
A Study of Iteration Formulas for Root
Finding, Where Mathematics, Computer
Algebra and Software Engineering Meet

Gaston H. Gonnet

Abstract. For various reasons, including speed code simplicity and symbolic
approximation, it is still very interesting to analyze simple iteration formulas
for root finding. The classical analysis of iteration formulas concentrates on
their convergence near a root. We find experimentally, that this information is
almost useless. The (apparently) random walk followed by iteration formulas
before reaching convergence is the dominating factor in their performance.
We study a set of 29 iteration formulas from a theoretical and a practical
point of view. We define a new property of the formulas, their far-conver-
gence, in an effort to explain their behaviours. Extensive experimentation
finding polynomial roots, shows that there are extreme differences in perfor-
mance of seemingly similar iterators. This is a surprising result. We use this
experimental approach to select the most effective performer, which is La-
guerre’s method. The best companion (second method) to handle the failures
of Laguerre’s is a new method which is an adaptation of Halley’s method to
multipoint computation. The little-known Ostrowski’s method comes out with
one of the best performances. We also find that an unknown simple variant of
Newton’s method, behaves much better than Newton’s method itself, which
behaves very poorly. This shows that sometimes it pays to modify a method
to improve its far-convergence. Various performance curiosities cannot be ex-
plained in terms of neither order of convergence and are probably caused by
the paths that the methods force on the iteration values. The study of these
random paths is an open problem, probably beyond our present tools.

1. Introduction

We consider the problem of finding a numerical approximation to a root. For
simplicity and uniformity reasons we will approximate roots of polynomials. We
use p(x) to denote the univariate polynomial of degree d. A root α, p(α) = 0, may
be real or complex. To avoid trivial cases, we will assume that d ≥ 3 and p(0) 6= 0.
A single point iteration formula, can be written as

xn+1 = xn − φ(xn)

2 G. H. Gonnet

where φ(α) = 0. The error of the iteration at step n is

εn = xn − α .

We have noticed that all single-point iteration formulas that we studied can be
expressed in terms of two values:

δ = p(x)/p′(x)

and

η =
p(x)p′′(x)

p′(x)2
.

For example, Newton’s method has φ = δ and Halley’s method has φ = δ/(1−η/2).
Both δ → 0 and η → 0 when we are converging to a simple root.

1.1. Near- and far-convergence
The standard definition of order of convergence [4, 7, 6] is based on the behaviour
of the iteration in the neighbourhood of a root. That is

εn+1 = xn+1 − α = O((xn − α)γ) = O(εγ
n)

where α is the searched root, xn is the nth approximation to the root and εn is
the error on the nth iteration. A method which verifies the above for maximal
γ is said to have order of convergence γ. We will call this order of convergence,
near-convergence, as it refers to the behaviour at the limit when xn → α, or when
xn is near α.

We define far-convergence, as the convergence order, the same as above,
but in the limit when |xn − α| → ∞. For example, the Newton iteration for the
approximate computation of

√
N

xn+1 =
N/xn + xn

2
has near-convergence of order 2 (quadratic convergence)

xn+1 −
√

N =
(xn −

√
N)2

2
√

N
+ O((xn −

√
N)3)

and far-convergence of order 1 (linear convergence with constant factor 1/2) since

εn+1 = εn/2 + O(1)

when |xn −
√

N | = |εn| → ∞. The Newton iteration for square roots can be
considered very reliable as it converges to a root from any starting point due to
its properties of far- and near-convergence (although not at the same speeds).

In this paper we are studying iteration formulas to be used for approximating
complex roots of polynomials. In this context, the following can be asserted.

• Any number of derivatives of the function can be computed, each one
costing about the same to compute.

• We are interested in working with multiple precision in the context of a
computer algebra system, and hence the cost of evaluating p(x) and its
derivatives dominates the cost of each iteration.

Practical Study of Iterations for Equation Solving 3

• When convergence is achieved, an order γ = 1.6 or γ = 2 or γ = 3 makes
little difference in the total number of iterations required. However, when
the method fails to converge and the values wander around the complex
plane, tens or hundreds of iterations can be wasted. From this we conclude
that far-convergence is more important than near-convergence.

• Our view is pragmatic. We are searching for an iteration which delivers
the best overall efficiency over a sufficiently large sample of polynomials.

2. Iteration Generators

It is possible to generate an infinite number of iteration formulas with a given order
of near-convergence. These iterations can be single-point or multi-point. Methods
for generating iteration formulas are quite straightforward, we will describe one
for single-point direct methods.

Let A(a1, a2, . . . , ak, x) be an arbitrary function of x with parameters a1,
a2, . . . , ak. E.g.

A(a1, a2, a3, x) = a1 +
a2

x− a3
.

