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1. Introduction

Although computer algebra is a research field in its own, its main driving force
comes from various fields of applications. These applications range from mathe-
matics and computer science over physics and engineering up to applications to
technical and industrial problems.

In this article I should like to show, by means of examples, the impact of
computer algebra on two branches of pure mathematics: algebraic geometry and
singularity theory. Today, algorithms, programmes and systems in computer al-
gebra have reached a stage where it is possible to compute highly sophisticated
mathematical objects such as moduli spaces and objects related to mixed Hodge
structures (sections 2 and 3). Moreover, computer algebra has been and is still
successfully used in testing or disproving conjectures, or in computing interesting
examples (section 4). Finally, I shall report on recent experiments where differ-
ent methods of computer algebra have been applied to symbolic-numerical solving
of polynomial equations (section 5), an important application of computer alge-
bra to real life problems. Each of the sections contains a few unsolved problems,
respectively projects, for further research.

The examples were chosen either from diploma theses of some of my students
(T. Bayer, M. Schulze, M. Wenk), respectively from joint research projects together
with C. Lossen and E. Shustin. All algorithms are implemented in the computer
algebra system Singular [30]. They are mainly based on Gröbner basis methods
which were foundationally developed by Buchberger [6, 7] for polynomial rings.
Subsequently, they have been extended to local and “mixed” rings in [28] for use
in singularity theory.

Gröbner basis computations are, nowadays, implemented in all major gen-
eral purpose computer algebra systems such as the big-M-systems (Magma, Maple,
Mathematica, MuPad) but also in special systems designed for use in commuta-
tive algebra and algebraic geometry (CoCoA, Macaulay, Singular). However,
having just the possibility to compute Gröbner bases (w.r.t. a few monomial or-
derings) is, for applications to mathematical research problems, not much more



2 G.-M. Greuel

than having the elementary numerical operations on a calculator for applications
to engineering problems. Hence, I should like to emphasise the necessity to further
develop packages and libraries to make the systems still more useful for the “work-
ing mathematician”. Today, new and advanced algorithms can be built on already
existing powerful procedures for computing, for example, free resolutions, Ext and
Tor groups, sheaf cohomology, primary decomposition, ring normalisation, versal
deformations, and many more (cf. [30]). The development of new algorithms pro-
vides, in addition, a better understanding and often even produces new theoretical
insight, as has been the case, just to mention one example, for primary decom-
position (cf. [33, 20]). This has also been the case for some topics treated in the
present article.

For more applications of computer algebra to algebraic geometry and singu-
larity theory see [32].

We assume the reader is familiar with the main notions of Gröbner bases
(cf. [12, 9]).

I should like to thank T. Bayer, C. Lossen und M. Schulze for helping to pre-
pare this article and M. Möller for useful comments concerning symbolic-numerical
solving.

Development and implementation of algorithms on which this paper is based
were supported by the DFG-Schwerpunkt “Effiziente Algorithmen für diskrete
Probleme und ihre Anwendungen“ and by the “Stiftung Rheinland-Pfalz für In-
novation”, which we kindly acknowledge.

2. Monodromy and Gauß-Manin Connection

The monodromy of a morphism f : X → S between complex spaces or algebraic
schemes/C, which we suppose to be a differentiable fibre bundle outside the dis-
criminant ∆ ⊂ S, describes the action of the fundamental group of S \ ∆ on
the cohomology H∗(Xt, C) of the general fibre. The Gauß-Manin connection may
be considered as an algebraic description of the monodromy action by means of
differential forms. Finally, the mixed Hodge structure is an analytic structure on
H∗(Xt, C) generalising the Hodge decomposition of compact, smooth algebraic
varieties. These concepts have many applications and were widely studied in the
global situation for proper maps as well as in the local situation for isolated sin-
gularities, for a survey see [35]. Here we shall only consider the local case.

Let f ∈ 〈x〉 ⊂ C{x0, . . . , xn} be a convergent power series (in practice a poly-
nomial) with isolated singularity at 0 and µ = dimC C{x}/〈fx0 , . . . , fxn〉 the Mil-
nor number of f . Then f defines in an ε-ball Bε around 0 a holomorphic func-
tion f : Bε → C, and, by a theorem of Milnor, there exists a small δ-disc Sδ in C
around 0 such that f : Bε \X0 → Sδ \ {0} is a C∞-fibre bundle so that the general
fibre Xt = f−1(t), t 6= 0, is homotopy equivalent to a bouquet of µ n-dimensional
spheres.
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The simple, counterclockwise path γ in Sδ around 0 induces a C∞-diffeomor-
phism of Xt (t 6= 0) and an automorphism T of the singular cohomology group
Hn(Xt, C) which is a µ-dimensional C-vector space. The automorphism T is called
the local Picard-Lefschetz monodromy of f . We address the problem of computing
the eigenvalues and the Jordan normal form of T .

The first important theorem is the monodromy theorem, due to Deligne in
the global and to Brieskorn in the local situation which says that the eigenvalues
of T are roots of unity, that is, we have T = e2πiM , where M is a complex matrix
with eigenvalues in Q.

Hence, we are left with the problem of computing the eigenvalues and the
Jordan normal form of M . Since Xt is a complex Stein manifold, its complex
cohomology can be computed, via the holomorphic de Rham theorem, by using
holomorphic differential forms, which is the starting point of Brieskorn’s algorithm
for computing the monodromy. To cut a long story short, we just mention that
the Brieskorn lattices (cf. [5])

H ′ = Ωn/
(
df ∧ Ωn−1+ dΩn−1

)
, H ′′ = Ωn+1/df ∧ dΩn−1

are free C{t}-modules of rank µ. Here (Ω•, d) denotes the complex of holomorphic
differential forms in (Cn, 0). We define the local Gauß-Manin connection of f as

5 : df ∧H ′ = df ∧ Ωn/df ∧ dΩn−1 −→ H ′′, [df ∧ ω] 7−→ [dω] .

