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Abstract. We consider heat kernels on different spaces such as Riemannian
manifolds, graphs, and abstract metric measure spaces including fractals. The
talk is an overview of the relationships between the heat kernel upper and
lower bounds and the geometric properties of the underlying space. As an
application some estimate of higher eigenvalues of the Dirichlet problem is
considered.
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1. Introduction

This is a brief survey on heat kernel long time estimates on various underly-
ing spaces such as Riemannian manifolds, graphs and fractals. We have selected
generic results which, when properly modified, remain true in all the cases, al-
though each particular result is presented here in one of the settings which is
most convenient. In section 2 we give necessary definitions. In sections 3 and 4,
we consider heat kernel on-diagonal estimates in relation with the first eigenvalue
estimates. In sections 5 and 6 we consider off-diagonal upper and lower estimates,
of Gaussian and sub-Gaussian types, respectively. In section 7, we discuss relations
to isoperimetric properties of higher eigenvalues.
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For simplicity, we restrict our consideration to uniform estimates of the heat
kernel. For further results and for a detailed account of various related aspects of
heat kernels and eigenvalues, we refer a reader to books and surveys [2, 6, 7, 9, 10,
13, 21, 29, 30, 31, 33, 34, 36, 40, 41].

Throughout the paper, C and c normally denote large and small positive
constants, respectively, which may be different on different occurrences. A relation
f ' g means that the ratio of the functions f and g remains bounded between two
positive constants for a specified range of their arguments.

2. The Notion of Heat Kernel

2.1. Manifolds
Let M be a smooth connected Riemannian manifold, and let d(x, y) be a geodesic
distance on M . Assume that a Borel measure µ is defined on M , which has a
smooth density m with respect a Riemannian measure (in particular, µ may be the
Riemannian measure if m = 1). The couple (M,µ) is called a weighted manifold.

A natural Laplace operator ∆µ is associated with (M, µ), namely,

∆µ = m−1div (m∇)

where ∇ and div are the Riemannian gradient and divergence, respectively. An
energy form of ∆µ is given by

Eµ(f) =
∫

M
|∇f |2 dµ .

It is well-known that the heat equation

∂u
∂t

= ∆µu ,

(where u(t, x) is defined for t > 0 and x ∈ M) has a heat kernel, which is denoted
by pt(x, y) and can be defined in various alternative ways. Here are some equivalent
definitions:

1. For any y ∈ M , the function (t, x) 7→ pt(x, y) is the smallest positive
fundamental solution to the heat equation with a source at y.

2. The function pt(x, y) is an integral kernel of the heat semigroup Pt := et∆µ

that is defined by using the spectral theorem (indeed, the operator ∆µ

with domain C∞0 (M) is essentially self-adjoint in L2(M, µ) and negative
definite).

3. The function pt(x, y) is the transition density of a Brownian motion Xt

on (M, µ), which is by definition a diffusion process generated by ∆µ.
Here are some examples of exact heat kernels.
If (M, µ) = RN then the heat kernel is given by the Gauss-Weierstrass formula

pt(x, y) =
1

(4πt)N/2 exp
(

−d2(x, y)
4t

)

.
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If (M, µ) = H3 —the 3-dimensional hyperbolic space of constant negative curva-
ture −1, then

pt(x, y) =
1

(4πt)3/2 exp
(

−t− d(x, y)2

4t

)

d(x, y)
sinh d(x, y)

.

If M is a compact manifold then the operator ∆µ is compact. Let {ϕk}∞k=0 be an
orthonormal basis in L2(M,µ) of eigenfunctions of −∆µ with eigenvalues

0 = λ0 < λ1 ≤ λ2 ≤ . . .

(here ϕ0 = const). Then the heat kernel on (M,µ) is determined by

pt(x, y) =
∞
∑

k=0

e−λktϕk(x)ϕk(y) .

