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Abstract. We discuss two arithmetical problems, at first glance unrelated:
1) The properties of the multiple ζ-values

ζ(n1, . . . , nm) :=
X

0<k1<k2<···<km

1
kn1
1 kn2

2 · · · knm
m

nm > 1 (1)

and their generalizations, multiple polylogarithms at N -th roots of unity.
2) The action of the absolute Galois group on the pro-l completion

π(l)
1 (XN ) := π(l)

1 (P1\{0, µN ,∞}, v)

of the fundamental group of XN := P1\{0,∞ and all N -th roots of unity}.
These problems are the Hodge and l-adic sites of the following one:
3) Study the Lie algebra of the image of motivic Galois group acting on

the motivic fundamental group of P1\{0, µN ,∞}.
We will discuss a surprising connection between these problems and

geometry of the modular varieties

Y1(m : N) := Γ1(m; N)\GLm(R)/Om · R∗
where Γ1(m; N) is the subgroup of GLm(Z) stabilizing (0, . . . , 0, 1) mod N .

In particular using this relationship we get precise results about the Lie
algebra of the image of the absolute Galois group in Autπ(l)

1 (XN ), and sharp
estimates on the dimensions of the Q-vector spaces generated by the multiple
polylogarithms at N -th roots of unity, depth m and weight w := n1+ · · ·+nm.

The simplest case of the problem 3) is related to the classical theory of
cyclotomic units. Thus the subject of this lecture is higher cyclotomy.

1. The Multiple ζ-Values

1.1. The algebra of multiple ζ-values and its conjectural description

Multiple ζ-values (1) were invented by L. Euler [6]. Euler discovered that the
numbers ζ(m,n), when w := m + n is odd, are Q-linear combinations of ζ(w) and
ζ(k)ζ(w − k). Then these numbers were neglected. About 10 years ago they were
resurrected as the coefficients of Drinfeld’s associator [5], rediscovered by D. Zagier
[25], appeared in works of M. Kontsevich on knot invariants and the author [8, 7]
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on mixed Tate motives over Spec (Z). More recently they showed up in quantum
field theory [21, 2], deformation quantization and so on.

We say that w := n1 + · · ·+ nm is the weight and m is the depth of (1).
Let Z be the space of Q-linear combinations of multiple ζ’s. It is a commu-

tative algebra over Q. For instance

ζ(m) · ζ(n) = ζ(m,n) + ζ(n,m) + ζ(m + n) (2)

because
∑

k1,k2>0

1
km
1 kn

2
=

(
∑

0<k1<k2

+
∑

0<k1=k2

+
∑

k1>k2>0

) 1
km
1 kn

2
. (3)

The only known results about the classical ζ-values are the following:

ζ(2n) = (−1)n−1(2π)2n · B2n

2 · (2n)!
(Euler); ζ(3) 6∈ Q (Apery) . (4)

Here Bk are the Bernoulli numbers: t
et−1 =

∑

Bktk/k!.
To describe the hypothetical structure of the algebra Z we introduce a free

graded Lie algebra F(3, 5, . . . )•, which is freely generated by elements e2n+1 of
degree −(2n + 1) where n ≥ 1. Let

UF(3, 5, . . . )∨• := ⊕n≥1

(

UF(3, 5, . . . )−(2n+1)

)∨

be the graded dual to its universal enveloping algebra. It is Z+-graded.

Conjecture 1.1. a) The weight provides a grading on the algebra Z.
b) One has an isomorphism of graded algebras over Q

Z• = Q[π2]⊗Q UF(3, 5, . . . )∨• deg π2 := 2 . (5)

Part a) means that relations between ζ’s of different weight, like ζ(5) =
λ · ζ(7) where λ ∈ Q, are impossible. For motivic interpretation/formulation of
conjecture 1.1 see Section 12 in [8]. For its l-adic version see conjecture 2.1 below.

Theorem 1.2. One has dimZk ≤ dim(Q[π2]⊗ UF(3, 5, . . . )∨)k.

Both the origin of conjecture 1.1 and proof of this theorem are based on
theory of mixed Tate motives over Spec(Z): multiple ζ-values are periods of framed
mixed Tate motives over Z (see [14]), and one can prove that the ring of all such
periods is isomorphic to the algebra appearing on the right hand side of (5). This
gives theorem 1.2. Conjecture 1.1 just means that every such a period is given by
multiple ζ-values.

For the definition of the abelian category of mixed Tate motives over a num-
ber field convinient for our approach see chapter 5 in [12]. It has all the expected
properties and based on V. Voevodsky’s construction of the triangulated cate-
gory of motives [24]. Another approach to mixed motives has been developed by
M. Levine [22], [23]. A construction of the framed mixed Tate motive over Q re-
lated to multiple ζ’s can be obtained by combining constructions in section 12 of
[7] and chapter 5 of [12].
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It is difficult to estimate dimZk from below: we believe that ζ(5) 6∈ Q but
nobody can prove it.

One may reformulate conjecture 1.1 as a hypothetical description of the
Q-vector space PZ of primitive multiple ζ’s:

PZ• :=
Z•

Z>0 · Z>0

?=< π2 > ⊕F(3, 5, . . . )∨• . (6)

Here < π2 > is a 1-dimensional Q-vector space generated by π2, and Z>0 is
generated by π2 and ζ(n1, . . . , nm).

Example 1.3. There are 210 convergent multiple ζ’s of the weight 12. However
according to theorem 1.2 dimZ12 ≤ 12. One should have dimPZ12 = 2 since
F(3, 5, . . . )−12 is spanned over Q by [e5, e7] and [e3, e9]. The Q-vector space of
decomposable multiple ζ’s of the weight 12 is supposed to be generated by

π6, π3ζ(3)2, π2ζ(3)ζ(5), π2ζ(3, 5), πζ(3)ζ(7), πζ(5)2, πζ(3, 7),

ζ(3)4, ζ(5)ζ(7), ζ(3)ζ(9) .

The algebra UF(3, 5, . . . )∨• is commutative. It is isomorphic to the space of
noncommutative polynomials in variables f2n+1, n = 1, 2, 3, . . . with the algebra
structure given by the shuffle product.

Let F(2, 3)• be the free graded Lie algebra generated by two elements of
degree −2 and −3. Its graded dual UF(2, 3)∨• is isomorphic as a graded vector
space to the space of noncommutative polynomials in two variables p and g3 of
degrees 2 and 3. There is canonical isomorphism of graded vector spaces

Q[π2]⊗ UF(3, 5, . . . )∨• = UF(3, 5)∨• .

The rule is clear from the pattern (π2)3f3(f7)3(f5)2 −→ p3g3(g3p2)3(g3p)2.
In particular if dk := dimZk then one should have dk = dk−2 + dk−3. This

rule has been observed in computer calculations of D. Zagier for k ≤ 12. Later on
extensive computer calculations, confirming it, were made by D. Broadhurst [2].

1.2. The depth filtration
Conjecture 1.1, if true, would give a very simple and clear picture for the structure
of the multiple ζ-values algebra. However this algebra has an additional structure:
the depth filtration, and conjecture 1.1 tells us nothing about it. The study of the
depth filtration moved the subject in a completely unexpected direction: towards
geometry of modular varieties for GLm.

To formulate some results about the depth filtration consider the algebra Z
spanned over Q by the numbers

ζ(n1, . . . , nm) := (2πi)−wζ(n1, . . . , nm) .

It is filtered by the weight and depth. Since ζ(2) = −1/24, there is no weight
grading anymore. Let GrW,D

w,mPZ be the associated graded. We assume that 1 is of
depth 0. Denote by dw,m its dimension over Q.
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Euler’s classical computation of ζ(2n) (see (4)) tells us that d2n,1 = 0. Gen-
eralizing this it is not hard to prove that dw,m = 0 if w + m is odd.

