a given embedding Sk ↪→ (M, ξ) be approximated by an isotropic
embedding (i.e. can the h-principle be applied)?

(2) Which framings (i.e. trivialisations of the normal bundle of Sk ↪→ M)
allow contact surgery?

These issues are discussed at length in [12, 15] for various applications. The intro-
ductory sections in those papers might provide a useful guide.

Example 3.2. Using contact surgery, an essentially complete solution to the ex-
istence problem for contact structures on (n − 1)-connected (2n + 1)-manifolds
was given in [11, 12]. The essential point is that these manifolds can be obtained
from a sphere by doing surgery below the middle dimension. The precise existence
statement is complicated by the presence of exotic spheres and certain exceptional
invariants in the classification of these highly connected manifolds. Here are some
examples that are easy to state:

(a) Any simply-connected 5-manifold M whose second Stiefel-Whitney class
w2(M) ∈ H2(M ;Z2) admits an integral lift c ∈ H2(M ;Z) carries a con-
tact structure ξ such that the conformally symplectic (and hence complex)
bundle (ξ, dα) has first Chern class c1 = c.

(b) Every 2-connected 7-manifold and every 4-connected 11-manifold admits
a contact structure (cf. example 2.4).
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A coorientable codimension one distribution η on M with a complex bun-
dle structure or, equivalently, a reduction of the structure group of TM2n+1 to
U(n)×1, is called an almost contact structure. Clearly, the existence of an almost
contact structure is a necessary condition for the existence of a coorientable con-
tact structure. In dimension 5 (without any assumption on the fundamental group
of M), almost contact structures are classified by the integral lifts of w2(M).

3.2. Plumbing
By arguments related to those in the proof of theorem 3.1, Eliashberg [7] showed
the following: Given a symplectic manifold (W,ω) and L # W an immersed La-
grangian submanifold (i.e. ω|TL ≡ 0 and dim L = (dim W )/2) with only transverse
double points, one can find a small neighbourhood of L whose boundary inherits
a contact structure. In particular —recall the remarks in example 2.2— this al-
lows the plumbing of cotangent disc bundles (for a discussion of plumbing see for
instance [22]).

Example 3.3. In [7] this was used by Eliashberg to construct exotic contact struc-
tures on S2n−1, i.e. contact structures that are not diffeomorphic to the standard
structure of example 2.1. The exoticity of the contact structure is detected by a sym-
plectic filling not containing any symplectic spheres, but different from a disc D2n.

Two contact structures on a manifold are called homotopically equivalent
if they induce homotopic almost contact structures. A contact structure ξ on
S2n−1 = ∂D2n is called homotopically standard if it is homotopically equivalent
to the standard contact structure, or equivalently, if the stable almost complex
structure on the stable tangent bundle TS2n−1 ⊕ ε1 ∼= TD2n|S2n−1 defined by ξ
extends as an almost complex structure over D2n.

Example 3.4. For n odd, in which case the obstruction group π2n−1(SO2n/Un) de-
tecting homotopical standardness is finite, Eliashberg obtained exotic but homotopi-
cally standard contact structures on S2n−1 by taking the connected sum of spheres
as in example 3.3. By refining the homotopical considerations and making direct
use of contact surgery, this argument was extended in [12] to prove the existence
of exotic but homotopically standard contact structures also on S7 and S8k+3. The
case S8k+7 with k ≥ 1 still seems to be open (in spite of the result attributed to me
in [9]).

A more effective way of detecting homotopically equivalent but nondiffeo-
morphic contact structures is provided by the newly developed contact homology,
see [9]. For instance, Ustilovsky [35] has used this to show that on S4n+1 there ex-
ist in fact infinitely many nondiffeomorphic, but homotopically standard contact
structures (constructed from different descriptions of S4n+1 as Brieskorn mani-
fold).

3.3. Spin bordism
One strategy to produce examples of contact manifolds is to find classes C of
manifolds with the following properties:
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(i) C contains a subclass C0 of manifolds which carry a contact structure by
some explicit construction (e.g. Brieskorn manifolds).

(ii) Any manifold in C is obtained from one in C0 by surgery below the middle
dimension, and all the necesary surgeries can be performed as contact
surgeries.

For instance, in the results from [11, 12] illustrated in example 3.2, this strategy is
applied to the class C of all highly connected manifolds carrying an almost contact
structure, starting from the class C0 of homotopy spheres bounding parallelisable
manifolds (cf. example 2.4). The main difficulty lies in distilling from Wall’s classi-
fication of highly connected manifolds the information that is necessary to answer
questions (1) and (2) from section 3.1.

As explained in [15, Lemma 3], these questions are easy to answer in dimen-
sion 5. Here we only have to deal with questions (1) and (2) in the case of 1- and
2-spheres. There are no obstructions to approximating an embedding S1 ↪→ (M, ξ)
by an isotropic one, and for an embedding i : S2 ↪→ (M, ξ) one only has to require
i∗c1(ξ) = 0 to be able to find an isotropic approximation. In the case of 1-spheres
all framings can be realised by contact surgeries (this is false for 3-manifolds). In
the case of 2-spheres there is no problem with framings because they are controlled
by the group π2(SO3) = 0.

In [15, 16] this has been used to prove the existence of contact structures
on classes Cπ of 5-dimensional spin manifolds M with fundamental group π1 iso-
morphic to some given group π. The key steps in the argument are as follows, for
details see [16].

1. Bordism theorem: Let f : M → Bπ be the classifying map of the universal
covering ˜M → M and σ a spin structure on M . If the bordism class [f : M →
Bπ, σ] ∈ Ωspin

5 (Bπ) contains a contact manifold (M0, ξ0) with c1(ξ0) = 0, then M
admits a contact structure.