For most functions A with k parameters, it is possible to generate an iteration
formula with order of convergence k. This is done through the following steps. Let
xn be an approximation of a zero of p(x). At this point we compute k equations

A(a1, a2, . . . , ak, xn) = p(xn)

A′x(a1, a2, . . . , ak, xn) = p′x(xn)

...

A(k−1)
x (a1, a2, . . . , ak, xn) = p(k−1)

x (xn) .

These equations are viewed as equations in the parameters a1, a2, . . . , ak.
We solve these equations and obtain the parameters in terms of xn, i.e. a1(xn),
a2(xn), etc. Plugging these parameters in A we obtain a function A(a1(xn),
a2(xn), . . . , ak(xn), x) which is a k-order approximation to p(x) at xn. Let xn+1

be the zero of A(. . . , x), i.e. A(a1(xn), a2(xn), . . . , ak(xn), xn+1) = 0, then xn+1

becomes our next approximation to the root. The iteration formula is defined by
the computation producing xn+1 from xn. Normally we can find a closed form
expression of xn+1 in terms of p(x) and xn. To achieve this, the function A is
chosen so that the solution of the system of equations can be expressed in closed
form and that the zero of A is easy to compute, i.e. A(. . . , x) = 0 is easy to solve.
For the above example,

A(a1, a2, a3, xn) = a1 +
a2

x− a3
= p(xn) ,

A′x(a1, a2, a3, xn) = − a2

(xn − a3)2
= p′x(xn)

4 G. H. Gonnet

and
A′′x(a1, a2, a3, xn) =

2a2

(xn − a3)3
= p′′x(xn)

from which we derive

a2 = −4p′(xn)3

p′′(xn)2

a3 =
2p′(xn)
p′′(xn)

+ xn

and
a1 = p(xn)− a2

xn − a3

A(a1, a2, a3, xn+1) = a1 +
a2

xn+1 − a3
= 0 =⇒ xn+1 = a3 −

a2

a1

Simplifying and rearranging we obtain

xn+1 = xn −
p(xn)
p′(xn)

1

(1− p(xn)p′′(xn)
2p′(xn)2)

= xn −
δ

1− η/2

which is Halley’s method [1]. We can say that approximating p(x) by a1 + a2
x−a3

generates Halley’s iteration.
Table 1 shows the iteration formulas tested and the approximation formulas

which generate them. Iterations 2 to 6 are all special cases of δ(1 + η
2a)a. This

iteration gives third order near-convergence for any value of a. In all cases, it
corresponds to an inverse interpolation approximation

x ≈ (a1 + a2p(x))(1 + a3p(x))a

Halley’s, Ostrowski’s [5] and inverse quadratic interpolation are special cases of
this formula. Methods 10 to 17 are derived from Laguerre’s method by assuming
that the approximation is of a fixed degree (2 to 9). For degree 2, this coincides with
Euler’s method or direct quadratic interpolation. Many variations of Laguerre’s
method were tested because all of them have a very good behaviour, in particular
the optimal number of successes is achieved by iterator 15. Methods 18 to 25
were artificially created. 18 and 19 are truncated taylor series in η of method 10.
Methods 20 to 25 are perturbations of other methods in their O(η2) term (in
O(δ2) for 25) so that the order of far-convergence becomes O(1) instead of O(η).
Methods 26 to 29 are multipoint methods based on similar approximations. The
Hansen-Patrick methods [2], generated by

δ(a + 1)

a +
√

1− (a + 1)η

for fixed a, are not included since they can be generated from Laguerre’s formula,
by setting a = 1/(d− 1).

Table 2 shows the near- an far-convergence for each of the methods. For both
last columns, the expression represents the asymptotic value of εn+1 in terms
of εn. Only the most significant term is shown. For the near convergence, the
exponent of εn is the classical order of convergence. p′ = p′x(α), p′′ = p′′x(α) and

Practical Study of Iterations for Equation Solving 5

Iteration Generating Notes
formula Approximation

1 δ p(x) ≈ a2 (x− a1) Newton

2 δ
1−1/2η p(x) ≈ x−a1

a2+a3x Halley

3 δ√
1−η

x ≈ a1+a2p(x)√
1+a3p(x)

Ostrowski

4 δ
3√1−3/2η

x ≈ a1+a2p(x)
3√1+a3p(x)

5 δ
√

1 + η x ≈
(a1 + a2p(x))

p
1 + a3p(x)

6 δ (1 + 1/2η) x ≈ a1 + a2p(x) + a3p(x)2 Inverse qua-
dratic interpo-
lation

7 δ(1−δ+1/2η)
1−δ+δ2−1/2ηδ

x ≈
1− 1

(a1+a2p(x)+a3p(x)2)

8
δ(2+√1+η)