Theorem 1.4. a)

dw,2 ≤
[

w − 2
6

]

if w is even . (7)

b)

dw,3 ≤
[

(w − 3)2 − 1
48

]

if w is odd .

The part a) is due to Zagier; the dimension of the space of cusp forms for
SL2(Z) showed up in his investigation of the double shuffle relations for the depth
two multiple ζ’s, ([25]). The part b) has been proved in [10]. Moreover we proved
that, assuming some standard conjectures in arithmetic algebraic geometry, these
estimates are exact, see also corollary 2.5 and theorem 7.5.

Problem 1.5. Define explicitly a depth filtration on the Lie coalgebra F(3, 5, . . . )∨

which under the isomorphism (6) should correspond to the depth filtration on the
space of primitive multiple ζ-values.

The cogenerators of the Lie coalgebra F(3, 5, . . . )∨ correspond to ζ(2n + 1).
So a naive guess would be that the dual to the lower central series filtration on
F(3, 5, . . . ) coincides with the depth filtration. However then one should have
d12,2 = 2, while according to formula (7) d12,2 = 1. Nevertheless dimPZ12 = 2,
but the new transcendental number appears only in the depth 4.

1.3. A heuristic discussion
Conjecture 1.1 in the form (6) tells us that the space of primitive multiple ζ’s
should have a Lie coalgebra structure. How to determine its coproduct δ in terms
of the multiple ζ’s? Here is the answer for the depth 1 and 2 cases. (The general
case later on). Consider the generating series

ζ(t) :=
∑

m>0

ζ(m)tm−1, ζ(t1, t2) :=
∑

m,n>0

ζ(m,n)tm−1
1 tn−1

2

Then δζ(t) = 0, i.e. δζ(n) = 0 for all n, and

δζ(t1, t2) = ζ(t2) ∧ ζ(t1) + ζ(t1) ∧ ζ(t2 − t1)− ζ(t2) ∧ ζ(t1 − t2) . (8)

To make sense out of this we have to go from the numbers ζ(n1, . . . , nm) to their
more structured counterparts: framed mixed Tate motives ζM(n1, . . . , nm), or their
Hodge or l-adic realizations, (see [9] or Section 12 of [8]). The advantage is imme-
diately seen: the coproduct δM is well defined by the general formalism (see Sec-
tion 10 in [8]), one easily proves not only that ζM(2n) = 0 (motivic version of
Euler’s theorem) as well as ζM(1) = 0, but also that ζM(2n + 1) 6= 0, and there
are no linear relations between ζM(2n + 1)’s! Hypothetically we loose no infor-
mation: linear relations between the multiple ζ’s should reflect linear relations
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between their motivic avatars. Using ζM(2n) = 0 we rewrite formula (8) as

δM : ζM(t1, t2) 7−→
(

1 + U + U2
)

ζM(t1) ∧ ζM(t2) (9)

where U is the linear operator (t1, t2) 7−→ (t1 − t2, t1). For example δM sends the
subspace of weight 12 double ζM’s to a one dimensional Q-vector space generated
by 3ζM(3) ∧ ζM(9) + ζM(5) ∧ ζM(7). One can identify the cokernel of the map
(9), restricted to the weight w subspace, with H1(GL2(Z), Sw−2V2 ⊗ ε2) where
V2 is the standard GL2-module, and ⊗ε2 is the twist by the determinant, i.e.
with the space of weight w cusp forms for GL2(Z). Moreover, one can prove that
KerδM is spanned by ζM(2n +1)’s: this is a much more difficult result which uses
all the machinery of mixed motives. Thus an element of the depth 2 associated
graded of the space of primitive double ζ’s is zero if and only if its coproduct is
0. So formula (9) provides a complete description of the space of double ζ’s. In
particular d12,2 = 1.

For the rest of this paper we suppress the motives working mostly with the
l-adic side of the story and looking at the Hodge side for motivations.

2. Galois Symmetries of the pro-l Completion of the Fundamental
Group of P1\{0, µN , ∞}

2.1. The Lie algebra of the image of the Galois group
Let X be a regular curve, X the corresponding projective curve, and v a tangent
vector at a point x ∈ X. According to Deligne [3] one can define the geometric
profinite fundamental group π̂1(X, v) based at v. If X, x and v are defined over
a number field F then the group GF := Gal(Q/F ) acts by automorphisms of
π̂1(X, v).

If X = P1\{0, µN ,∞} there is a tangent vector v∞ corresponding to the
inverse t−1 of the canonical coordinate t on P1\{0, µN ,∞}. Denote by π(l) the
pro-l-completion of the group π. We will investigate the map

Φ(l)
N : GQ −→ Autπ(l)

1 (P1\{0, µN ,∞}, v∞) . (10)

When N = 1 it was studied by Grothendieck [15], Deligne [3], Ihara (see [16, 18]),
Drinfeld [5], and others (see [17]), but for N > 1 it was not investigated.

Denote by H(m) the lower central series for the group H. Then the quotient
π(l)

1 (XN )/π(l)
1 (XN )(m) is an l-adic Lie group. Taking its Lie algebra and making

the projective limit over m we get a pronilpotent Lie algebra over Ql:

L(l)
N := lim

←−
Lie

( π(l)
1 (XN )

π(l)
1 (XN )(m)

)

.

Similarly one defines an l-adic pronilpotent Lie algebra L(l)(X, v) corresponding
to the geometric fundamental group π̂1(X, v) of a variety X with a base at v.
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For the topological reasons L(l)
N is a free pronilpotent Lie algebra over Ql with

n + 1 generators corresponding to the loops around 0 and N -th roots of unity.
Let Q(ζn) be the field generated by n-th roots of unity. Set Q(ζl∞N ) :=

∪Q(ζlaN ). We restrict map (10) to the Galois group GQ(ζl∞N ). Passing to Lie
algebras we get a homomorphism

φ(l)
N : GQ(ζl∞N ) −→ Aut(L(l)

N ) .

Let us linearize the image of this map. Let L(l)
N (m) be the lower central series for

the Lie algebra L(l)
N . There are homomorphisms to l-adic Lie groups

φ(l)
N ;m : GQ(ζl∞ ) −→ Aut

(

L(l)
N /L(l)

N (m)
)

.

The main hero of this story is the pronilpotent Lie algebra

G(l)
N := lim

←−
m

Lie
(

Imφ(l)
N ;m

)

↪→ DerL(l)
N .

When N = 1 we denote it by G(l).

Conjecture 2.1. G(l) is a free Lie algebra with generators indexed by odd integers
≥ 3.

It has been formulated, as a question, by Deligne [3] and Drinfeld [5].

2.2. The weight and depth filtration on L(l)
N

There are two increasing filtrations by ideals on the Lie algebra L(l)
N , indexed by

negative integers.
The weight filtration FW

• . It coincides with the lower central series for L(l)
N :

L(l)
N = FW

−1L
(l)
N ; FW

−n−1L
(l)
N := [FW

−nL
(l)
N ,L(l)

N ] .

The depth filtration FD
• . The natural inclusion

P1\{0, µN ,∞} ↪→ P1\{0,∞}
provides a morphism of the corresponding fundamental Lie algebras

p : L(l)
N −→ L(l)(P1\{0,∞}) = Ql(1) .

Let IN be the kernel of this projection. Its powers give the depth filtration:

FD
0 L

(l)
N = L(l)

N , FD
−1L

(l)
N = IN , FD

−n−1L
(l)
N = [IN ,FD

−nL
(l)
N ] .