Extending 5 to an endomorphism of H ′′ ⊗C{t} C(t) and describing it with
respect to a basis, we see immediately that the kernel of 5, together with a basis
of H ′′, is the same as the solutions of a rank µ system of ordinary differential
equations

dy

dt
= −Ay, A = (aij) =

∑
i≥−p

Ait
i ∈ Mat

(
µ× µ, C(t)

)
,

in a neighbourhood of 0 in C. The connection matrix A has a pole at t = 0 and
is holomorphic for t 6= 0. If φt = (φ1, . . . , φµ) is a fundamental system of solutions
at a point t 6= 0, then the analytic continuation of φt along the path γ transforms
φt into another fundamental system φ′t which satisfies φ′t = T5φt for some matrix
T5 ∈ GL(µ, C).

It is a fundamental fact that the Picard-Lefschetz monodromy T coincides
with the monodromy T5 of the Gauß-Manin connection.

Brieskorn [5] used this fact to describe the essential steps for an algorithm
to compute the characteristic polynomial of T . Results of Gerard and Levelt [23]
allowed the extension of this algorithm to compute the Jordan normal form of
T . An implementation of Schulze in Singular is able to compute interesting
examples (including the uni– and bimodal singularities, [45]).

The algorithm uses the regularity theorem which says that there exists a
basis of some lattice in H ′′⊗ C(t) such that the connection matrix A has a pole of
order 1.
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Basically, if A = A−1t
−1+A0+A1t + . . . has a simple pole, then T = e2πiA−1

is the monodromy (this holds if the eigenvalues of A−1 do not differ by integers
which can be achieved algorithmically).
Singular example for computing the monodromy (omitting the output):
> LIB "mondromy.lib";
> ring R = 0,(x,y),ds;
> poly f = x2y2+x6+y6; //example of A’Campo (monodromy is not
> matrix M = monodromy(f); //diagonalisable)
> print(jordanform(M)); //prints Jordan normalform of monodromy

Ingredients for the implementation of Brieskorn’s algorithm:
1. Computation of standard bases and normal forms for local orderings;
2. find k so that fk ∈ 〈fx0 , . . . , fxn

〉 and express fk as linear combination of
fx0 , . . . , fxn ;

3. computation of the connection matrix on increasing lattices in H ′′⊗ C(t)
up to sufficiently high order (until saturation) by linear algebra over Q ;

4. computation of the transformation matrix to a simple pole by linear alge-
bra over Q.

The most expensive parts are certain normal form computations for a local or-
dering and the linear algebra part because here one has to deal iteratively with
matrices with several thousand rows and columns.

In the remaining part of this section we describe a new algorithm, developed
by M. Schulze, based on the theory of D-modules (D = C{t}[∂t]): the complex
Ω•[D] with differential d defined by

d(ωDk) := dωDk − df ∧ ωDk+1

is a complex of D-modules with D-action

∂tωDk = ωDk+1 , tωDk = fωDk − kωDk−1 .

The D-module H := Hn+1(Ω•[D],d) = Ωn+1[D]/dΩn[D] is called the Gauß-Ma-
nin system of f . The operator ∂t is invertible on H. For k ≥ 0, let

FkΩn+1[D] :=
k⊕

i=0

Ωn+1Di

and FkH be the image of FkΩn+1[D] under the canonical map Ωn+1[D] → H. This
defines a filtration F on H called the Hodge filtration. By the De Rham and
Poincaré lemma, df ∧H ′ = ∂−1

t F0H ⊂ F0H = H ′′. We denote by

C
{{

∂−1
t

}}
:=

{ ∑
i≥0

ai∂
−i
t ∈ C

[[
∂−1

t

]] ∣∣∣∣ ∑
i≥0

ai

i!
ti ∈ C{t}

}
,

the ring of micro-differential operators with constant coefficients and abbreviate
s := ∂−1

t . Then H ′′ is a free C{{s}}-module of rank µ. By definition, df∧Ωn ⊂ Ωn+1

is isomorphic to the Jacobian ideal of f , and Ωf = Ωn+1/df ∧ Ωn to the Mil-
nor algebra. Using Gröbner basis methods, one can compute a monomial C-basis
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m = {m1, . . . ,mµ} of Ωf , inducing a section v ∈ HomC(Ωf ,H ′′) of the projection
π and an isomorphism C{{s}}µ ∼= H ′′, by Nakayama’s lemma. We define the matrix

B =
∑
k≥0

Bksk ∈ Mat
(
µ× µ, C{{s}}

)
of multiplication by t this respect to m, i.e., Bm := tm. An easy computation
shows that B + s2∂s is the basis representation of t with respect to m.

By definition of the differential d, computing B up to order k − 1 amounts
to expressing k times an element of Ωn+1 in the basis m and df ∧ Ωn, which is
the Jacobian ideal of f . This can be done using Gröbner basis methods. To do the
k-th step in the computation of the saturation H ′′

∞ of H ′′, one has to compute
B up to order k. To compute the residue of ∂t on H ′′

∞, whose eigenvalues are the
eigenvalues of monodromy, one has to compute B up to sufficiently high order and
compute a C{{s}}-basis of H ′′

∞ as well as the basis representation of the images of
this basis under ∂tt with respect to this basis. This can also be done using Gröbner
basis methods.