3−η p(x)2 ≈ (x−a1)2

a2+a3x

9 δd
1+
√

(d−1)2−d(d−1)η
p(x) ≈
(x− a1) (a2x + a3)d−1

Laguerre

10 2δ
1+
√

1−2η
p(x) ≈ (x− a1) (a2x + a3) Euler, direct

quadratic inter-
polation

11-17 δk
1+
√

(k−1)2−k(k−1)η
p(x) ≈
(x− a1) (a2x + a3)k

Laguerre with
fix degree
k = 3..9

18 δ
�
1 + η/2 + η2/2

�
artificial matching 10 to

order 2 in η

19 δ
1−η/2−η2/4

artificial inverse match-
ing inverse of 10
to order 2 in η

20 δ
1−η/2−η2/8

artificial inverse match-
ing inverse of 3
to order 2 in η

21 δ/
�
1− η/2− dη2

2(d−1)

�
artificial using degree to

force 2 to have
far convergence

22 δr
1−η− η2

d−1

artificial using degree to
force 3 to have
far convergence

23 δ

r
1 + η +

d(d2+d−1)η2

d−1 artificial using degree to
force 5 to have
far convergence

24 δ
�

1 + η
2 + (2d−1)dη2

2(d−1)

�
artificial using degree to

force 6 to have
far convergence

25 δ/
�
1− (d−1)δ

x

�
artificial Perturbing

Newton with
degree for good
far convergence

26 pn∆x01
∆p01

p(x) ≈ a2(x− a1) Secant

27 pn
∆p12

�
pn−1∆x02

∆p02
− pn−2∆x01

∆p01

�
x ≈ a1 + a2p(x) + a3p(x)2 Multipoint in-

verse quadratic
interpolation

28

2b0
b1(1+

q
1+4b2b0/b21)

b0 = pn∆x02∆x12∆x01

b1 = ∆p01∆x2
02 −∆p02∆x2

01

b2 = pn−1∆x02 − pn∆x12 − pn−2∆x01

p(x) ≈ (x− a1) (a2x + a3) Muller

29 pn∆p02∆x02∆x01
pn∆p12x−pn−1∆p02xn−1+pn−2∆p01xn−2

p(x) ≈ x−a1
a2+a3x Multipoint Hal-

ley

Table 1. Iteration formulas.

6 G. H. Gonnet

near-convergence far-convergence
order εn+1 order εn+1

1 2 p′′
2p′ ε

2
n 1 d−1

d εn

2-6 3 3(3a+1)p′′2−4ap′p′′′

24ap′2
ε3

n 1

1−

�
1+ d−1

2da

�a

d

!
εn

7 3 6p′2−6p′p′′+3p′′2−p′p′′′

6p′2
ε3

n 1 εn

8 3 9p′′2−4p′p′′′

24p′2
ε3

n 1 2d−1−
√

2−1/d
2d+1 εn

9 3 3(d−2)p′′2−4(d−1)p′p′′′

24(d−1)p′2
ε3

n 0 −α +
−cd−1

dcd

+

r
(d−1)

�
(d−1)c2d−1−2dcdcd−2

�
dcd

10-17 3 3(k−2)p′′2−4(k−1)p′p′′′

24(k−1)p′2
ε3

n 1
�

1− k
d+
√
−d(d−k)(k−1)

�
εn

18 3 − p′′′
6p′ ε3

n 1
(d−1)

�
2d2−2d+1

�
2d3 εn

19 3 − p′′′
6p′ ε3

n 1 d2−1
d2+4d−1

εn

20 3 3p′′2−4p′p′′′

24p′2
ε3

n 1 3d2−2d−1
3d2+6d−1

εn

21 3 −3(d+1)p′′2−2(d−1)p′′′p′

12p′2(d−1)
ε3

n 0 −α−
cd−1

cd

22 3 3(d−5)p′′2−4(d−1)p′′′p′

24p′2(d−1)
ε3

n 0 −α−
cd−1

cd

23 3 −(12d3+12d2−27d+15)p′′2−4(d−1)p′′′p′

24p′2(d−1)
ε3

n 0 −α−
cd−1

cd

24 3 −(d−1)p′p′′′−(6d2−6d+3)p′′2

6p′2(d−1)
ε3

n 0 −α−
cd−1

cd

25 2 αp′′−2p′(d−1)
2p′α ε2

n 0 −α−
cd−1

cd

26 1.618. . . p′′
2p′ εnεn−1

27 1.839. . . 3p′′2−p′p′′′

6p′2
εnεn−1εn−2

28 1.839. . . − p′′′
6p′ εnεn−1εn−2

29 1.839. . . − 3p′′2−2p′p′′′

12p′2
εnεn−1εn−2

Table 2. near- and far -convergence of iteration formulas.

p′′′ = p′′′x (α) denote the derivatives of p(x) at the root. ∆xij = xn−i − xn−j ,
∆pij = p(xn−i) − p(xn−j), pn stands for p(xn) and ci is the coefficient of xi

in p(x). For both columns, a smaller coefficient for εn is better. For the first
column, a higher exponent of εn is better, as εn → 0, while for the last column a
lower exponent is better, as εn →∞. Far-convergence cannot be easily defined for
multistep methods and hence was not computed.