These filtrations induce two filtrations on the Lie algebra DerL(l)
N and hence on

the Lie algebra G(l)
N . Thus the associated graded Lie algebra GrG(l)

•• (µN ), which we
call the level N Galois Lie algebra, is bigraded by the weight −w and depth −m.
The weight filtration can be defined by a grading. Moreover one can define it in a
way compatible the depth filtration and the subspace G(l)

N ⊂ DerL(l)
N . Therefore

GrG(l)
•• (µN ) ↪→ Gr••DerL(l)

N .
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2.3. A mysterious correspondence
For any m ≥ 1 there is the depth ≥ −m quotient Galois Lie algebra:

GrG(l)
•,≥−m(µN ) :=

GrG(l)
•,•(µN )

GrG(l)
•,<−m(µN )

. (11)

It is a nilpotent graded Lie algebra of the nilpotence class ≤ m. Let Vm be the
standard m-dimensional representation of GLm. Our key point ([7]-[11]) is that

the structure of Galois
Lie algebra

GrG(l)
•,≥−m(µN )

is related to

geometry of local systems with
fibers S•−mVm over (the closure
of) modular variety Y1(m;N),
which is defined for m > 1 as

Γ1(m;N)\GLm(R)/Om · R∗ .

Both the dual to the Galois Lie algebras (11) and the modular varieties
Y 1(m;N) form inductive systems with respect to m. The correspondence is com-
patible with these inductive structures.

Recall the standard cochain complex of a Lie algebra G

G∨ δ−→ Λ2G∨ δ−→ Λ3G∨ −→ · · ·

where the first differential is dual to the commutator map [, ] : Λ2G −→ G, and the
others are obtained using the Leibniz rule. The condition δ2 = 0 is equivalent to
the Jacobi identity.

For a precise form of this correspondence see section 6. It relates the depth
m, weight w part of the standard cochain complex of the Lie algebra (11) with

(rank m modular complex) ⊗Γ1(m;N)Sw−mVm . (12)

The rank m modular complex is a complex of GLm(Z)-modules constructed purely
combinatorially. It has a geometric realization in the symmetric space Hm :=
GLm(R)/O(m) · R∗, see section 7 and [13]. It is well understood only for m ≤ 4.

2.4. Examples of this correspondence
Strangely enough it is more convenient to describe the structure the bigraded Lie
algebra

Gr̂G(l)
•• (µN ) := GrG(l)

•• (µN )⊕Ql(−1,−1)

where Ql(−1,−1) is a one dimensional Lie algebra of weight and depth −1. Its
motivic or Galois-theoretic meaning is non clear: it should correspond to ζ(1).

a) The depth 1 case. The depth −1 quotient Gr•,−1G(l)
N is an abelian Lie

algebra. Its structure is described by the following theorem.

Theorem 2.2. There is a natural isomorphism of Ql-vector spaces

Hom
(

K2n−1(Z[ζN , N−1]),Ql

)

=−→ Gr−n,−1G(l)
N . (13)
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According to the Borel theorem one has

dimK2n−1(Z)⊗Q =
{

0 n: even
1 n > 1: odd (14)

dimK2n−1(Z[ζN , N−1])⊗Q =
{ ϕ(N)

2 N > 2
1 N = 2

. (15)

Theorem 2.2 for N = 1 is known thanks to Soulé, Deligne [3], and Ihara
[17]. The general case can be deduced from the motivic theory of classical poly-
logarithms developed by Deligne and Beilinson [3, 1]. In the case n = 1 there is
canonical isomorphism justifying the name “higher cyclotomy” for our story:

GrG(l)
−1,−1(µN ) = Hom

(

group of the cyclotomic units in Z[ζN ][ 1
N ], Ql

)

. (16)

The level N modular variety for GL1 is a zero dimensional scheme SN :=
SpecZ[ζN ][ 1

N ]. It has ϕ(N) complex points parametrized by the primitive roots of
unity ζα

N where (α, N) = 1. Our correspondence for m = 1 is given by the natural
isomorphism (where + means invariants under the complex conjugation):

[Q(n− 1)− valued functions on SN ⊗ C]+ =−→ K2n−1(SN )⊗Q
provided by motivic classical polylogarithms: one associates to ζα

N the the cyclo-
tomic element {ζα

N}n ∈ K2n−1(SN ), whose regulator is computed via Lin(ζα
N ).

b) The depth 2 case, N = 1. The structure of the depth ≥ −2 quotient of
the Lie algebra Gr̂G(l)

•,• is completely described by the commutator map

[, ] : Λ2Gr̂G(l)
−1,• −→ GrG(l)

−2,• . (17)

Construction of the dual to complex (17). Look at the classical modular tri-
angulation of the hyperbolic plane H2 where the central ideal triangle has vertices
at 0, 1,∞:

The group GL2(R), acting on C\R by z 7−→ az+b
cz+d commutes, with z 7−→ z. We

let GL2(R) act on H2 by identifying H2 with the quotient of C\R by complex
conjugation. The subgroup GL2(Z) preserves the modular picture. Consider the
chain complex of the modular triangulation placed in degrees [1, 2]:

M∗
(2) := M1

(2) −→ M2
(2) . (18)

It is a complex of GL2(Z)-modules. The group M1
(2) is generated by the triangles,

and M2
(2) by the geodesics. Let ε2 be the one dimensional GL2-module given by

the determinant.

Lemma 2.3. Let Γ be a finite index subgroup of GL2(Z) and V a GL2-module over
Q. Then the complex M∗

(2) ⊗Γ V [1] computes the cohomology H∗(Γ, V ⊗ ε2).
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Theorem 2.4. The depth w part of the dual to complex (17) is canonically isomor-
phic to the complex

(

M∗
(2) ⊗GL2(Z) Sw−2V2

)

⊗Ql . (19)

Motivic version of this theorem was obtained in section 7 of [7]. Its Hodge
side provides a refined version of the story told in section 1.3.

According to the lemma complex (19) computes H∗−1(GL2(Z), Sw−2V2⊗ε2).
Since these cohomology groups are known, we compute the Euler characteristic of
the complex (17) and using theorem 2.2 and formula (14) get the following result,
the l-adic version of theorem 1.4, (see related results of Ihara and Takao in [18]).

Corollary 2.5.

dimGrG(l)
−w,−2 =

{

0 w : odd
[w−2

6

]

w : even . (20)

c) N = p is a prime, w = m = −2. The space GrG(l)
−w,−m(µN ) can be

nonzero only if w ≥ m ≥ 1. We define the diagonal Galois Lie algebra GrG(l)
• (µN )

as the quotient of GrG(l)
•• (µN ) by the components with w 6= m. It is graded by the

weight. The structure of its weight ≥ −2 quotient is described by the commutator
map

[, ] : Λ2Gr̂G(l)
−1,−1(µp) −→ GrG(l)

−2,−2(µp) (21)

Projecting the modular triangulation of the hyperbolic plane onto the modular
curve Y1(p) := Γ1(p)\H2 we get the modular triangulation of Y1(p). The complex
involution acts on the modular curve preserving the triangulation. Consider the
following complex, where + means invariants of the complex involution:

(

the chain complex of the modular triangulation of Y1(p)
)+
⊗Ql . (22)

Theorem 2.6. The dual to complex (21) is naturally isomorphic to complex (22).

In particular there is canonical isomorphism

Ql[triangles of the modular triangulation of Y1(p)]+ =
(

GrG(l)
−2,−2(µp)

)∨
. (23)

Computing the Euler characteristic of the complex (21) using (23) and (16) we get

dimGrG(l)
−2(µp) =

(p− 5)(p− 1)
12

.

Deligne proved [4] that the Hodge-theoretic version of G(l)
N is free when N = 2.

The results above imply that it can not be free for sufficiently big N . For instance
it is not free for a prime N = p if the genus of Y1(p) is positive, i.e. p > 7. Indeed,

the depth ≤ 2 part of H2(G(l)
p ) = H2

(2)(G
(l)
• (µp)) = H1(Γ1(p), ε2) .
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2.5. Our strategy
To describe the structure of the Galois Lie algebras (11) in general we need the
dihedral Lie algebra of the group µN ([10, 11]) recalled in section 4. To motivate
to some extent its definition we turn in section 3 to the Hodge side of higher
cyclotomy. As explained in section 5 both Galois and dihedral Lie algebra of µN

act in a special way on the pronilpotent completion of π1(P1\{0, µN ,∞}, v∞), and
the Galois is contained in the dihedral Lie algebra ([11]). In section 6 we relate
the standard cochain complex of the dihedral Lie algebra of µN with the modular
complex ([10]), whose canonical geometric realization in the symmetric space ([13])
is given in section 7. Thus we related the structure of the Galois Lie algebras with
geometry of modular varieties.