This is analogous to results about metrics of positive scalar curvature, cf. [29].
What the assumptions of the theorem really imply (in any dimension) is that
M can be obtained from M0 by surgery in codimension ≥ 3. This information
is sufficient for constructing a positive scalar curvature metric on M , given one
on M0, but for contact structures this does not allow going beyond dimension 5.

2. Reduction theorem: To solve the problem for the class Cπ, it suffices to
solve it for all the classes Cπp , where πp denotes a p-Sylow subgroup of π. This
is formally analogous to the result of Kwasik and Schultz [23] for positive scalar
curvature metrics.

3. It remains to find a class Cπp,0 of contact manifolds (with c1 = 0) gener-
ating Ωspin

5 (Bπp). In [16], step 3 is completed for certain groups π having periodic
cohomology (periodic groups, for short). The result of [15] for π = Z2 can also
be interpreted in this framework, but by ad hoc arguments a somewhat stronger
result was achieved there (both concerning the existence of contact structures and
the topological structure of 5-manifolds with fundamental group of order 2). We
summarise the main existence results of these two papers in the following example.
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Example 3.5. Let M be a closed oriented 5-manifold with universal cover ˜M . The
manifold M admits a contact structure in either of the following cases:

(a) π = π1(M) is periodic, |π| is odd, 9 6 | |π|, and M is spin, i.e. w2(M) = 0.
(b) π1(M) = Z2 and ˜M is spin.

By the reduction theorem (and the structure of periodic groups of odd order),
case (a) reduces to the study of cyclic groups. This causes the problems at the
prime 3, since the spin bordism group Ωspin

5 (Bπpk) has a different structure for
p = 3 or p ≥ 5. The class CZpk ,0 may be taken to consist of lens spaces, i.e.
quotients of S5 under some fixed point free representation ρ : Zpk → U(3). The
standard contact structure on S5 descends to these quotients.

In (b), for the class CZ2,0 one needs ten manifolds, constructed explicitly as
Z2-quotients of Brieskorn manifolds.

An interesting illustrative example is the following:

Example 3.6. Let Ds,3 denote the metacyclic group
{

x, y|xs = y3 = 1, yxy−1 = xr} ,

where s is an odd integer, r is a primitive third root of 1 mod s, and furthermore
gcd(3(r − 1), s) = 1. This group acts freely and smoothly, but not freely and lin-
early, on S5. The quotient S5/Ds,3 admits a contact structure by the results above,
see also [12] for a more direct argument. The contact structure given by this con-
struction lifts to an exotic contact structure on S5. Indeed, there is evidence that
Ds,3 cannot act compatibly with the standard contact structure.

4. Other Constructions and Examples

We conclude this survey with a summary of other methods for constructing con-
tact manifolds. For a more detailed discussion of the first three of the following
constructions see [13].

4.1. Branched covers
As mentioned above, Gonzalo had introduced a branched cover construction for
3-dimensional contact manifolds. Gromov [21, p. 343] observed that contact struc-
tures lift to branched covers in arbitrary dimension, provided the branching locus
is a codimension two contact submanifold. For a proof see [13].

Example 4.1. Let M3 be a closed, orientable 3-manifold and Σg a closed, orientable
surface of genus g. Then M3 × Σg admits a contact structure. Indeed, M3 is
parallelisable, so by example 2.2 we have a contact form on M3 × S2, thought of
as the unit cotangent bundle of M3. A contact structure on M3 × Σg can now be
obtained by writing this manifold as a branched cover of M3 × S2, branched along
2 + 2g suitable sections of the unit cotangent bundle.

Contact structures on more general torus bundles over 3-manifolds had been
found earlier by Lutz [25].
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4.2. Fibre connected sum
Again this is a construction that was first observed by Gromov [21, p. 343]. In
the symplectic case this construction was worked out by Gompf [18] and used to
remarkable effect. For the contact case a proof can again be found in [13].

Let ji : (N,αN ) ↪→ (M, α), i = 1, 2, be two disjoint contact embeddings
(j∗i α = αN ). Let ψ : V1− j1(N) → V2− j2(N) be an orientation preserving diffeo-
morphism of punctured tubular neighbourhoods (reversing the radial coordinate),
induced by an orientation reversing isomorphism of the two normal bundles. Then
the fibre connected sum of M along the ji(N), obtained from M− (j1(N)∪j2(N))
by gluing with the help of ψ, admits a contact structure.

Example 4.2. The manifold M3×Σg can also be obtained by starting with M3×S2

and performing g fibre connected sums along suitable sections of the unit cotangent
bundle of M3.

4.3. Contact reduction
This construction is the contact analogue of symplectic reduction, which has been
studied much more intensively. A concise description is given in [13], but the
possibility of contact reduction has been observed independently by several au-
thors. This construction has recently attracted a great deal of attention, see for
instance [5, 24]. It has already led to some interesting results, but its potential for
the construction of higher-dimensional contact manifolds remains to be explored.

4.4. Heat flow
Recently, Altschuler, in collaboration with L. F. Wu [3], has extended his construc-
tion (alluded to in section 2.4) from dimension 3 to higher dimensions. Indepen-
dently, R. Gulliver, M. Schwarz and the author have obtained results in a similar
direction. The set-up, however, becomes more restrictive, and so far the appli-
cations of this method remain scarce. One of the concrete examples of Altschuler
and Wu is yet another construction of contact structures on trivial surface bundles
over 3-manifolds.
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