2.2. Graphs
Consider now a discrete version of the heat kernel. Let Γ be a connected graph
and let d(x, y) be a combinatorial distance on Γ, that is, d(x, y) is the smallest
number of edges in a path connecting x, y ∈ Γ.

Let µxy be a weight on edges of Γ. More precisely, if vertices x, y ∈ Γ are
connected by an edge then we write x ∼ y, denote the edge by xy and assign to
it a positive number µxy. In particular, it may happen that µxy = 1 for all edges,
in which case we say that µxy is a standard weight. It is convenient to extend µxy

by zero to those x, y which are not neighbors.
Any weight µxy gives rise to a measure on vertices by

µ(x) =
∑

y∼x

µxy

and then to a measure on all finite sets Ω ⊂ Γ by

µ(Ω) =
∑

x∈Ω

µ(x) .

The couple (Γ, µ) is called a weighted graph (here µ refers both to the weight µxy

and to the measure). There is a natural Laplace operator ∆µ on (Γ, µ) which acts
on functions on Γ by

∆µf(x) =
1

µ(x)

∑

y∈Γ

(∇xyf)µxy

where
∇xyf = f(y)− f(x) .

It is easy to verify that ∆µ is a bounded self-adjoint operator in L2(Γ, µ). Its
energy form is given by

Eµ(f) =
∑

x,y∈Γ

|∇xyf |2 µxy .
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The heat kernel pn(x, y) is defined for non-negative integers n and for all
x, y ∈ Γ as a kernel with respect to µ of the operator (I + ∆)n. An operator
P = I + ∆ acts by

Pf(x) =
1

µ(x)

∑

y∈Γ

f(y)µxy =
∑

y∈Γ

P (x, y)f(y)

where
P (x, y) =

µxy

µ(x)
.

The operator P is Markov and defines a nearest neighborhood random walk Xn

on Γ by the rule
P (Xn+1 = y | Xn = x) = P (x, y) .

Denote by Pn(x, y) the transition function of Xn, that is

Pn(x, y) = P (Xn = y | X0 = x) .

Then the heat kernel pn is a density of Pn with respect to measure µ:

pn(x, y) =
Pn(x, y)

µ(y)
.

There are practically no explicit formulas for heat kernels on graphs, even in
simple situations. If Γ = ZN and µ is a standard weight then pn(x, y) admits the
following Gaussian estimates1

pn(x, y) ' 1
nN/2 exp

(

−d2(x, y)
cn

)

(1)

provided
n ≥ d(x, y) and n ≡ d(x, y)mod 2 .

If n < d(x, y) then always pn(x, y) = 0. If n and d(x, y) have different parities then
pn(x, y) = 0 for all bipartite graphs, in particular for ZN .

2.3. Metric-measure-energy spaces
Let (M, d) be a locally compact separable metric space. Suppose that a Borel
measure µ is defined on M , which is finite on bounded sets. Assume also that
(M, µ) admits an energy form E which is a regular Dirichlet form on L2(M, µ).

In general, any energy form E has a generator −∆ which is a self-adjoint
operator on L2(M, µ) with a dense domain, so that

E(f) = −
∫

M
f ∆f dµ ,

for all f ∈ dom(∆) (see for example [14, Theorem 4.4.2], [16]). It is natural to say
that ∆ is a Laplace operator of the space (M, µ, E).

The heat semigroup Pt is defined as an one-parameter family of operators
{

et∆
}

t≥0 in L2(M, µ). If Pt has an integral kernel pt(x, y) with respect to measure

1The constant c in the exponential term of (1) may be different for the upper and lower bounds.
This remark applies to all Gaussian estimates to be considered below.
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µ then it is called a heat kernel of ∆ (or E). There are various conditions for
existence of a heat kernel and its continuity. With E one associates a Hunt process
Xt on M with generator ∆ and transition density pt(x, y).