3. Multiple Polylogarithms and higher Cyclotomy

3.1. Definition and iterated integral presentation
Multiple polylogarithms ([8, 7]) are defined as the power series

Lin1,...,nm(x1, . . . , xm) =
∑

0<k1<k2<···<km

xk1
1 xk2

2 · · ·xkm
m

kn1
1 kn2

2 · · · knm
m

(24)

generalizing both the classical polylogarithms Lin(x) (if m = 1) and multiple
ζ-values (if x1 = · · · = xm = 1). These series are convergent for |xi| < 1.

Recall a definition of iterated integrals. Let ω1, . . . , ωn be 1-forms on a man-
ifold M and γ : [0, 1] → M a path. The iterated integral

∫

γ ω1 ◦ · · · ◦ ωn is defined
inductively:

∫

γ
ω1 ◦ · · · ◦ ωn :=

∫ 1

0
(
∫

γt

ω1 ◦ · · · ◦ ωn−1)γ∗ωn . (25)

Here γt is the restriction of γ to the interval [0, t] and
∫

γt
ω1◦· · ·◦ωn−1 is considered

as a function on [0, 1]. We multiply it by the 1-form γ∗t ωn and integrate.
Denote by In1,...,nm(a1 : · · · : am : am+1) the iterated integral

∫ am+1

0

dt
a1 − t

◦ dt
t
◦ · · · ◦ dt

t
︸ ︷︷ ︸

n1 times

◦ · · · ◦ dt
am − t

◦ dt
t
◦ · · · ◦ dt

t
.

︸ ︷︷ ︸

nm times

(26)

Its value depends only on the homotopy class of a path connecting 0 and am+1 on
C∗\{a1, . . . , am}. Thus it is a multivalued analytic function of a1, . . . , am+1. The
following result provides an analytic continuation of multiple polylogarithms.

Theorem 3.1. Lin1,...,nm(x1, . . . , xm) = In1,...,nm(1 : x1 : x1x2 : · · · : x1 · · ·xm).

The proof is easy: develop dt/(ai − t) into a geometric series and integrate.
If xi = 1 we get the Kontsevich formula. In particular in the depth one case we
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recover the classical Leibniz presentation for ζ(n):

ζ(n) =
∫ 1

0

dt
1− t

◦ dt
t
◦ · · · ◦ dt

t
.

︸ ︷︷ ︸

n times

(27)

3.2. Multiple polylogarithms at roots of unity
Let Z≤w(N) be the Q-vector space spanned by the numbers

Lin1,...,nm(ζα1
N , . . . , ζαm

N ) := (2πi)−wLin1,...,nm(ζα1
N , . . . , ζαm

N ); ζN := e2πi/N .
(28)

Here we may take any branch of Lin1,...,nm(x1, . . . , xm). Similarly to (3) the space
Z(N) := ∪Z≤w(N) is an algebra bifiltred by the weight and by the depth. We
want to describe this algebra and its associate graded for the weight and depth
filtrations. Let us start from some relations between these numbers. Notice that

Li1(ζα
N ) = − log(1− ζα

N )

so the simplest case of this problem reduces to theory of cyclotomic units. By the
Bass theorem all relations between the cyclotomic units 1 − ζα

N follow from the
distribution relations and symmetry under α → −α valid modulo roots of unity.

3.3. Relations
The double shuffle relations. Consider the generating series

Li(x1, . . . , xm|t1, . . . , tm) :=
∑

ni≥1

Lin1,...,nm(x1, . . . , xm)tn1−1
1 · · · tnm−1

m .

Let Σp,q be the subset of permutations of p + q letters {1, . . . , p + q} consisting of
all shuffles of {1, . . . , p} and {p + 1, . . . , p + q}. Similarly to (2) multiplying power
series (24) we immediately get

Li(x1, . . . , xp|t1, . . . , tp) · Li(xp+1, . . . , xp+q|tp+1, . . . , tp+q) =

=
∑

σ∈Σp,q

Li(xσ(1), . . . , xσ(p+q)|tσ(1), . . . , tσ(p+q)) + lower depth terms . (29)

To get the other set of the relations we multiply iterated integrals (26), and use
theorem 3.1 plus the following product formula for the iterated integrals:

∫

γ
ω1 ◦ · · · ◦ ωp ·

∫

γ
ωp+1 ◦ · · · ◦ ωp+q =

∑

σ∈Σp,q

∫

γ
ωσ(1) ◦ · · · ◦ ωσ(p+q) . (30)

For example the simplest case of formula (30) is derived as follows:
∫ 1

0
f1(t)dt ·

∫ 1

0
f2(t)dt =

(

∫

0≤t1≤t2≤1
+

∫

0≤t2≤t1≤1

)

f1(t1)f2(t2)dt1dt2 .

It is very similar in spirit to the derivation (3) of formula (2).
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To get nice formulas consider the generating series

I∗(a1 : · · · : am : am+1|t1, . . . , tm) :=
∑

ni≥1

In1,...,nm(a1 : · · · : am : am+1)tn1−1
1 (t1 + t2)n2−1· · · (t1 + · · ·+ tm)nm−1 . (31)

Theorem 3.2.

I∗(a1 : · · · : ap : 1|t1, . . . , tp) · I∗(ap+1 : · · · : ap+q : 1|tk+1, . . . , tp+q) =

=
∑

σ∈Σp,q

I∗(aσ(1), . . . , aσ(p+q) : 1|tσ(1), . . . , tσ(p+q)) . (32)

A sketch of the proof It is not hard to prove the following formula

I∗(a1 : · · · : am : 1|t1, . . . , tm) =
∫ 1

0

s−t1

a1 − s
ds ◦ · · · ◦ s−tm

am − s
ds . (33)

The theorem follows from this and product formula (30) for the iterated integrals.
For multiple ζ’s these are precisely the relations of Zagier, who conjectured

that, properly regularized, they provide all the relations between the multiple ζ’s.
Distribution relations. From the power series expansion we immediately get

Proposition 3.3. If |xi| < 1 and l is a positive integer then

Li(x1, . . . , xm|t1, . . . , tm) =
∑

yl
i=xi

Li(y1, . . . , ym|lt1, . . . , ltm) . (34)

If N > 1 the double shuffle plus distribution relations do not provide all
relations between multiple polylogarithms at N -th roots of unity. However I con-
jecture they do give all the relations if N is a prime and we restrict to the weight
= depth case.

3.4. Multiple polylogarithms at roots of unity and the cyclotomic Lie algebras
Denote by UC• the universal enveloping algebra of a graded Lie algebra C•. Let
UC∨• be its graded dual. It is a commutative Hopf algebra.

Conjecture 3.4. a) There exists a graded Lie algebra C•(N) over Q such that one
has an isomorphism Z(N) = UC•(N)∨ of filtered by the weight on the left
and by the degree on the right algebras.

b) H1
(n)(C•(N)) = K2n−1(Z[ζN ][ 1

N ])⊗Q.

c) C•(N)⊗Ql = G(l)
N as filtered by the weight Lie algebras.

Here H(n) is the degree n part of H. Notice that H1
(n)(C•(N)) is dual to the

space of degree n generators of the Lie algebra C•(N).

Examples 3.5. i) If N = 1 the generators should correspond to ζ(2n + 1).
ii) If N > 1 the generators should correspond Lin(ζα

N ) where (α, N) = 1.