3. The Search

Although the method described here could be used for any type of problems, or
for any order of convergence, we concentrate on methods with cubic convergence
(γ = 3) used on polynomials. As we said earlier, we will take a very pragmatic
approach and try as many formulas as possible against a sufficiently large number
of problems and select the best performing one(s).

Practical Study of Iterations for Equation Solving 7

Since the target application of this method is in Maple, we will test the
algorithms using the same system so that the complexity measures (mainly time)
are compatible.

3.1. The problem set
The problem set should be large and open-ended, so that we avoid selecting meth-
ods which happen to be lucky with a particular sample set. This is relevant if
we are going to test many iteration formulas. We tested each method with 100000
polynomials so that critiques with respect to sample size may be silenced. The best
performing formulas (3,9-17,22 and 25) were tested against 200000 polynomials.
The sample is generated at random, so that it is open-ended, i.e. we could test
these methods for 10 times more problems if desirable. In all cases the polyno-
mials have integer coefficients. We generate the polynomials in 4 different groups.
In all cases, a random variable distributed as U(a, b) denotes a uniform random
distribution between the values a and b inclusive. All polynomials are generated
with a random degree distributed as U(3, 20).

(a) 40% of the polynomials with random U(−1010, 1010) coefficients. The num-
ber of non-zero coefficients is also random U(3, deg(p) + 1). This is an
example of such a polynomial.

422434762x7 − 8643406254x6 + 6868525159x5 + 9284921461x3 + 3505658871

(b) 30% of the polynomials with coefficients which are random integers U(−10k,
10k) and k is U(0, 40) for each coefficient. The number of non-zero coeffi-
cients is U(2, deg(p) + 1). E.g.

− 708032792x19 + 773616354292525883710x17

+ 90694362361320141927817x15 + 287243520412466889x13 + 990598934x12

+ 6420995340618263067643600578251x10 − 54255029639x9

− 539443581303941066250263794671941160274

(c) 10% of the polynomials as in (b) above, but with random gaussian inte-
gers (complex integers) as coefficients. This is done by multiplying each
coefficient by ik where k is a random integer U(0, 1). E.g.

9720195260033566442710141098991462068038ix8

− 6779x3 + 33787241729985 + 606i

(d) 20% of the polynomials which are a minor perturbation of a product of
powers of simpler polynomials. Although the degree of the polynomial is
U(3, 20), each factor of these polynomials has random U(1, 3) degree and
is powered to a random exponent so that it does not exceed the expected
degree of the final polynomial. The perturbation is obtained by adding
±xk where k is U(0, deg(p)). E.g.

(9887x + 446)6 (−273x + 12)4
(

−3230x3 − 20
)2

(3178x + 6)− x13

8 G. H. Gonnet

The polynomials in group (a) are truly random polynomials but are fairly easy
to resolve by all methods and present a lesser challenge. Thus we have weighted
them only 40% in the sample. The groups (b) and (c), represent cases where
the large differences in the magnitude of the coefficients could lead to extreme
placements of the roots. Roots could lie very close together, or have very small
imaginary or real parts, or have very different magnitudes. In our experience these
polynomials reveal the weaknesses of the iteration formulas, and consequently we
have weighted these two groups as much as group (a). Notice that (c) should not
behave too differently from (b), it was included just to insure that polynomials with
complex coefficients do not cause additional problems. The last group, (d), contains
polynomials which will have roots very close together, i.e. very small perturbations
of non square-free polynomials. This is not so uncommon in practice, and again,
most iteration formulas have difficulties in this situation.

4. Test for each Polynomial

For each polynomial, and for each formula, the iteration is started at the same
point.

x0 = (1 + i)
√

2max
k

k

√

∣

∣

∣

∣

cd−k

cd

∣

∣

∣

∣

where d is the degree of the polynomial and ci is the coefficient of xi in p(x).
This is a point at 45 degrees on a complex circle which encloses all roots of the
polynomial.

All computations were done with increasing precision, the initial precision is
identical to the number of digits in the largest coefficient and it is increased by one
decimal digit after each iteration. This reflects the accepted practice in variable
precision computer algebra systems. One of the reasons for which iterations fail
is the ill-conditioning of the polynomial which may require additional precision to
resolve.

Convergence to a root is decided from the computed values and estimates
of the errors of the last step. For multipoint methods with error formulas εn+1 ≈
αεnεn−1 or εn+1 ≈ αεnεn−1εn−2, in the neighbourhood of a root and with con-
vergence, the estimate for εn+1 is

εn+1 ≈
ε2
n

εn−2
or εn+1 ≈

ε2
n

εn−3
.