Weighted manifolds are simple examples of metric-measure-energy spaces.
Graphs fit also apart from the fact that on graphs it is more natural to consider
the heat kernel with discrete time, which arises from the semi-group (I + ∆)n

rather than et∆, although the latter can also be considered.
An example of different nature arises from fractal sets. Let M be a fractal set

in RN such as a Sierpinski gasket or a Sierpinski carpet (see [2, 35]). A distance d
on M is inherited from the ambient space. A measure µ is a Hausdorff measure of
a proper dimension α, namely, α is just the Hausdorff dimension of M . Definition
of an energy form is highly non-trivial. This is done by using the self-similarity
structure of M and a limiting procedure, and we refer the reader to [2]. In any
case, E can be defined and, moreover, the corresponding heat kernel pt(x, y) is
jointly continuous in x, y ∈ M and t > 0.

The heat kernel estimate which is described below is due to Barlow-Perkins
[4] for a Sierpinski gasket and Barlow-Bass [3] for a Sierpinski carpet. This estimate
requires two parameters which describe the geometry of the underlying space. The
first one is α which is the Hausdorff dimension of M , and the second one is “a
walk dimension” which we denote by β. It can be defined, for example, as follows.
Denote by B(x, r) a metric ball

B(x, r) = {y ∈ M : d(x, y) < r} (2)

and by Tx,r the first exit time from the ball B(x, r), that is

Tx,r = inf {t ≥ 0 : Xt /∈ B(x, r)} . (3)

Then β is defined by the relation

ExTx,r ' rβ ,

for all x ∈ M and r < r0 (here r0 is either finite or infinite depending on whether
M is bounded or not). It has been proved that β > 2 on the fractals, and the heat
kernel admits the following sub-Gaussian estimate

pt(x, y) ' 1
tα/β exp

(

−
(

dβ(x, y)
ct

)
1

β−1
)

, (4)

for all x, y ∈ M and t < t0 = t0(r0).
Observe that the Gaussian heat kernel in RN satisfies (4) with α = N and

β = 2. Hence, we can say that fractals extend the family of Euclidean spaces in
two ways: first, allowing fractional values of α, and second, introducing a second
parameter β so that the potential theory on such spaces is determined by two
parameters.
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3. On-Diagonal Upper Bounds and Faber-Krahn Inequalities

We will distinguish various types of heat kernel estimates, and start with an on-di-
agonal upper bound

pt(x, x) ≤ C
f(ct)

, (5)

where f(t) is an increasing function of t. For simplicity, let us restrict to the case
when the underlying space is a complete non-compact weighted manifold. Then
(5) is supposed to hold for all t > 0 and x ∈ M .

The necessary and sufficient condition for (5) can be stated in terms of a
Faber-Krahn inequality. For any precompact region Ω ⊂ M , let λ1(Ω) be the first
Dirichlet eigenvalue of −∆µ, that is

λ1(Ω) = inf
ϕ∈C∞0 (Ω),ϕ 6≡0

∫

Ω |∇ϕ|2 dµ
∫

Ω ϕ2dµ
.

Given a decreasing non-negative function Λ on (0,∞), we say that (M,µ) admits
a Faber-Krahn inequality with function Λ if, for any precompact region Ω,

λ1(Ω) ≥ Λ(µ(Ω)) . (6)

For example, RN admits a Faber-Krahn inequality with function Λ(v) = cv−2/N .

Theorem 3.1. ([18]) If (M, µ) admits a Faber-Krahn inequality with function Λ
then the heat kernel upper bound (5) holds with function f defined by

t =
∫ f(t)

0

dv
vΛ(v)

, (7)

assuming that the integral converges at 0.
Conversely, if (5) holds with a function f satisfying certain regularity condi-

tion then (M, µ) admits a Faber-Krahn inequality with function cΛ(C·) where Λ is
defined by (7).

Consider some examples. Let (M, µ) be a N -dimensional Riemannian mani-
fold of bounded geometry. Then it admits a Faber-Krahn inequality with function

Λ(v) = c
{

v−2/N , v < 1,
v−2, v ≥ 1,

which implies the estimate

pt(x, x) ≤ C
min

(

tN/2, t1/2
)

(see [8, 19]). This estimate is sharp if M = R×K where K is an (N−1)-dimensional
compact manifold.