Compared to the Brieskorn algorithm, we have interchanged the roles of ∂−1
t

and t. The ∂−1
t -structure of H ′′ is much more natural and there are many ad-

vantages of this new algorithm: There are no problems with estimations, no huge
linear algebra problems, we need not to lift a power of f in the Jacobian ideal, the
basis of H ′′ is easier to compute, and so on. The main point is that we can continue
the computation when we have to increase the order of B. In the Brieskorn algo-
rithm, we have to start again almost from the beginning. Nevertheless, the three
components of this new algorithm explained above also require difficult computa-
tions, especially the first one. The new algorithm can be extended to compute the
Jordan normal form of the monodromy in a similar way as it was done in [45].

Problems

1. Generalise the algorithm of M. Schulze to isolated complete intersection
singularities.

2. Find an algorithm to compute the V -filtration of the mixed Hodge struc-
ture of an isolated hypersurface singularity.

3. Compute the spectrum, resp. the spectral pairs, of an isolated hypersurface
singularity.

The last problem was solved (and implemented in Singular) by S. Endraß for
nondegenerate singularities. M. Schulze has made progress in attacking 2. and 3.

3. Moduli Spaces and Invariants

When classifying objects in algebraic geometry, one usually fixes discrete invari-
ants, such as the genus of a projective curve, and then one would like to have
a distinct view on the set of objects with fixed invariants with respect to some
equivalence relation. For small invariants it is sometimes possible to enumerate
the equivalence classes and to provide normal forms. For bigger invariants this
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usually fails and a way to describe the objects is to construct a classifying space
such that each point of this space corresponds to a unique equivalence class. In
algebraic geometry this classifying space should again be an algebraic variety, to-
gether with certain functorial properties. These ideas lead to the notion of a fine,
respectively coarse, moduli space ([40, 42]).

Classically, moduli spaces have been constructed for global algebraic objects
such as projective varieties, or for vector bundles on a fixed projective variety.
During the past years there has also been some progress in constructing moduli
spaces for singularities (cf. [21]) and for Cohen-Macaulay modules on a fixed local
ring of a curve singularity ([29], see also [31] for a survey). Indeed, the methods
of proof are constructible and can be transferred to algorithms and finally to
programmes.

In the following, we describe an algorithm to compute a moduli space for iso-
lated hypersurface singularities, following [21]. The algorithm has been developed
and implemented in Singular by T. Bayer ([3]).

Let w = (w1, . . . , wn) ∈ Zn, wi > 0, be a weight vector and f ∈ C{x1, . . . , xn}
a semiquasihomogeneous power series, i.e.,

f = f0 +
∑

〈w,α〉>d

cαxα, f0 =
∑

〈w,α〉=d

cαxα

such that the quasi-homogeneous (or weighted homogeneous) principal part f0 has
an isolated singularity at the origin. We denote the class of all such power series
(resp. singularities) by Cf0 .

Two power series f, g are called right equivalent, f
r∼ g, if there exists a

holomorphic coordinate change φ# : (Cn, 0) → (Cn, 0) such that f = g ◦ φ#, or,
equivalently, f = φ(g), where φ ∈ Aut(C{x1, . . . , xn}) is the algebra automorphism
corresponding to φ#.

In a series of papers, V. I. Arnold classified all isolated hypersurface singu-
larities w.r.t. right equivalence up to modality 2, by giving normal forms [1].

Here we should like to present an algorithm to compute a moduli space for
semiquasihomogeneous power series with fixed principal part w.r.t. right equiva-
lence. In [21], also a moduli space for contact equivalence was constructed, but
that construction is more involved and not treated here.

To start with we need an algebraicvariety which parametrises all semiquasi-
homogeneous power series (up to right eq uivalence) and then to identify equivalent
objects. Indeed, equivalent objects belong to the same orbit of an algebraic group
action and the aim is to compute explicitly the group, the action of the group and,
finally, the quotient space.

Giving f0, we compute the set of exponents B ⊂ Nn so that {xα | α ∈ B}
is a monomial basis of the Milnor algebra Mf0 = C{x1, . . . , xn}/〈f0,x1 , . . . , f0,xn

〉.
This requires a standard basis computation for a local ordering (cf. [27]). Then we
select B− = {α ∈ B|〈w, α〉 > d} and set T− = Ck with k = |B−|.
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The polynomial

Ft(x) = f0(x) +
∑

α∈B−

tαxα

is the miniversal µ-constant unfolding of f0. By a theorem of Arnold ([1]), for
any f ∈ Cf0 there exists a t ∈ T− such that f

r∼ Ft. The next step in the algo-
rithm is to compute, for a given f ∈ Cf0 , a coordinate change φ and a t ∈ T− such
that φ(f) = Ft. The computation follows Arnold’s proof, constructing φ degree by
degree until the maximal weighted degree 〈w, α〉, α ∈ B−.

Usually there exist t 6= t′ ∈ T− such that Ft
r∼ Ft′ . However, we have the

following fact (proved in [21] by using the Gauß-Manin connection): let f, g ∈ Cf0 ,
ϕ ∈ Aut C{x} and assume ϕ(f) = g. Then ordw(ϕ) ≥ 0, that is ordw

(
ϕ(xi)−xi

)
≥

wi for i = 1, . . . , n.
In the theorem of Arnold, ordw(φ) > 0, which implies that t ∈ T− is unique.