The convergence criteria, once xn+1 has been computed, is to test whether the
relative error of xn+1 is small enough, or

∣

∣

∣

∣

εn+1

xn+1

∣

∣

∣

∣

< Mε

Practical Study of Iterations for Equation Solving 9

which gives the complete condition

|εn| < |εn−1| < |εn−2| < |εn−3| and
∣

∣

∣

∣

ε2
n

εn−2xn+1

∣

∣

∣

∣

< Mε

where Mε is the machine epsilon, or the relative precision at which we want to
compute the roots. We do not know the exact εn−i, but we can approximate them
with εn−i ≈ xn−i − xn+1. In the neighbourhood of a root and with superlinear
convergence, this approximation is sufficient.

For single-point methods, with error term of the form εn+1 ≈ αεγ
n we com-

pute εn+1 ≈ εγ+1
n /εγ

n−1 and obtain the first condition. For these iterations we
already computed the derivative of the polynomial at each step, so we can use
these derivatives to estimate the error at xn+1

p′(xn)(xn − α) ≈ p(xn)− p(α) = p(xn)

εn = p(xn)/p′(xn) = δn .

We can use both estimates (εn−i = δn−i and εn−i = xn−i−xn+1) to derive a safer
criteria for convergence

|εn| < |εn−1| and
∣

∣

∣

∣

εγ+1
n

εγ
n−1xn+1

∣

∣

∣

∣

< Mε and
∣

∣

∣

∣

δγ+1
n

δγ
n−1xn+1

∣

∣

∣

∣

< Mε .

No acceleration of the iterations is attempted (as it is common practice when
the method shows linear convergence), as this is one of the features which we want
to measure. We want to evaluate the iterators on their exclusive own merits.

We compute only one root for each polynomial, as it is cheaper and safer to
compute a new polynomial than to deflate one.

The best iteration schemes use an average of about 10 iterations per root. We
let each method run at most 50 iterations. If the algorithm runs for 50 iterations
and does not converge, we consider it has failed. Failures to compute the iteration
formula (like divisions by zero, very large floating exponents and repeated values)
are also counted as failures. In the case of failures, the number of iterations and
time consumed is accounted up to the point of failure. Each failure due to lack
of convergence is very costly in time, and hence total time becomes an excellent
compound measure for the iteration formulas.

We measure, for each polynomial and each method, the number of iterations,
the time spent and the failures. Notice that the relation between number of itera-
tions and total time spent is not necessarily linear due to the increasing precision
of the computation. Time and number of failures are the most important measures.

5. Conclusions

The whole computations in this paper used about 11,984 hours of CPU time on a
small subnetwork of HP and Sun workstations. The results are shown in table 3
from which we can reach several conclusions.

10 G. H. Gonnet

iterations time failures (%)
a b c d all a b c d all a b c d all

1 18.7 33.5 32.3 40.4 28.8 1.00 3.19 3.13 4.14 2.50 5.10 48.21 45.35 57.54 32.55
2 10.1 26.7 25.6 31.9 21.0 .66 3.90 3.82 5.24 2.86 1.87 34.03 32.33 28.65 19.92
3 5.7 19.1 18.4 22.9 14.4 .36 3.04 2.97 3.94 2.14 .00 19.48 18.99 5.95 8.93
4 15.9 19.3 19.2 35.5 21.2 2.56 5.24 5.23 9.96 5.11 1.36 8.68 8.38 51.05 14.20
5 15.2 30.6 29.4 36.4 25.5 1.27 4.81 4.70 6.19 3.66 4.58 42.02 40.00 43.82 27.20
6 15.0 30.9 29.3 35.9 25.4 1.13 4.40 4.25 5.64 3.32 5.49 42.76 40.12 41.71 27.38
7 13.9 38.8 38.7 42.7 29.6 1.10 6.16 6.24 6.77 4.27 7.08 68.60 68.90 71.41 44.59
8 11.5 28.0 27.0 33.8 22.5 .89 4.66 4.54 6.11 3.43 1.86 36.76 35.08 34.76 22.23
9 6.2 13.6 13.7 15.0 10.9 .49 2.20 2.30 2.59 1.60 4.30 13.60 13.00 5.18 8.14