A construction of the Lie algebra C•(N) using the Hodge theory see in [9].
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3.5. The coproduct
The iterated integral

I(a0; a1, . . . , am; am+1) :=
∫ am+1

a0

dt
t− a1

◦ · · · ◦ dt
t− am

(35)

provides a framed mixed Hodge-Tate structure, denote by IH(a0; a1,. . ., am; am+1),
see [8, 9]. The set of equivalence classes of framed mixed Hodge-Tate structures
has a structure of the graded Hopf algebra over Q with the coproduct ∆.

Theorem 3.6. For the framed Hodge-Tate structure corresponding to (35) we have:

∆IH(a0; a1, a2, . . . , am; am+1) =

=
∑

0=i0<i1<···<ik<ik+1=m

IH(a0; ai1 , . . . , aik ; am+1)⊗
k

∏

p=0

IH(aip ; aip+1, . . . , aip+1−1; aip+1)

(36)

This formula also provides an explicit description of the variation of mixed
Hodge-Tate structures whose period function is given by (35), see [9, 14]. Special-
izing it we get explicit formulas for the coproduct of all multiple polylogarithms
(26). When ai are N -th roots of unity and the lower depth terms are suppressed
the result has a particular nice form. It is described, in an axiomatized form of the
coproduct for dihedral Lie algebras, in the next section.

4. The Dihedral Lie Coalgebra of a Commutative Group G

Let G and H be two commutative groups or, better, commutative group schemes.
Then, generalizing a construction given in [10, 11] one can define a graded Lie
coalgebra D•(G|H), called the dihedral Lie coalgebra of G and H ([14]). In the
special case when H = SpecQ[[t]] is the additive group of the formal line it is a
bigraded Lie coalgebra D••(G) called the dihedral Lie coalgebra of G. (The second
grading is coming from the natural filtration on Q[[t]]). We recall its definition
below. The construction of D•(G|H) is left as an easy exercise.

4.1. Formal definitions ([10, 11])
Let G be a commutative group. We will define a bigraded Lie coalgebra D••(G) =
⊕w≥m≥1Dw,m(G). The Q-vector space Dw,m(G) is generated by the symbols

In1,...,nm(g1 : · · · : gm+1) , w = n1 + · · ·+ nm, ni ≥ 1 . (37)

To define the relations we introduce the generating series

{g1 : · · · : gm+1|t1 : · · · : tm+1} :=
∑

ni>0

In1,...,nm(g1 : · · · : gm+1)(t1 − tm+1)n1−1 · · · (tm − tm+1)nm−1 . (38)
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We will also need two other generating series:

{g1 : · · · : gm+1|t1, . . . , tm+1} := {g1 : · · · : gm+1|t1 : t1 + t2 : · · · : t1 + · · ·+ tm : 0}
(39)

where t1 + · · ·+ tm+1 = 0, and

{g1, . . . , gm+1|t1 : · · · : tm+1} := {1 : g1 : g1g2 : · · · : g1 · · · gm|t1 : · · · : tm+1} (40)

where g1 · · · · · gm+1 = 1.

4.2. Relations
i) Homogeneity. For any g ∈ G one has

{g · g1 : · · · : g · gm+1|t1 : · · · : tm+1} = {g1 : · · · : gm+1|t1 : · · · : tm+1} . (41)

(Notice that the homogeneity in t is true by the very definition (38)).
ii) The double shuffle relations (p + q = m, p ≥ 1, q ≥ 1).

∑

σ∈Σp,q

{gσ(1) : · · · : gσ(m) : gm+1|tσ(1), . . . , tσ(m), tm+1} = 0, (42)

∑

σ∈Σp,q

{gσ(1), . . . , gσ(m), gm+1|tσ(1) : · · · : tσ(m) : tm+1} = 0 . (43)

iii) The distribution relations. Let l ∈ Z. Suppose that the l-torsion subgroup Gl

of G is finite and its order is divisible by l. Then if x1, . . . , xm are l-powers

{x1 : · · · : xm+1|t1 : · · · : tm+1}−

− 1
|Gl|

∑

yl
i=xi

{y1 : · · · : ym+1|l · t1 : · · · : l · tm+1} = 0

except the relation I1(e : e) =
∑

yl=e I1(y : e) which is not supposed to hold.
iv) I1(e : e) = 0.

Denoted by ̂D••(G) the bigraded space defined just as above except condition
iv) is dropped, so ̂D••(G) = D••(G)⊕Q(1,1) where Q(1,1) is of bidgree (1, 1).

Theorem 4.1. (See theorem 3.1 in [11]. If m ≥ 2 the double shuffle relations imply
the dihedral symmetry relations, which include the cyclic symmetry

{g1 : g2 : ... : gm+1|t1 : t2 : ... : tm+1} = {g2 : ... : gm+1 : g1|t2 : ... : tm+1 : t1}

the reflection relation

{g1 : ... : gm+1|t1 : ... : tm+1} = (−1)m+1{gm+1 : ... : g1| − tm : ... : −t1 : −tm+1}

and the inversion relations

{g1 : ... : gm+1|t1 : ... : tm+1} = {g−1
1 : ... : g−1

m+1| − t1 : ... : −tm+1}
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4.3. Pictures for the definitions
We think about generating series (38) as a function of m + 1 pairs (g1, t1), . . . ,
(gm+1, tm+1) located cyclically on an oriented circle as follows. The oriented circle
has slots, where the g’s sit, and in between the consecutive slots, dual slots, where
t’s sit:

.
.

..
.

g

g

gg

g

t

t

t

t

t

1 1

2

2

3

3
4

4

5

5

{ g 1 :  ...  :  g 1 ...t t 5 }5 : :

To make definitions (39) and (40) more transparent set g′i := g−1
i gi+1,

t′i := −ti−1 + ti and put them on the circle together with g’s and t’s as follows:

. . .g

g gt

gtgt

t t
1

1

. . .
...

3

32

21

1 2

2

Then it is easy to check that

{g1 : · · · : gm+1|t1 : · · · : tm+1} = {g1 : · · · : gm+1|t′1, . . . , t′m+1} =

= {g′1, . . . , g′m+1|t1 : · · · : tm+1} . (44)

To picture any of three generating series (44) we leave on the circle only the two
sets of variables among g’s, g′’s, t’s, t′’s which appear in this generating series:

.
.

.

.
.

.

g

g

g

t

t

t

1

2

3

1

2

3

t1

t3

t2

g1

g3 g2

{ g 1 :  g2 :  g3 1 , t 2, t3 } {g1, g ,2 g3t t1 : t2 : t3 }

The “{:}”-variables are outside, and the “{, }”-variables are inside of the circle.

4.4. Relation with multiple polylogarithms when G = µN
Theorem 4.2. There is a well defined homomorphism of the Q-vector spaces

Dw,m(µN ) −→ GrW,D
w,mPZ(N)

defined on the generators by

In1,...,nm(a1 : a2 : · · · : am+1) −→ (2πi)−wintegral (26) . (45)
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Here we consider iterated integrals (26) modulo the lower depth integrals
and products of similar integrals. Formula (40) reflects theorem 3.1. Formula (39)
reflects definition (31) of the generating series I∗. The shuffle relations (42) (resp.
(43)) correspond to relations (29) (resp. (32)).

Remark 4.3. Notice an amazing symmetry between g’s and t’s in the generating
series (44), completely unexpected from the point of view of iterated integrals (26).

4.5. The cobracket δ : D••(G) −→ Λ2D••(G)
It will be defined by

δ{g1 : · · · : gm+1|t1 : · · · : tm+1} =

= −
m

∑

k=2

Cyclem+1 ({g1 : · · · : gk−1 : gk|t1 : · · · : tk−1 : tm+1}

∧{gk : · · · : gm+1|tk : · · · : tm+1})

(46)

where indices are modulo m + 1 and Cyclem+1f(v1, . . . , vm) :=
∑m+1

i=1 f(vi, . . . ,
vi+m).