Let (M,µ) admit a discrete group G of isometries with a compact fundamen-
tal domain. Then, by [12] (see also [21, Section 7.6]) a Faber-Krahn function is
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determined by the volume function V (x, r) = µ(B(x, r)) as follows: fix a point x0,
denote V (r) = V (x0, r) and define

Λ(v) =
(

c
V −1(Cv)

)2

. (8)

For example, if V (r) ' ecr, for large r, then we obtain, for large v,

Λ(v) ' 1
log2 v

whence, for large t,

pt(x, x) ≤ C exp
(

−ct1/3
)

. (9)

Similar relation between a volume growth and a Faber-Krahn function Λ
takes place on manifolds of non-negative Ricci curvature. Indeed, if M is such a
manifold and in addition V (x, r) ≥ crα for all r ≥ 1 and x ∈ M , then M admits
a Faber-Krahn inequality with function Λ defined by (8) for V (r) = crα, which
yields for large v

Λ(v) ' v−2/α

(see [22, p.198]). Therefore, we obtain by theorem 3.1, for large t,

pt(x, x) ≤ Ct−α/2 .

This estimate follows also from [28].

4. On-Diagonal Lower Bounds and Anti-Faber-Krahn Inequalities

Here we consider the case of graphs and lower bounds of the following type:

sup
x∈Γ

p2n(x, x) ≥ c
f(Cn)

. (10)

We say that a graph (Γ, µ) admits anti-Faber-Krahn inequality with a function
Λ, if there exists a sequence {Ωk} of non-empty finite sets in Γ and a numerical
sequence {vk} such that

vk+1 ≤ Cvk, lim
k→∞

vk = +∞ ,

and
µ(Ωk) ≤ vk and λ1(Ωk) ≤ Λ(vk) .

Theorem 4.1. ([11]) If M admits anti-Faber-Krahn inequality with function Λ then
the heat kernel lower estimate (10) holds with function f defined by (7) provided
f possesses certain regularity.

A particularly nice application occurs if Γ is a Cayley graph of a finitely
generated group G. In this case we take µ to be a standard measure, which implies
that pn(x, x) does not depend on x. On certain classes of groups, one can directly
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construct the sets {Ωk} with controlled volumes and eigenvalues. To obtain an
upper bound for λ1(Ωk), it suffices to have a smaller set Ω′k ⊂ Ωk such that

µ(Ω′k) ≥ cµ(Ωk) and d(Ω′k, {Ωk) ≥ cρk

with some numerical sequence {ρk}. Then it is easy to show that

λ1(Ωk) ≤ Cρ−2
k .

For example, if G is a polycyclic group then, using structure results, it is possible
to construct sequences of sets Ωk and Ω′k so that vk = Ck and ρk = k whence

λ1(Ωk) ≤ C
k2 =

C
log2 vk

.

Therefore, we can take

Λ(v) =
C

log2 v
,

which implies by (7) and (10)

p2n(x, x) ≥ c exp
(

−Cn1/3
)

.

This estimate was first proved by Alexopoulos [1] by a different method. Together
with a discrete version of the upper bound (9), it provides a sharp on-diagonal
heat kernel decay on polycyclic groups of exponential volume growth.

5. Gaussian Estimates

Let us return to the setting of manifolds.

Theorem 5.1. ([39, 20]) Assume that, for two points x, y on a arbitrary weighted
manifold (M, µ),

pt(x, x) ≤ 1
f(t)

and pt(y, y) ≤ 1
g(t)

, for all 0 < t < t0 ,

where f and g are monotone increasing functions possessing certain regularity.
Then, for all 0 < t < t0,

pt(x, y) ≤ C
√

f(ct)g(ct)
exp

(

−d2(x, y)
Ct

)

. (11)

Here t0 may be either finite or infinite. In particular, the Faber-Krahn in-
equality (6) implies (11) for all x, y ∈ M and t > 0 with functions f = g defined by
(7). As we see, the Gaussian upper bound does not require any additional geomet-
ric assumptions on top of those which already provide the on-diagonal estimates.