Moreover, Aut>0 C{x} = {ϕ ∈ Aut C{x} | ordw(ϕ) > 0} is a normal subgroup of
Aut≥0C{x} = {ϕ ∈ Aut C{x} | ordw(ϕ) ≥ 0}, and the quotient

Gw = Aut≥0 C{x}/ Aut>0 C{x}

acts algebraically on T−. Let Gw
f0
⊂ Gw denote the subgroup which fixes f0 and

denote by Ef0 ⊂ Aut(T−) the image of Gw
f0

. Then Ef0 is a finite group acting
algebraically on T− and the geometric quotient T−/Ef0 is the desired coarse moduli
space for unfoldings in Cf0 modulo right equivalence (cf. [21]).

The following steps are needed for computing the moduli space:

0. Compute miniversal µ-constant unfolding,
1. compute Gw

f0
,

2. compute the action of Gw
f0

on T− using Arnold’s theorem,
3. compute Ef0 and linearise to get E′

f0
acting linearly on some C`, ` ≥ k,

and compute an equivariant embedding i : T− ↪→ C`,
4. determine generating invariant polynomials for E′

f0
,

5. determine the relations between the invariants to get the equations for
i(T−)/E′

f0
∼= T−/Ef0 , which is the desired moduli space.

Singular example for computing the moduli space (we omit intermediate com-
mands):

> LIB "qhmoduli.lib";
> ring R = 0, (x,y,z), ls; // define a local ring
> poly f = x2y + x2z + y5 - z5; // principal part

Step 0. Compute a basis for the semi-universal unfolding.

> ideal B = UpperMonomials(f); B;
B[1]=y3z3, B[2]=x2y3, B[3]=x2y2

Hence, F = f + t1y
3z3 + t2x

2y3 + t3x
2y2 is the miniversal µ-constant unfolding.

The dimension of the moduli space is 3.
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Step 1, 2 and 3. Compute the equations of the stabilizer of f , compute the induced
action on T− = C3, linearise the action with equivariant embedding T− ↪→ C4

> list stab = StabEqn(f); .... // commands omitted
> actionid; //linearised action of E′

f on C4 ⊃ T− = C3

actionid[1]=s(1)*t(1), actionid[2]=-s(3)*t(2)+s(3)*t(4)+s(5)*t(2)
actionid[3]=s(4)*t(3), actionid[4]=s(5)*t(4)

Step 4. Compute generators for the invariant ring of E′
f

> def T = InvariantRing(groupid,actionid); setring T;
> invars; //there are 21 invariants of degree 3 to 10
invars[1]=t(1)*t(4)^2, invars[2]=t(2)*t(3)*t(4)-t(3)*t(4)^2, ...

Step 5. Compute equations of the moduli space
> def R4 = ImageVariety(V, invars); //V is the ideal of T− ⊂ C4

> setring R4; imageid; //simplified equation of moduli space
imageid[1]=Y(5)^2-Y(4)*Y(6), imageid[2]=Y(3)*Y(5)-Y(2)*Y(6), ...
imageid[55]=9*Y(1)^5+2816*Y(2)^2*Y(6)*Y(9)+296*Y(6)*Y(7)^2
-152*Y(2)*Y(6)*Y(8)-960*Y(6)*Y(7)*Y(9)-9*Y(6)*Y(10)

Hence, the moduli space for x2y+x2z+y5−z5 is a 3-dimensional affine subvariety
of C10 defined by 55 equations of degrees between 2 and 5.

This shows already that moduli spaces have a complicated structure, even
for relatively small examples.

Problems

1. Extend the algorithms to construct moduli spaces for singularities with
respect to contact equivalence. This will contain completely new parts
since we need not only handle finite groups but unipotent groups.

2. Moduli spaces for torsion free modules on curve singularities have been
constructed in [29] with constructive proofs. Again unipotent group actions
come into play. It would be desirable to develop and implement algorithms
and test conjectures related to the structure of these moduli spaces.

4. Curves with Prescribed Singularities

It is a classical and interesting problem, which is still in the centre of theoretical
research, to study the variety V = Vd(S1, . . . , Sr) of (irreducible) curves C ⊂ P2

C
of degree d having exactly r singularities of prescribed (topological or analytical)
types S1, . . . , Sr. Among the most important questions are:

• Is V 6= ∅ (existence problem)?
• Is V irreducible (irreducibility problem)?
• Is V smooth of expected dimension (T -smoothness problem)?

A complete answer is only known in the special case of nodal curves, that is, for
Vd(r) = Vd(S1, . . . , Sr) with Si ordinary nodes (A1-singularities): Vd(r) 6= ∅ and
T -smooth ⇐⇒ r ≤ (d−1)(d−2)

2 (Severi, 1921), Vd(r) is irreducible (if 6= ∅) (Harris,



Computer Algebra 9

1985). Even for cuspidal curves there is no sufficient and necessary answer to any
of the above questions and one can hardly expect such an answer.

Clearly, one can easily give an upper bound for the number of singular points
that may occur on a plane irreducible curve C of degree d: by the genus formula
C can have, at most, (d−1)(d−2)/2 singularities. Another upper bound for the
(weighted) number of singularities arises from applying Bézout’s Theorem to the
intersection of two generic polars of C:∑

z∈C

µ(C, z) ≤ (d− 1)2 ,

µ(C, z) = dimC C{x, y}/(fx, fy) the Milnor number of C at z.
On the other hand, in the case of arbitrary topological types Si, we have the

following existence theorem, which is asymptotically optimal (with respect to the
occurring invariants and the exponent of d)

Theorem 4.1. ([24, 37]) Vd(S1, . . . , Sr) 6= ∅ if
∑r

i=1 µ(Si) ≤ 1
46 (d + 2)2 and two

additional conditions for the five “worst” singularities hold true.