Each term of the formula corresponds to the following procedure: choose a
slot and a dual slot on the circle. Cut the circle at the chosen slot and dual slot
and make two oriented circles with the data on each of them obtained from the
initial data. It is useful to think about the slots and dual slots as of little arcs,
not points, so cutting one of them we get the arcs on each of the two new circles
marked by the corresponding letters. The formula reads as follows:

δ(46) = −
∑

cuts

(start at the dual slot) ∧ (start at the slot)

.
.

..
.

.

..

.

.

.

.
−

g

g

gg

g

g g

g g

g

t

t

t

t

t

t

t

t

t

t

t

1 1

2

2

334

4

5

5 1

2
2

3

5

3

3

4

4

5

5

g1

Theorem 4.4. There exists unique map δ : D••(G) −→ Λ2D••(G) for which (46)
holds, providing a bigraded Lie coalgebra structure on D••(G).

A similar result is true for ̂D••(G). Moreover there is an isomorphism of
bigraded Lie algebras ̂D••(G) = D••(G)⊕Q(1,1).

5. The Dihedral Lie Algebra of µN and Galois Action on π(l)
1 (XN)

5.1. Constraints on the image of the Galois group
Recall the homomorphism

φ(l)
N : Gal(Q/Q) −→ AutL(l)

N (47)
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It has the following properties.

i) The action of µN . The group µN acts on XN by z 7−→ ζNz. This action does
not preserve the base vector v∞. However one can define an action of µN on
π(l)

1 (XN , v∞)⊗Ql, and hence on L(l)(XN ), commuting with the action of the
Galois group GQ(ζl∞N ) [11].

ii) “Canonical generator” at ∞. Recall the projection

L(l)(XN ) −→ L(l)(Gm) = Zl(1) (48)

Let X be a regular curve over Q, X the corresponding projective curve and
v a tangent vector at x ∈ X. Then there is a natural map of Galois modules
([D]):

Zl(1) = π(l)
1 (TxX\0, v) −→ π(l)

1 (X, v)

For X = Gm, x = ∞, v = v∞ it is an isomorphism. So for X = XN it provides
a splitting of (48):

X∞ : Zl(1) = L(l)(Gm) ↪→ L(l)(XN ) (49)

iii) Special equivariant generators for L(l)
N . For topological reasons there are well

defined conjugacy classes of “loops around 0 or ζ ∈ µN” in π1(XN , v∞).
It turns out that there are µN -equivariant representatives of these classes
providing a set of the generators for the Lie algebra L(l)

N :

Lemma 5.1. There exist maps X0, Xζ : Ql(1) −→ L(l)
N which belong to the conju-

gacy classes of the “loops around 0, ζ” such that X0 +
∑

ζ∈µN
Xζ + X∞ = 0 and

the action of µN permutes Xζ ’s (i.e. ξ∗Xζ = Xξζ) and fixes X0, X∞.

To incorporate these constraints we employ a more general set up.

5.2. The Galois action and special equivariant derivations
Let G be a commutative group written multiplicatively. Let L(G) be the free
Lie algebra with the generators Xi where i ∈ {0} ∪ G (we assume 0 6∈ G). Set
X∞ := −X0 −

∑

g∈G Xg.
A derivation D of the Lie algebra L(G) is called special if there are elements

Si ∈ L(G) such that

D(Xi) = [Si, Xi] for any i ∈ {0} ∪G, and D(X∞) = 0 . (50)

The special derivations of L(G) form a Lie algebra, denoted DerSL(G). Indeed, if
D(Xi) = [Si, Xi], D′(Xi) = [S′i, Xi], then

[D, D′](Xi) = [S′′i , Xi], where S′′i := D(S′i)−D′(Si) + [S′i, Si] . (51)

The group G acts on the generators by h : X0 7−→ X0, Xg 7−→ Xhg. So it acts
by automorphisms of the Lie algebra L(G). A derivation D of L(G) is called
equivariant if it commutes with the action of G. Let DerSEL(G) be the Lie algebra
of all special equivariant derivations of the Lie algebra L(G).
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Denote by L(µN ) the pronilpotent completion of the Lie algebra L(µN ).
Lemma 5.1 provides a (non canonical) isomorphism L(µN )⊗Ql −→ L(l)

N . Then it
follows that G(l)

N acts by special equivariant derivations of the Lie algebra L(l)
N , i.e.

G(l)
N ↪→ DerSEL(l)

N . (52)

5.3. Incorporating the two filtrations
The Lie algebra L(G) is bigraded by the weight and depth. Namely, the free
generators X0, Xg are bihomogeneous: they are of weight −1, X0 is of depth 0
and the Xg’s are of depth −1. Each of the gradings induces a filtration of L(G).

The Lie algebra DerL(G) is bigraded by the weight and depth. Its Lie subalge-
bras DerSL(G) and DerSEL(G) are compatible with the weight grading. However
they are not compatible with the depth grading. Therefore they are graded by the
weight, and filtered by the depth. A derivation (50) is of depth −m if each Sj mod
Xj is of depth −m, i.e. there are at least m Xi’s different from X0 in Sj mod Xj .
The depth filtration is compatible with the weight grading. Let GrDerSE

•• L(G) be
the associated graded for the depth filtration.

Consider the following linear algebra situation. Let W•L be a filtration on
a vector space L. A splitting ϕ : GrW L −→ L of the filtration leads to an iso-
morphism ϕ∗ : End(L) −→ End(GrW L). The space End(L) inherits a natural
filtration, while End(GrW L) is graded. The map ϕ∗ respects the corresponding
filtrations. The map Grϕ∗ : GrW (EndL) −→ End(GrW L) does not depend on the
choice of the splitting. Therefore if L = LN we get a canonical isomorphism

GrW (DerSELN ) ∼= DerSEL(µN ) (53)

respecting the weight grading. Thus there is a canonical injective morphism

GrG(l)
•• (µN ) ↪→ GrDerSE

•• L
(l)
N

∼= GrDerSE
•• L(µN )⊗Ql . (54)

The Lie algebra G(l)
N is isomorphic to GrW

• G
(l)
N , but this isomorphism is not

canonical. The advantage of working with GrW
• G

(l)
N is that, via isomorphism (53),

it became a Lie subalgebra of DerSEL(µN ) ⊗ Ql, which has natural generators
provided by the canonical generators of L(µN ). This gives canonical “coordinates”
for description of GrW

• G
(l)
N . The benefit of taking its associated graded for the

depth filtration is an unexpected relation with the geometry of modular varieties
for GLm, where m is the depth.

5.4. Cyclic words and special differentiations ([5, 19])
Denote by A(G) the free associative algebra generated by elements Xi where i ∈
{0} ∪ G. Let C(A(G)) := A(G)/[A(G), A(G)] be the space of cyclic words in Xi.
Consider a map of linear spaces ∂Xi : C(A(G)) −→ A(G) given on the generators
by the following formula (the indices are modulo m):

∂XjC(Xi1 · · ·Xim) :=
∑

Xik=Xj

Xik+1 · · ·Xik+m−1 .



Multiple ζ-Values, Galois Groups and Geometry of Modular Varieties 19

For example ∂X1C(X1X2X1X2
2 ) = X2X1X2

2 + X2
2X1X2.

Define special derivations just as in (50), but with Si ∈ A(G). There is a map

κ : C(A(G)) −→ DerSA(G), κC(Xi1 . . . Xim)(Xj) := [∂XjC(Xi1 , . . . , Xim), Xj ] .

It is easy to check that it is indeed a special derivation. Denote by ˜C(A(G)) the
quotient of C(A(G)) by the subspace generated by the monomials Xn

i . Then one
can show that the map κ provides an isomorphism of vector spaces

κ : ˜C(A(G)) −→ DerSA(G) .