The question of Gaussian lower bound is less understood. However, for two-
sided Gaussian estimates there is the following result. Denote

V (x, r) = µ(B(x, r)) .

Also, let λ(N)
1 (Ω) be the first non-zero Neumann eigenvalue of −∆µ in a region Ω.

The following result can be extracted from [32, 17].
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Theorem 5.2. Let (M,µ) be a complete non-compact weighted manifold, and let
f(t) be a positive increasing function on (0,∞) satisfying the doubling property

f(2t) ≤ Cf(t), ∀t > 0 .

Then a two-sided heat kernel bound

pt(x, y) ' 1
f(t)

exp
(

−d2(x, y)
ct

)

, (12)

for all x, y ∈ M and 0 < t < t0, is equivalent to the following two conditions (valid
for all x ∈ M and 0 < r < c

√
t0):

1. the volume growth condition

V (x, r) ' f(r2)

2. and the Poincaré inequality

λ(N)
1 (B(x, r)) ≥ cr−2 .

Here t0 may be either finite or infinite. A similar result holds on graphs
[15] and on local Dirichlet spaces [37]. For example, a uniform volume growth
V (x, r) ' rα together with the Poincaré inequality is equivalent on any of those
spaces to the estimate

pt(x, y) ' 1
tα/2 exp

(

−d2(x, y)
ct

)

.

A discrete version of theorem 5.2 applies on a Cayley graph (Γ, µ) of any finitely
generated group G with polynomial volume growth (see [26]), in which case α is
exactly the exponent of the volume growth of G.

Note also that the Poincaré inequality holds on any complete Riemannian
manifold of non-negative Ricci curvature (see [5]). For such manifolds, the estimate
(12) was first proved by Li and Yau [28].

6. Sub-Gaussian Estimates

We state the result of this section for graphs although with certain modifications
it holds also on manifolds and fractals. We would like to find conditions for a
weighted graph (Γ, µ) which would ensure the heat kernel sub-Gaussian estimate
similar to (4). By sub-Gaussian heat kernel estimates on graphs we mean the
following inequalities:

pn(x, y) ≤ Cn−α/β exp

(

−
(

d(x, y)β

Cn

)
1

β−1
)

(13)

and

pn(x, y) + pn+1(x, y) ≥ cn−α/β exp

(

−
(

d(x, y)β

cn

)
1

β−1
)

, n ≥ d(x, y) , (14)
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where x, y are arbitrary points on Γ and n is a positive integer. The necessity of
considering pn + pn+1 for the lower bound arrises from a possible parity problem
(in general, either pn or pn+1 may vanish or be very small but a priori we cannot
say which one is small).

To state the result, we need the volume function

V (x, r) = µ(B(x, r)) = µ {y ∈ Γ : d(x, y) < r} ,

as well as the Green function

G(x, y) =
∞
∑

n=0

Pn(x, y) ,

which, alternatively, is the infimum of all positive fundamental solutions to ∆µ. It
may happen G ≡ ∞ in which case the random walk Xn is recurrent.

Theorem 6.1. ([24]) Let (Γ, µ) be a weighted graph, and assume that, for some
positive constant p0,

P (x, y) ≥ p0 ∀x ∼ y . (15)
Given two numbers α > β > 1, the sub-Gaussian estimates (13) and (14) are
equivalent to the following two conditions:

1. the polynomial volume growth, for all x ∈ M and r ≥ 1,

V (x, r) ' rα (16)

2. and the polynomial Green function decay, for all x 6= y,

G(x, y) ' d(x, y)−(α−β) . (17)