10 11.4 15.0 15.7 29.0 16.4 .94 2.19 2.34 5.25 2.32 .33 7.82 9.51 29.62 9.35
11 10.3 14.1 14.5 27.4 15.3 .84 2.05 2.17 5.06 2.18 .28 7.49 8.70 25.91 8.41
12 9.6 13.4 13.2 25.9 14.3 .78 1.95 1.92 4.83 2.05 .25 7.20 6.66 22.44 7.41
13 9.0 12.8 12.7 24.8 13.7 .72 1.86 1.84 4.62 1.95 .21 7.01 6.54 20.26 6.89
14 8.4 13.0 12.7 23.8 13.3 .67 1.88 1.83 4.43 1.90 .18 7.78 7.06 17.68 6.65
15 7.9 13.0 12.6 22.7 12.9 .62 1.86 1.81 4.23 1.83 .16 7.84 7.25 15.25 6.19
16 7.5 13.4 13.0 22.1 12.7 .58 1.95 1.90 4.09 1.82 .14 9.20 8.29 13.82 6.41
17 7.1 13.4 13.3 21.4 12.5 .53 1.96 1.95 3.94 1.78 .08 9.59 9.53 12.07 6.28
18 14.3 29.0 27.8 32.9 23.8 1.12 4.27 4.16 5.40 3.22 6.58 38.20 36.10 31.88 24.08
19 9.7 24.0 22.9 26.1 18.6 .67 3.58 3.50 4.38 2.57 6.03 28.25 27.27 14.54 16.52
20 9.4 24.9 24.0 29.3 19.5 .63 3.77 3.70 4.98 2.75 3.63 30.88 29.59 22.05 18.08
21 30.1 31.8 31.7 27.6 30.3 3.06 4.53 4.63 4.94 4.03 60.97 51.71 51.24 38.19 52.66
22 9.1 22.6 22.3 17.3 16.1 .71 3.51 3.58 2.68 2.23 4.75 13.12 13.22 4.99 8.16
23 31.9 35.8 36.0 45.5 36.2 2.72 5.62 6.12 7.49 4.88 89.81 88.89 88.09 93.44 90.09
24 30.4 34.7 34.8 42.4 34.5 2.19 4.95 5.36 6.55 4.21 85.91 85.23 84.96 87.04 85.84
25 17.1 21.2 21.6 25.7 20.5 1.08 2.24 2.30 3.29 1.99 10.42 19.94 21.17 24.58 17.18
26 19.2 35.4 33.8 42.7 30.2 .82 2.59 2.50 3.14 1.98 14.90 58.20 54.81 67.08 42.32
27 19.6 13.3 12.5 27.3 18.5 1.21 1.07 1.00 2.82 1.47 47.46 63.56 63.01 56.61 55.68
28 13.1 25.9 24.8 39.2 23.3 1.35 5.02 4.81 7.07 3.94 2.56 38.14 35.68 59.68 27.97
29 15.9 17.2 16.6 31.5 19.5 1.04 1.96 1.88 3.56 1.90 17.23 54.98 55.26 45.39 37.99

Table 3. Average values for each method (row) and type of polynomial.

The first conclusion is that there is a substantial difference in performances.
Not only in the time consumed, but also in the number of failures. The effective-
ness of the best method compared to the effectiveness of the worst is in a ratio of
approximately 1:30. We define effectiveness as the fraction of solved polynomials
divided time. Methods with apparently very similar characteristics perform dis-
similarly. Order of near-convergence does not appear to be a criteria to base any
consistent judgement. In particular the order of the worst performer is equal to
the best performer and is better than the one of the third best performer!

Not surprisingly, the overall winner is Laguerre’s iteration. It is a winner in
effectiveness and in 3 of the 15 categories (columns of the table). Entries in italics
indicate the best value for the given column. It only looses by 2% to the best in
number of failures. Other methods of the Laguerre’s family are also very effective,
in particular for high fixed degree. One of these methods, 15, is the one producing
the fewest failures.

The relatively unknown Ostrowski’s method, which comes next in efficiency,
is remarkable in one way. It does not fail with any of the polynomials of group a.
We continued to run Ostrowski’s method against polynomials of type a, and we

Practical Study of Iterations for Equation Solving 11

run it with over one million polynomials without failure. There is something quite
remarkable about its convergence which escapes our analysis, and which places it
in a unique category with respect to all other methods.

Method 25 ranks next in effectiveness. This is a big surprise. Method 25 is a
modification of Newton’s method, which improves the far-convergence order and
outperforms Newton’s in 13 of the 15 categories. The number of failures is cut in
half. This shows that modifying a method to improve its far-convergence, while
keeping its near-convergence, could improve the method significantly.

The artificially generated method 22 (a modification of Ostrowski’s method
to improve far-convergence) comes next in efficiency, still outperforming all other
more famous methods. It produces a very small number of failures, and it appears
to be the best suited for problems in the group d.

Again, for reasons unknown to us, methods 23 and 24, which were supposed
to be improvements on methods 5 and 6, behave disastrously. In particular much
worse than 5 and 6. Notice that the same type of change was done for 22 (from 3),
in which case they remained about the same and for 25 (from 1) which produced
a significant improvement.

All these curiosities and oddities indicate that the overall performance of
these methods is not tied to the convergence part alone, but rather to the appar-
ently random walks over the complex plane. These walks are the most expensive
part of the computation and depend on subtleties of the iterations, at present
beyond our understanding. Hence our selection method here is empirical.