5.5. The dihedral Lie algebra as a Lie subalgebra of special equivariant derivations
Let G be a finite commutative group. We will use a notation Y for the generator
X0 of A(G). So {Y, Xg} are the generators of the algebra A(G). Set

C(Xg0Y
n0−1 · · · · ·XgmY nm−1)G :=

∑

h∈G

C(Xhg0Y
n0−1 · · · · ·XhgmY nm−1) .

Consider the following formal expression:

ξG :=
∑ 1

|AutC|
In0,...,nm(g0 : · · · : gm)⊗ C(Xg0Y

n0−1 · · · · ·XgmY nm−1)G (55)

where the sum is over all G-orbits on the set of cyclic words C in Xg, Y . The weight
1/|AutC| is the order of automorphism group of the cyclic word C.

Applying the map Id⊗Gr(κ) we get a bidegree (0, 0) element

ξG ∈ D••(G)̂⊗QGrDerSE
•• A(G) .

Let D−w,−m(G) = Dw,m(G)∨. Then D••(G) := ⊕w,m≥1D−w,−m(G) is a bigraded
Lie algebra. Consider ξG as a map of bigraded spaces:

ξG ∈ HomQ−V ect(D••(G), GrDerSE
•• A(G)) . (56)

Notice that GrDerSE
•• L(G) is a Lie subalgebra of GrDerSE

•• A(G).

Theorem 5.2. The map ξG provides an injective Lie algebra morphism

ξG : D••(G)↪→GrDerSE
•• L(G) . (57)

Theorem 5.3. GrG(l)
•• (µN ) ↪→ ξµN (D••(µN ))⊗Q Ql.

If G is a trivial group we set D•• := D••({e}), and ξ := ξ{e}. Denote by
D•(G) the quotient of D••(G) by the components with w 6= m.

Conjecture 5.4. a) One has ξ(D••)⊗Ql = GrG(l)
•• .

b) Let p be a prime number. Then ξµp(D•(µp)) = GrG(l)
• (µp).

Summarizing we see the following picture: both Lie algebras D••(µN ) and
GrG(l)

•• (µN ) are realized as Lie subalgebras of the Lie algebra of special equivariant
derivations GrDerSE

•• L(G). The (image of) dihedral Lie algebra contains the (image
of) Galois. Hypothetically they coincide when N = 1, or when weight=depth and
N is prime. In general the gap between them exists, but should not be big.
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Theorem 5.5. Conjecture 5.4 is true for m = 1, 2, 3.

The proof of this theorem is based on the following two ideas: the standard
cochain complex of D••(µN ) is related to the modular complex, and the modular
complex has a geometric realization. We address them in the last two sections.

6. Modular Complexes and Galois Symmetries of π(l)
1 (XN)

6.1. The modular complexes

Let Lm be a rank m lattice. The rank m modular complex M•(Lm) = M•
(m) is a

complex of GLm(Z)-modules

M1
(m)

∂−→ M2
(m)

∂−→ ... ∂−→ Mm
(m)

If m = 2 it is isomorphic to complex (18). In general it is defined as follows.
i) The group M1

(m). An extended basis of a lattice Lm is an (m + 1)-tuple of
vectors v1, ..., vm+1 of the lattice such that v1 + ... + vm+1 = 0 and v1, ..., vm is a
basis. The extended basis form a principal homogeneous space over GLm(Z).

The abelian group M1(Lm) = M1
(m) is generated by extended basis. Denote

by < e1, ..., em+1 > the generator corresponding to the extended basis e1, ..., em+1.
Let u1, ..., um+1 be elements of the lattice Lm such that the set of elements

{(ui, 1)} form a basis of Lm⊕Z. The lattice Lm acts on such sets by l : {(ui, 1)} 7−→
{(ui + l, 1)}. We call the coinvariants of this action homogeneous affine basis of
Lm and denote them by {u1 : ... : um+1}.

To list the relations we need another sets of the generators corresponding to
the homogeneous affine basis of Lm (compare with (39):

< u1 : ... : um+1 >:=< u′1, u
′
2, ..., u

′
m+1 >; u′i := ui+1 − ui

We will also employ the notation

[v1, ..., vk] :=< v1, ..., vk, vk+1 >, v1 + ... + vk + vk+1 = 0

Relations. One has < v,−v >=< −v, v >. For any 1 ≤ k ≤ m, m ≥ 2 one has
(compare with (42) - (43)):

∑

σ∈Σk,m−k

< vσ(1), ..., vσ(m), vm+1 > = 0 (58)

∑

σ∈Σk,m−k

< uσ(1) : ... : uσ(m) : um+1 > = 0 (59)

ii) The group Mk
(m). It is the sum of the groups M1(L1) ∧ · · · ∧M1(Lk) over

all unordered lattice decompositions Lm = L1 ⊕ · · · ⊕ Lk. Thus it is generated by
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the elements [A1] ∧ · · · ∧ [Ak] where Ai is a basis of the sublattice Li and [Ai]’s
anticommute. Define a map ∂ : M1

(m) −→ M2
(m) by setting (compare with (46))

∂ : < v1, . . . , vm+1 > 7−→ −Cyclem+1

(
m−1
∑

k=1

[v1, . . . , vk] ∧ [vk+1, . . . , vm]
)

where indices are modulo m + 1. We get the differential in M•
(m) by Leibniz’ rule:

∂([A1] ∧ [A2] ∧ . . . ) := ∂([A1]) ∧ [A2] ∧ · · · − [A1] ∧ ∂([A2]) ∧ · · ·+ · · · .

6.2. The modular complexes and the cochain complex of D••(µN)
Denote by Λ∗(m,w)D••(µN ) the depth m, weight w part of the standard cochain
complex of the Lie algebra D••(µN ).

Theorem 6.1. a) For m > 1 there exists canonical surjective map of complexes

µ∗m;w : M∗
(m) ⊗Γ1(m;N) Sw−mVm −→ Λ∗(m,w)D••(µN ) . (60)

b) Let N = 1, or N = p is a prime and w = m. Then this map is an isomorphism.

The map (60) was defined in [10]. Here is the definition when w = m. Notice
that

M∗
(m) ⊗Γ1(m;N) Q = M∗

(m) ⊗GLm(Z) Z[Γ1(m; N)\GLm(Z)] .

The set Γ1(m;N)\GLm(Z) is identified with the set {(α1, . . . , αm)} of all nonzero
vectors in the vector space over Z/pZ. Then

µ1
m;m : [v1, . . . , vm]⊗ (α1, . . . , αm) −→ I1,...,1(ζα1

N , . . . , ζαm
N ) .

The other components µ∗m;m are the wedge products of the maps µ1
k;k.

6.3. Modular complexes and cochain complexes of Galois Lie algebras
Combining theorems 6.1a) and 5.3 we get a surjective map of complexes

M∗
(m) ⊗Γ1(m;N) Sw−mVm −→ Λ∗(−m,−w)GrG(l)

•• (µN ) . (61)

So using theorem 6.1b) we reformulate conjecture 5.4 as follows:

Conjecture 6.2. Let N = 1, or N = p is a prime and w = m. Then the map (61)
is an isomorphism.

According to theorem 5.3 the cochain complex of D••(µN ) projects onto the
cochain complex of the level N Galois Lie algebra. Combining this with theo-
rem 5.5 (and conjecture 6.2) we describe the structure of the Galois Lie algebras
via the modular complexes. Since the modular complexes are defined very explic-
itly this leads to a precise description of Galois Lie algebras. However to get the
most interesting results about them we need the geometric realization of modular
complexes, which allows to express the structure of the Galois Lie algebra in terms
of the geometry and topology of modular varieties.



22 A. B. Goncharov

7. Geometric Realization of Modular Complexes in Symmetric
Spaces

As was emphasized before the rank m modular complex is purely combinatorial
object. Surprisingly it has a canonical realization in the symmetric space Hn. In
the simplest case m = 2 it identifies the rank two modular complex with the chain
complex of the modular triangulation of the hyperbolic plane.