In case of only one singularity we havethe slightly better sufficient condition
for existence, µ(S1) ≤ 1

29 (d− 5)2.
The theorem is just an existence statement, the proof gives no hint how to

produce any equation. To produce explicit equations one needs some constructive
method. Then the computer can be used in order to check the construction, or
even, to improve the results. The following is a prominent example (actually, it
belongs to a series of “world record” examples):

Example 4.2. ([26]) The irreducible curve with affine equation

y2 − 2y
(
x28+ 2x21y16− 2x14y32+ 4x7y48− 10y64

)
+ x56+ 4x49y16 = 0

has degree 65 and an A2260-singularity (x2− y2261 = 0) and a semiquasihomoge-
neous singularity S9,16 with principal part f0 = x9+ y16 as only singularities. In
particular, it is an element of the variety V65(A2260, S9,16) which has negative ex-
pected dimension (hence is not T-smooth).

In order to verify this, one may proceed, using Singular, as follows:
> ring s = 0,(x,y),ds;
> poly f = y2-2x28y-4x21y17+4x14y33-8x7y49+20y65+x56+4x49y16;
> matrix Hess = jacob(jacob(f)); //the Hessian matrix of f
> vdim(std(jacob(f))); //the Milnor number of f
2260

Since the rank of the Hessian at 0 is checked to be 1, f has an Ak singularity
at 0; it is an A2260-singularity since the Milnor number is 2260. In the following
we show that the projective curve defined by f has no further singularities in the
affine part. This follows from

dimC(C[x, y]〈x,y〉/〈jacob(f), f〉 = dimC(C[x, y]/〈jacob(f), f〉,
confirmed by Singular:
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> vdim(std(jacob(f)+f));
2260 // multiplicity of Sing(C) at 0 (local ordering)
> ring r = 0,(x,y),dp;
> poly f = fetch(s,f);
> vdim(std(jacob(f)+f));
2260 // multiplicity of Sing(C) (global ordering)

Finally, we have to consider the singularities at infinity:
> ring sh = 0,(x,y,z),dp;
> poly f = fetch(s,f);
> poly F = homog(f,z); F; // homogeneous polynomial defining C
4x49y16+20y65+x56z9-8x7y49z9+4x14y33z18-4x21y17z27-2x28yz36+y2z63
> ring r1 = 0,(y,z),dp;
> map phi = sh,1,y,z;
> poly g = phi(F); // F in affine chart (x=1)
> vdim(std(jacob(g)+g));
120
> ring r2 = 0,(y,z),ds; // local ring at (1:0:0)
> poly g = fetch(r1,g); g;
z9+4y16-2yz36-4y17z27+4y33z18-8y49z9+20y65+y2z63
> vdim(std(jacob(g)+g));
120

As before, we can conclude that there is precisely one singularity of C on the line
at infinity, situated at (1 : 0 : 0), being semiquasihomogeneous of type S9,16. (Note
that in our computation we have considered all points at infinity except (0 : 1 : 0).
The latter is obviously not a point of C).

In the following we should like to mention a few problems and conjectures
which are currently in the centre of research in connection with singular curves in
P2

C.

Computing zero-dimensional ideals

Many of the questions concerning plane projective curves with prescribed singu-
larities can be translated to properties of zero-dimensional (homogeneous) ideals
I ⊂ C[x, y, z], e.g.,

• existence of curves with (ordinary) multiple points in prescribed position,
or, more generally, existence of curves with prescribed position of infinitely
near points (clusters),

• T-smoothness of the varieties Vd(S1, . . . , Sr),
• existence of (global) deformations of projective curves.

For instance, consider the following problem: given points p1, . . . , pn ∈ P2
C and

positive integers m1, . . . ,mn. Determine the dimension of the variety of curves of
any degree d passing through each of the points pi with multiplicity (at least) mi,
i = 1, . . . , n. The equivalent formulation would be: determine the ideal

I = mm1
p1

∩ · · · ∩mmn
pn

⊂ C[x, y, z] ,
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mpi
the maximal ideal at pi, and compute the Hilbert function HI of I.

Conjecture 4.3. (Harbourne-Hirschowitz) Let n > 9, p1, . . . , pn ∈ P2
C in general

position, m a positive integer, and let I = mm
p1
∩ · · · ∩ mm

pn
. Then the Hilbert

function satisfies

HI(d) = max
{

0,
(d+1)(d+2)

2
− n · m(m+1)

2

}
for all d > 0. In other words, the variety of curves with n singular points of multi-
plicity (at least) m at the prescribed (generic) points has the expected dimension.

There are several special cases where this conjecture is known to hold true;
in particular, C. Ciliberto and R. Miranda [14] have proven that it always holds
for m ≤ 12. Nevertheless the general conjecture is still far from being proven.

Conjecture 4.4. (Nagata) Let n>9, p1, . . . , pn ∈ P2
C in general position, m1, . . . ,mn

positive integers, and let a(m1, . . . ,mn) denote the minimal degree of a curve pass-
ing through each of the points pi with multiplicity (at least) mi, i = 1, . . . , n. Then

a(m1, . . . ,mn) >
m1 + · · ·+ mn√

n
.