The effectiveness of these walks is dramatically different for different methods.
Our methods of analysis cannot explain this behaviour which is probably one of
the most difficult open problems in the area.

For samples of 100,000 or 200,000 polynomials, the confidence intervals of the
values in the tables are very small. For example, the totals for Laguerre’s method
have 95% confidence intervals 10.94± .12, 1.604± .027 and 8.14± .24 respectively.
The difference in efficiency with the second most effective method (17) are well
outside these confidence intervals.

5.1. The best companion for Laguerre

Once that we have observed that the best performer is Laguerre’s, and that this
method still fails on one out of 12 polynomials, the immediate next question is
which method will handle the largest portion of problems where Laguerre fails. If
there is a pattern in the problems being solve, then there is a pattern (comple-
mentary) on the failed ones, and hence a particular method may be well suited to
handle them.

Table 4 contains the results of running problems which were not resolved
by Laguerre. For Laguerre itself, the runs were done starting at a different point
(x0e2πiφ, where φ is the golden ratio). This gives an indication of how dependent
the failures were from an initial unlucky value. For this run we are also interested
in the effectiveness, that is number of problems solved divided total time.

12 G. H. Gonnet

iterations time failures (%)
a b c d all a b c d all a b c d all

1 22.7 30.8 32.3 48.6 31.7 .87 2.58 2.85 6.35 2.75 19.11 41.58 45.69 85.06 43.17
2 12.9 23.4 24.7 42.5 23.9 .61 3.03 3.40 9.11 3.37 10.78 33.03 36.70 57.99 32.18
3 5.4 18.1 20.7 32.2 17.7 .25 2.79 3.36 7.86 3.00 .00 26.90 32.94 23.57 21.78
4 17.7 27.0 27.7 49.7 28.1 2.38 7.25 7.58 16.87 7.53 .00 26.41 28.62 96.38 30.30
5 18.1 26.9 28.2 46.1 27.8 1.09 3.79 4.16 9.99 4.09 14.22 37.09 40.00 73.16 37.43
6 20.0 28.2 30.1 45.7 29.1 1.12 3.56 4.02 9.24 3.86 19.61 41.24 45.78 71.18 41.32
7 11.8 29.5 31.2 47.8 28.4 .69 4.29 4.80 10.29 4.39 .07 44.72 49.54 86.11 41.47
8 14.0 24.5 25.8 44.1 25.0 .78 3.62 4.02 10.23 3.95 10.42 34.84 37.61 64.18 33.96
9 39.8 45.5 37.6 46.1 43.0 4.43 8.52 7.41 10.24 7.70 75.22 93.84 76.97 83.20 85.73

10 12.3 22.6 24.9 46.1 23.8 .74 3.43 3.99 10.32 3.85 .00 25.64 31.93 70.71 27.13
11 11.5 22.2 24.1 46.0 23.4 .69 3.36 3.85 10.61 3.82 .00 25.76 30.83 73.51 27.37
12 10.9 21.7 22.6 44.5 22.5 .64 3.29 3.52 10.46 3.70 .00 25.45 27.43 70.95 26.32
13 10.5 21.4 22.2 44.8 22.3 .61 3.24 3.46 10.45 3.66 .00 25.92 27.52 74.45 27.02
14 10.1 21.2 21.8 43.8 21.9 .58 3.20 3.39 10.28 3.60 .00 25.73 27.16 73.86 26.79
15 9.6 20.8 21.6 41.6 21.3 .55 3.15 3.37 10.10 3.54 .00 25.73 27.98 68.61 26.24
16 9.0 20.4 21.2 39.6 20.6 .51 3.10 3.30 9.87 3.47 .14 25.92 27.71 63.71 25.68
17 8.6 20.0 21.1 38.4 20.1 .49 3.04 3.32 9.72 3.42 .22 25.76 28.17 61.14 25.36
18 16.9 26.0 27.6 43.2 26.6 .95 3.43 3.85 9.27 3.74 16.95 38.97 42.48 62.19 37.92
19 14.6 24.5 26.2 36.2 24.2 .86 3.39 3.82 8.44 3.58 19.54 39.74 43.85 36.76 35.76
20 11.9 22.6 24.1 40.0 22.9 .59 3.10 3.50 9.09 3.41 11.35 34.04 37.98 49.01 31.85
21 6.8 33.8 34.4 46.8 29.9 .36 5.21 5.65 7.89 4.61 100.0 84.09 81.38 89.26 87.67
22 45.3 45.6 45.7 44.2 45.4 5.00 7.47 7.90 6.55 6.90 76.29 67.07 67.16 72.58 69.75
23 10.3 24.3 26.8 48.2 24.9 .37 3.13 4.56 8.00 3.42 100.0 96.95 97.16 99.77 98.00
24 12.0 24.9 27.1 48.3 25.6 .41 2.93 4.09 7.59 3.20 99.93 95.81 96.06 99.42 97.19
25 47.8 36.5 35.6 42.0 39.4 3.73 4.33 4.29 7.07 4.55 83.69 63.16 63.58 64.06 67.68
26 19.7 29.0 31.0 49.7 30.1 .72 1.96 2.18 4.62 2.08 36.42 51.06 55.14 95.22 54.39
27 17.2 15.8 13.6 43.7 19.4 .90 1.26 1.08 5.90 1.76 37.00 47.98 50.92 82.26 50.61
28 7.8 20.3 22.7 49.6 21.9 .60 3.71 4.28 10.99 4.09 .86 25.82 31.93 95.57 30.63
29 14.9 13.4 11.7 42.3 17.2 .82 1.16 1.01 6.13 1.71 12.72 34.44 37.89 70.83 35.15