The Green kernel uniform decay (17) implies a uniform Harnack inequality

supB(x,r) u ≤ C infB(x,r) u ,
provided ∆µu = 0 and u ≥ 0 in B(x, 2r) ,

(18)

for all x ∈ Γ and r > 0. Conversely, assuming the Harnack inequality (18) and the
volume growth (16), one can deduce the Green function estimate (17) from one of
the following conditions:

1. The estimate of the first Dirichlet eigenvalue of −∆µ in a ball

λ1(B(x, r)) ' r−β (19)

2. The capacity estimate

cap(B(x, r), B(x, 2r)) ' rα−β (20)

3. The mean exit time estimate

ExTx,r ' rβ . (21)

All conditions are assumed to be true for all x ∈ Γ and r ≥ 1. The capacity
is defined to be the infimum of E(ϕ) over test functions ϕ which are equal to 1 on
B(x, r) and vanish outside B(x, 2r). The first exit time Tx,r is defined by (3).

The following theorem covers also the recurrent case G ≡ ∞ when theo-
rem 6.1 is not applicable.
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Theorem 6.2. ([23]) Assume that (15) holds on (Γ, µ). Given two numbers α > 0
and β > 1, the sub-Gaussian estimates (13) and (14) are equivalent to the following
three conditions:

1. the Harnack inequality (18) (which provides the homogeneity of the graph
in question)

2. the volume growth (16) (which determines the parameter α)
3. and any one of the conditions (19), (20), (21) (which determines the

second parameter β).

Although a priori we assume only α > 0 and β > 1, the hypothesis (16) and
any of the conditions (19), (20), (21) imply 2 ≤ β ≤ α + 1 (see [38]).

Note that (19) contains a Faber-Krahn inequality for balls:

λ1(B(x, r)) ≥ cV (x, r)−β/α

which in the presence of the Harnack inequality can be extended to arbitrary
non-empty finite sets Ω as follows:

λ1(Ω) ≥ cµ(Ω)−β/α . (22)

By a discrete version of theorem 3.1, one obtains from (22) an on-diagonal heat
kernel upper bound

pn(x, x) ≤ C
na/β ,

which is the first step in the proof of theorem 6.2.
A geometric background for the Harnack inequality (18) is yet to be under-

stood.

7. Higher Eigenvalues

Let (M,µ) be a weighted manifold. For any precompact domain Ω ⊂ M , denote
by λk(Ω) the k-th Dirichlet eigenvalue of −∆µ in Ω.

Theorem 7.1. ([18]) Assume that (M, µ) admits a Faber-Krahn inequality with
function Λ, that is, for any precompact Ω,

λ1(Ω) ≥ Λ(µ (Ω)) .

If Λ possesses certain regularity property then, for all integers k > 1 and precom-
pact Ω,

λk(Ω) ≥ cΛ
(

C
µ(Ω)

k

)

.

The proof goes through the heat kernel upper bound given by theorem 3.1.
In particular, we have

λ1(Ω) ≥ cµ (Ω)−δ =⇒ λk(Ω) ≥ c
(

k
µ (Ω)

)δ

.
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This results admits a generalization as follows. Assume that, apart from the mea-
sure µ, there is another Radon measure σ on M , and consider the following qua-
dratic form associated with σ:

Eσ(f) =
∫

M
|∇f |2 dσ .

Assuming that in any precompact region Ω ⊂ M the form Eσ with domain
C∞0 (Ω) ⊂ L2(Ω, µ) is closable and has a discrete spectrum, we denote its k-th
eigenvalue by λk(Ω, Eσ). Note that the associated Rayleigh quotient is

∫

Ω |∇f |2 dσ
∫

Ω f2dµ
.

The proof of the following theorem is based on the heat kernel techniques as well
as on ideas from [27].

Theorem 7.2. ([25]) Assume that there exists a Radon measure ν on M such that,
for any precompact domain Ω and some δ > 0,

λ1(Ω, Eσ) ≥ ν(Ω)−δ .

Then, for all integers k > 1 and precompact Ω,

λk(Ω, Eσ) ≥ c
(

k
ν(Ω)

)δ

.
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