N. Nagata [41] has proven the statement to be true for any n > 9 being a
square. There are many people working to prove this conjecture for other integers
n ([43]), or, at least, to improve the known lower bounds for a(m1, . . . ,mn) (the
best known general bound is probably given in [44]). But the general question is
still widely open.

Computer algebra could be used to provide evidence for such conjectures (or,
to produce counter examples) provided one can solve the following problems:

1. find algorithms to compute the 0-dimensional ideals (related to the above prob-
lems). In many cases this is easy but for others this is unknown (e.g., to compute
the equisingularity ideal for a sufficiently general singularity);

2. find fast algorithms to compute the intersection of zero-dimensional ideals. The
general method for computing intersections via syzygies or elimination is too
slow, due to the high complexity of the algorithms involved. There is already
some considerable progress made, by the so-called Buchberger-Möller algorithm
and further generalisations (cf. [2]), but certainly this is not yet sufficient.

5. Symbolic-Numerical Polynomial Solving

Algebraic geometry is concerned with investigating the structure of the set of solu-
tions of finitely many polynomial equations. Solving such a system is considered to
be part of numerical analysis rather than of algebraic geometry. However, knowing
something about the structure of the solution set can actually help in finding the
solutions.



12 G.-M. Greuel

Given polynomials f1, . . . , fk ∈ K[x1, . . . , xn], K being R or C, numerical
solving means determining the coordinates (p1, . . . , pn), up to a given precision of
all (respectively some, respectively one) points of the variety

V =
{
p = (p1, . . . , pn) ∈ Kn

∣∣ f1(p) = · · · = fk(p) = 0
}

.

Algebraically, we are interested in describing the structure of V , in computing
its dimension, in the number of solutions (if finite), in the decomposition into
irreducible varieties (e.g., by primary decomposition), in the radical of the ideal
I generated by f1, . . . , fk or the normalisation of the ring K[x1, . . . , xn]/I. Since
V , the set of solutions of f1 = · · · = fk = 0 depends only on I, even only on the
radical of I, all the above mentioned methods can be used in preparing the given
polynomial system for better numerical solving.

Hence, algebraic geometry and computer algebra may be used as symbolic
preprocessing for easy numerical postprocessing. In particular, the following algo-
rithms and methods may be applied (all being implemented in Singular).

• Find other generators of I, or of ideals with the same solution set, for ex-
ample, triangular sets, based on Gröbner basis computations (see below),
which allow better numerical solving: the numerical algorithms become
more stable, we can solve overdetermined systems and find all solutions.

• Create other ideals, having the same solution set, for example, the radical
for obtaining only simple zeros, primary decomposition for splitting the
system into several smaller ones.

• Compute a parametrisation of the solution set V , which is only pos-
sible for rational V , sometimes it is achieved by the normalisation of
K[x1, . . . , xn]/I.

• Reduce higher dimensional solving to 0-dimensional solving by applying a
Noether normalisation.

Pure numerical solving has the advantage of being fast, flexible in accuracy by
using iterative methods and being applicable not only to polynomial systems. In-
deed, the big success of numerical methods during the past years seems to show
that symbolic methods are of little use in solving systems coming from real life
problems. However, due to rounding errors, numerical methods are principally un-
certain, often unstable in an unpredictable way, sometimes do not find all solutions
and have problems with overdetermined systems. Moreover, they can hardly treat
underdetermined systems (sometimes curves, at most surfaces, as solution sets)
and certainly get into trouble near singularities.

On the other hand, symbolic methods are principally exact and stable. How-
ever they have a high complexity, are, therefore, slow, and, in practice, are applica-
ble only to small systems (this is the case, in particular, for radical computation,
primary decomposition and normalisation). Nevertheless, they are applicable to
any polynomial system of any dimension and for zero-dimensional systems they
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can predict precisely the number of complex solutions (counted with multiplici-
ties). Moreover, as is well-known, symbolic preprocessing of a system of polyno-
mials (even of ordinary and partial differential equations) may not only lead to
better conditions for the system to be solved numerically but can help to find all
solutions or even make numerical solving possible (see below).

There is continuous progress in applying symbolic methods to numerical solv-
ing, cf. the various articles in the ISSAC Proceedings, the survey article by Möller
[39], the textbook by Cox, Little and O’Shea [13] or the recent paper by Verschelde
[49]. Besides Gröbner basis many other methods have been used. Recently, resul-
tant methods have been re-popularised , in particular in connection with numerical
solving (cf. [11, 51]), partly due to the new sparse resultants by Gelfand, Kapranov
and Zelevinsky [22]. I should also mention the work of Stetter (cf. [47, 48]), which
is not discussed in this paper.

In the following I shall describe roughly how Gröbner bases and resultants
can be applied to prepare for numerical solving of zero-dimensional systems. More-
over, I shall present experimental material for comparing the performance of the
two methods, which seems to be the first practical comparison of resultants and
Gröbner bases in connection with numerical solving under equal conditions. The
motivation for doing this came from a collaboration with electrical engineers, aim-
ing at symbolic analysing and sizing micro-electric analog circuits.

Let f1, . . . , fk ∈ K[x1, . . . , xn], and assume that the system f1 = · · · = fk = 0
has only finitely many complex solutions. The problem is to find all solutions up
to a given precision. We present two methods, one by computing a lexicographical
Gröbner basis and then splitting this into triangular sets, the second by computing
the sparse u-resultants and the determinants of the partly evaluated resultant
matrix. Both methods end up with the problem of solving univariate polynomial
equations for which we use Laguerre’s method.