Table 4. Average values for each method (row) and type of poly-
nomial over the failures of method 9.

The best companion for Laguerre is method 29, a multipoint version of Hal-
ley’s iteration, which fails on 35% of the residual polynomials. Notice that the
statistics for method 29 as a second method are better, in all three categories,
than as a first method. This means that it is very complementary to Laguerre’s
method, the polynomials which were harder for Laguerre, are easier for 29.

Using Laguerre a second time, with a different starting value, does not appear
to be a good idea at all. It fails 86% of the time, i.e. a different starting value is
successful about 1/7th of the time. This somehow proves that the failure set has
a pattern.

Ostrowski’s method (3) is the most successful companion, but it takes more
time than method 29, and hence its effectiveness is lower.

5.2. Best companion of Laguerre and 29
Following the same idea, we ran all the methods against the residuals of Laguerre
and method 29. The best method for handling these residuals is method 25, the
modified Newton method. We omit the table showing these results. Method 25

Practical Study of Iterations for Equation Solving 13

solves 56% of the remaining polynomials, in a very competitive time. It is by far
the most effective method for these residual polynomials.

We ran this process 6 times, to find the most effective sequence of methods
to handle these polynomials. When a method is used more than once with the
same polynomial, we start the iteration at a different value. The starting value for
the jth run of a method is set to x0e2πi(j−1)φ. Table 5 summarizes the results of
these simulations. Each method was selected to have highest effectiveness, that is
number of problems solved divided total time. It is obvious from the first three
methods already, that each one of them specializes for some type of polynomials
and that their combined use is much more effective than their repeated use.

prev meth iter time failures solved/ cumulative sample
methods (%) time fail (%) size

9 10.901±.086 1.597±.019 7.99±.17 57.61 7.99±.17 92450
9 29 17.16±.40 1.710±.060 35.2±1.2 37.92 2.824±.093 82000

9,29 25 24.70±.55 3.398±.098 44.3±1.1 16.39 1.298±.034 246000
9,29,25 3 21.87±.42 5.22±.16 15.32±.89 16.22 .196±.011 492000

9,29,25,3 22 35.85±.43 11.24±.19 20.7±1.4 7.05 .0403±.0027 1640000
9,29,25,3,22 9 36.0±1.1 14.22±.62 52.9±3.1 3.31 .0210±.0012 2460000

Table 5. Performance of each method used on the residuals pre-
vious methods.

5.3. Conclusions
From this experimental/theoretical study we can derive the following conclusions.

The effectiveness of different iteration formulas cannot be explained by orders
or convergence or any other form of analysis presently available.

Different iterations have very different performances, up to a factor of 30 in
effectiveness. This cannot be ignored. It appears that each method has its own
personality.

Newton’s iteration formula is one of the poorest performers. An interesting
observation on the most popular iteration formula. Laguerre’s, Ostrowski’s and
multipoint-Halley’s are the best iterations and should be given special considera-
tion.

Pairs of companion methods are much more effective than one method applied
repeatedly.

References
[1] W. Gander. On halley’s iteration method. Americam Mathematical Monthly.

92(2):131–134, Feb. 1985.
[2] E. Hansen and M. Patrick. A family of root finding methods. Numer. Math.,

27:257–269, 1977.
[3] P. Henrici. Elements of Numerical Analysis. John Wiley, New York, 1964.

14 G. H. Gonnet

[4] P. Henrici. Essentials of Numerical Analysis. John Wiley, New York, 1982.
[5] A. M. Ostrowski. Solution of Equations and Systems of Equations. Academic Press,

New York, 1973.
[6] A. Ralston. A First Course in Numerical Analysis. McGraw-Hill, 1965.
[7] J. F. Traub. Iterative Methods for Solution of Equations. Prentice-Hall, 1964.

Institut für Wissenchaftlichtes Rechnen,
Eidgenössische TH Zurich-Zentrum,
8092 Zurich, Switzerland
E-mail address: gonnet@inf.ethz.ch