7.1. Voronoi’s cell decomposition of the symmetric space for GLm(R)
Let

Hm := GLm(R)/O(m) · R∗ =
> 0 definite quadratic forms on V ∗

m

R∗+
Let Lm ⊂ Vm be a lattice. Any vector v ∈ Vm defines a nonnegative definite qua-
dratic form ϕ(v) :=< v, · >2 on V ∗

m. The convex hull of the forms ϕ(l), when l runs
through all non zero primitive vectors of the lattice Lm, is an infinite polyhedra.
Its projection into the closure of Hm defines a polyhedral decomposition of Hm

invariant under the symmetry group of the lattice Lm.

Example 7.1. If m = 2 we get the modular triangulation of the hyperbolic plane.

Denote by (V (m)
• , d) the chain complex of the Voronoi decomposition.

7.2. The relaxed modular complex

Consider a version ̂M•
(m) of the modular complex, called the relaxed modular

complex, where the group ̂M1
(m) is defined using the same generators [v1, . . . , vm]

satisfying only the first shuffle relations (58) and the dihedral symmetry relations

< v2, . . . , vm+1, v1 >=< v1, . . . , vm+1 >= (−1)m+1 < vm+1, . . . , v1 > .

The other groups are defined in a similar way. The differential is as before.

7.3. The geometric realization map
Denote by ϕ(v1, . . . , vk) the convex hull of the forms ϕ(v1), . . . , ϕ(vk) in the space
of quadratic forms. Let v1, . . . , vn1 and vn1+1, . . . , vn1+n2 be two sets of lattice
vectors such that the lattices they generate have zero intersection. Define the join
∗ by

ϕ(v1, . . . , vn1) ∗ ϕ(vn1+1, . . . , vn1+n2) := ϕ(v1, . . . , vn1+n2)

and extend it by linearity. Make a homological complex ̂M (m)
• out of ̂M•

(m) by

̂M (m)
i := ̂M2m−1−i

(m) .

Theorem 7.2. There exists a canonical morphism of complexes

̂ψ(m)
• : ̂M (m)

• −→ V (m)
• such that

̂ψ(m)
•

(

[A1] ∧ · · · ∧ [Ak]
)

:= ̂ψ(m)
• ([A1]) ∗ · · · ∗ ̂ψ(m)

• ([Ak]) . (62)
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In particular ̂ψ(m)
m−1

(

[v1] ∧ · · · ∧ [vm]
)

= ϕ(v1, . . . , vm).

To define such a morphism ̂ψ(m)
• one needs only to define ̂ψ(m)

2m−2([v1, . . . , vm])
for vectors v1, . . . , vm forming a basis of the lattice Lm in such a way that the
dihedral and the first shuffle relations go to zero and

d ̂ψ(m)
2m−2([v1, . . . , vm]) = ̂ψ(m)

2m−3(∂[v1, . . . , vm])

where the right hand side is computed by (62) and the formula for ∂.

7.4. Construction of the map ̂ψ(m)
2m−2

A plane tree is a tree without self intersections located on the plane. The edges of
a tree consist of legs (external edges) and internal edges. Choose a lattice Lm. A
colored tree is a plane tree whose legs are in a bijective correspondence with the
elements of an affine basis of the lattice Lm. In particular a colored 3-valent tree
has 2m− 1 edges. We visualize it as follows:

e

e

e

e

e

0

1 2

3

4

.

.

.

The vectors e0, . . . , em of an affine basis are located cyclically on an oriented circle
and the legs of the tree end on the circle and labelled by e0, . . . , em. (The circle
itself is not a part of the graph).

Construction. Each edge E of the tree T provides a vector fE ∈ Lm defined
up to a sign. Namely, the edge E determines two trees rooted at E, see the picture

E

The union of the incoming (i.e. different from E) legs of these rooted trees
coincides with the set of all legs of the initial tree. Take the sum of all the vectors
ei corresponding to the incoming legs of one of these trees. Denote it by fE . If
we choose the second rooted tree the sum will change the sign. So the degenerate
quadratic form ϕ(fE) is well defined. Set

̂ψ(m)
2m−2(< e0, e1, . . . , em >) :=

∑

plane 3-valent trees

sgn(E1 ∧ · · · ∧ E2m−1) · ϕ(fE1 , . . . , fE2m−1) (63)

Here the sum is over all plane 3-valent trees colored by e0, . . . , em. The sign is
defined as follows. Let V (E) be the R-vector space generated by the edges of a tree.
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An orientation of a tree is a choice of the connected component of det(V (E))\0. A
plane 3-valent tree has a canonical orientation. Indeed, the orientation of the plane
provides orientations of links of each of the vertices. The sign in (63) is taken with
respect to the canonical orientation of the plane 3-valent tree. Then one proves
([13]) that this map has all the required properties, so we get theorem 7.2.

Examples 7.3. a) For m = 2 there is one plane 3-valent tree colored by e0, e1, e2,
so we get a modular triangle ϕ(e0, e1, e2) on the hyperbolic plane. The geometric
realization in this case leads to an isomorphism of competes M (2)

• −→ V (2)
• :

[e1, e2] 7−→ ϕ(e0, e1, e2); [e1] ∧ [e2] 7−→ ϕ(e1) ∗ ϕ(e2) = ϕ(e1, e2)

b) Let fij := ei + ej. For m = 3 there are two plane 3-valent trees colored by
e0, e1, e2, e3, see the picture, so the chain is

̂ψ(3)
4 ([e1, e2, e3]) := ϕ(e0, e1, e2, e3, f01)− ϕ(e0, e1, e2, e3, f12)

e e

e
e

e e

e e

e

e

e

0 0 0
3

3

211 2 1 2

m=2 m=3

The symmetric space H3 has dimension 5. The Voronoi decomposition con-
sists of the cells of dimensions 5, 4, 3, 2. All Voronoi cells of dimension 5 are GL3(Z)-
equivalent to the Voronoi simplex ϕ(e0, e1, e2, e3, f01, f12). The map ̂ψ(3)

4 sends the
second shuffle relation (58) to the boundary of a Voronoi 5-simplex.

Theorem 7.4. The geometric realization map provide quasiisomorphisms

M (3)
• −→ τ[4,2](V

(3)
• ); M (4)

• −→ τ[6,3](V
(4)
• ) .

7.5. Some corollaries
a) Let N = p be a prime. Take the geometric realization of the rank 3 relaxed

modular complex. Project it onto the modular variety Y1(3; p). Take the quo-
tient of the group of the 4-chains generated by ̂ψ(3)

4 (v1, v2, v3) on Y1(3; p) by the
subgroup generated by the boundaries of the Voronoi 5-cells. Then the complex
we get is canonically isomorphic to the depth=weight 3 part of the standard
cochain complex of the level p Galois Lie algebra. Therefore

Hi
(3)(Gr̂G(l)

• (µp)) = Hi(Γ1(3; p)) i = 1, 2, 3 .

In particular we associate to each of the numbers Li1,1,1(ζα1
p , ζα2

p , ζα3
p ), or to the

corresponding Hodge, l-adic or motivic avatars of these numbers, a certain 4-
cell on the 5-dimensional orbifold Y1(3; p). The properties of the framed motive
encoded by this number, like the coproduct, can be read from the geometry of
this 4-cell.
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Similarly the map ̂ψ(m)
2m−2 provides a canonical (2m − 2)-cell on Y1(m; p)

which “knows everything” about the framed motive with the period Li1,...,1

(ζα1
p , . . . , ζαm

p ).
b) N = 1. Theorems 5.5, 6.1a) and 7.4 lead to the following

Theorem 7.5.

dimGrG(l)
−w,−3 =

{

0 w : even
[

(w−3)2−1
48

]

w : odd . (64)

Since, according to standard conjectures, this number should coincide with
dw,3 the estimate given in theorem 1.4 should be exact.
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