Solving polynomial systems using Gröbner bases and triangular sets:

Input: Zero-dimensional system f1, . . . , fk ∈ K[x1, . . . , xn], k ≥ n.
Output: Complex roots of f1 = · · · = fk = 0 in Cn.

• Compute a reduced lexicographical Gröbner basis G = {g1, . . . , gs} of the
ideal I = 〈f1, . . . , fk〉 with s ≥ n.

• Compute a triangular system: a triangular basis is a reduced lexicograph-
ical Gröbner basis G = {g1, . . . , gn} (as many polynomials as variables)
with gi of the form gi = xpi

i + g′i(xi, . . . , xn) with degxi
g′i < pi. A tri-

angular system for I consists of triangular bases T1, . . . , Ts such that
V (I) = V (T1) ∪ · · · ∪ V (Ts). Triangular systems can be computed ef-
fectively, basically by two different methods, one due to Lazard [36, 18],
the other due to Möller [39]. Choose any of these methods to compute a
triangular system T1, . . . , Ts for I.

• Use a numerical solver (e.g. Laguerre’s method) to find all zeros of Ti,
i = 1, . . . , s. The union of these zero-sets is the desired solution set.
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There are several variations on how to compute triangular sets. The V (Ti) need not
be disjoint (but can be made disjoint). The Ti need not define maximal ideals (but
this can be achieved), we may use the factorising Gröbner, etc. Some of these have
been implemented in Singular by D. Hillebrand, a former student of M. Möller
(cf. [34]).
Singular example (the output has been changed to save space):

> ring s = 0,(x,y,z),lp;
> ideal i = x2+y+z-1,x+y2+z-1,x+y+z2-1;
> option(redSB); //option for computing a reduced Groebner basis
> ideal j = groebner(i); j;
j[1]=z6-4z4+4z3-z2, j[2]=2yz2+z4-z2, j[3]=y2-y-z2+z, j[4]=x+y+z2-1
> LIB "triang.lib";
> triangMH(j); //triangular system with Moeller’s method
> //(fast, but not necessarily disjoint)
[1]: [2]:

_[1]=z2 _[1]=z4-4z2+4z-1
_[2]=y2-y+z _[2]=2y+z2-1
_[3]=x+y-1 _[3]=2x+z2-1

> triangMH(j,2); //triangular system (with Moeller’s method,
> //improved by Hillebrand) and factorisation
[1]: [2]: [3]: [4]:

_[1]=z _[1]=z _[1]=z2+2z-1 _[1]=z-1
_[2]=y _[2]=y-1 _[2]=y-z _[2]=y
_[3]=x-1 _[3]=x _[3]=x-z _[3]=x

We can now solve the system easily by recursively finding roots of univariate
polynomials, Singular commands are:

> LIB "solve.lib";
> triang_solve(triangMH(j,2),30); //accuracy of 30 digits

or applying triangLf_solve(i); directly to i.
Resultant methods have recently become popular again, due to new sparse

resultants invented by Gelfand, Kapranov and Zelevinsky [22]. Indeed, they beat
by far the classical Macaulay resultants as is shown, for example, in [50]. The
following algorithm to use sparse resultants for polynomial solving is due to Canny
and Emiris [11], it has been implemented in Singular by M. Wenk [50].

For computing resultants, we have to start with a zero-dimensional poly-
nomial system with as many equations as variables, and have to compute the
u-resultant (named so by Van der Waerden) where ui are new variables which
have to be specialised later. The construction of the sparse resultant matrix uses
a mixed polyhedral subdivision of the Minkowski sum of the Newton polytopes.
Specialisations of the u-coordinates are used then to reduce the problem to the
univariate case. The determinants of the specialised u-resultant matrices are uni-
variate polynomials, the roots are determined by Laguerre’s algorithm.
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The main advantage of the sparse resultants against Macaulay resultants is
that the size of the resultant matrices depend on the Newton polytopes and not
just on the degrees of the input polynomials, hence is much smaller. Note that by
the resultant method we can only determine roots in (C \ {0})n.

Here is a more detailed description of the algorithm (for details see [11, 50]):

Solving polynomial systems using resultants

(After Gelfand, Kapranov, Zelevinsky (1994) and Canny, Emiris (1997)):

Input: Zero-dimensional system f1, . . . , fn ∈ C[x1, . . . , xn].
Output: Complex roots of f1 = · · · = fn = 0 in (C \ {0})n.

• Add f0 = u0 + u1x1 + · · ·+ unxn ∈ K[u0, . . . , un, x1, . . . , xn] and compute
the Newton polytopes Qi ⊂ Rn of fi, i = 0, . . . , n.

• Compute, using linear programming, a polyhedral subdivision ∆ of the
Minkowski sum Q = Q0 + · · ·+ Qn. Translate ∆ by a small vector in Rn

such that lattice points are interior points.
• Construct from ∆ the square resultant matrix M(u0, . . . , un), which has

as entries either a number or a variable ui.
• Set M i(u0) := M(u0, 0, . . . , 0,−1, 0, . . . , 0), −1 at the i-th place. The set

Li of all roots of det
(
M i(u0)

)
, i = 1, . . . , n, contains the i-th components

of all complex solutions of the system f1 = · · · = fn = 0 (in an unordered
manner).

• For each solution of f1 = · · · = fn = 0 identify the components which were
computed in the previous step. This is done by substituting u1, . . . , ui by
random numbers and ui+1, . . . , un by 0 in M(u0, u1, . . . , un), computing
the determinant and solve this for u0.

Most of the time is spent in the second last and, in particular, in the last step.
As an example, we show the computation of the complex zero-set of the

ideals I1, . . . , I5 (with precision of 30 digits, see below) which represent more than
60 examples. On average our resultant solver could manage the same examples as
Mathematica and Maple (but Maple found fewer roots). The problems for the
resultant solver occurred either because of too big matrices or because of numerical
problems for the subsequent Laguerre solver (no convergence). Sometimes not all
solutions were found, sometimes the system returned too many solutions because
multiple solutions were interpreted as different ones.

Our experiments do not confirm the claim made in [51] that resultant methods
are best suited to polynomial systems solving, at least for bigger examples. On
the contrary, Gröbner bases and triangular sets showed the best performance,
identified most precisely the correct number of simple roots, could treat many more
examples and had the least numerical difficulties. The most expensive part was
usually the computation of a lexicographical Gröbner basis (computed through
FGLM); the triangular set computation was less expensive and the numerical
solving depended very much on the example.
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Of course, the Gröbner bases in Singular are highly tuned and the resul-
tant computations can certainly be improved. The examples show that resultant
methods are a good alternative for small examples. But for many variables even
the sparse resultants become huge and we have to compute several determinants of
these matrices. This is the main bottleneck for the resultant method. Nevertheless,
still more research has to be done.

Interpretation of the table: vars: number of variables, mult: number of com-
plex solutions with multiplicity, # roots: number of different roots without multi-
plicity, time: total time, degree of res.: number of (not necessarily simple roots) in
(C \ {0})n, matrix size: number of rows of (square) resultant matrix.
Commands used:

• triang solve(I); and ures solve(I); (Singular),
• NSolve(eqns,vars,30); (Mathematica),
• evalf(solve(eqns,vars),30); (Maple),
• GROESOLVE(eqns,vars);, respectively solve(I,var); with options on
complex; on rounded; precision 30; (Reduce).

Singular 1-3-7

Triang. systems Resultant method
No vars mult #roots roots degree matrix

found
time

of res.
time

size
1 3 53 32 32 24 sec 31 ∼ 40 sec ∼ 160
2 4 16 16 16 2 sec 16 ∼ 5 sec ∼ 70
3 5 70 70 70 5 sec 70 ∼ 50 sec ∼ 880
4 6 156 156 156 22 sec 156 > 5000 sec ∼ 5460
5 10 27 27 27 66 sec 30 > 5000 sec ∼ 10000

Mathematica 4.0 Maple V.5 Reduce 3.7
No roots roots roots

found
time

found
time

found
time

1 37 100 sec — > 5000 sec — > 5000 sec
2 16 9 sec 1 1 sec 16 22 sec

I1 =
〈
x3z + 6x2 − 2xz3 + y4 + yz, 5x2y2 + y3z + 3yz3 + z3, −x2z − 2xyz2 +

4y4 + 2y2z
〉
⊂ C[x, y, z],

I2 = (cf. [51])
〈
5x2 + 6x + 3y + 6z + 2w + 3, 4x + 4y2 + 3z + 2w + 4, x− 11z2 +

3z + 7w − 9, x + 3y + 2z − 3w2 + 13
〉
⊂ C[x, y, z, w],

I3 = (cyclic 5)
〈
a+ b + c + d + e, ab + ae+ bc + cd + de, abc+ abe+ ade+ bcd +

cde, abcd + abce + abde + acde + bcde, abcde− 1
〉
⊂ C[a, b, c, d, e],

I4 = (Arnborg 6)
〈
a+ b+ c+ d+ e+ f, ab+ af + bc+ cd+ de+ ef, abc+ abf +

aef + bcd + cde + def, abcd + abcf + abef + adef + bcde + cdef, abcde +
abcdf + abcef + abdef + acdef + bcdef, abcdef − 1

〉
⊂ C[a, b, c, d, e, f ],
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I5 = (POSSO, Methan6−1)
〈
− 10ai− 320000a + 64bh + 10hj + 11hk,

160000a−32bh−5bi−5bk−5000b, −ci+ gi+210g + jk +1300000, −ei+
700000, −2f +k2, −gi−210g +hj, 320000a−64bh−10hj−11hk−16h+
7000000, ei−hj− jk− 410j, −10ai− 10bi+10bk +20000b− 10ci− 10ei+
14f − 10gi + 11hk, 10bi − 10bk + 10ci + 10gi + 1400g + 10hj − 11hk −
10jk − 10k2 − 4200k

〉
⊂ C[a, b, c, d, e, f, g, h, i, j, k].

The computations, with precision of 30 digits, were performed on a Pentium Pro
200 with 128 MB.

Maple and Reduce could not solve examples 3–5 within our time limit of
5000 seconds, Mathematica stopped with an error.

Maple offers also the opportunity to preprocess a set of ideal generators in
view of solving, by using the command gsolve;. But within our time limit of 5000
seconds, this also lead only to a result for example 2. However, in this case, Maple
is able to compute all roots, by successively applying fsolve(eqn,var,complex);
and substituting.
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F. Winkler (Eds.): Gröbner Bases and Applications. LNS 251, 159–178, CUP (1998).

[40] D. Mumford and J. Fogarty, Geometric Invariant Theory, Springer 1982.

[41] N. Nagata, On the fourteenth problem of Hilbert, Amer. J. Math. 81, 766–772,
(1959).

[42] P. E. Newstead, Introduction to moduli problems and orbit spaces, Lecture Notes,
Tata Institute of Fundamental Research, Springer 1978.

[43] Z. Ran, On the Nagata Problem, Duke preprint, no. math.AG/9809101 (1998).
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