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Abstract. We report on the results and techniques of the author’s recent joint
work with Richard Taylor, which analyzes in detail the bad reduction of cer-
tain Shimura varieties in order to prove the compatibility of local and global
Langlands correspondences, obtaining as a consequence the local Langlands
conjecture for GL(n) of a p-adic field. These Shimura varieties have natural
models over p-adic integer rings, as moduli spaces for abelian varieties with
additional structure. The starting point of the work with Taylor is the strat-
ification of the special fiber of an integral model in minimal level, according
to the isogeny type of the universal family of p-divisible groups attached to
these abelian varieties. Similar stratifications can conjecturally be constructed
for any Shimura variety, and indeed are known to exist for most PEL types.
We discuss a series of conjectures regarding the behavior of vanishing cycles
along these strata, with the aim of extending Kottwitz’ conjectures on the
cohomology of Shimura varieties to the case of bad reduction.

1. Introduction

Let F be a local field and n a positive integer. Let A(n, F ) denote the set of
equivalence classes of irreducible admissible representations of GL(n, F ), A0(n, F )
the subset of supercuspidal representations. Let G(n, F ) denote the set of
equivalence classes of n-dimensional complex representations of the Weil-Deligne
group WD(F ) on which Frobenius acts semisimply, G0(n, F ) the subset of ir-
reducible representations. A local Langlands correspondence (for general linear
groups), a non-abelian generalization of local class field theory, is a family of bi-
jections π �→ σ(π) from A(n, F ) to G(n, F ), for all n, identifying A0(n, F ) with
G0(n, F ), and satisfying a list of properties recalled below.

The existence of local Langlands correspondences, previously known in var-
ious special cases, has now been established in full generality. For F of positive
characteristic, this was proved by Laumon, Rapoport and Stuhler [35], using a
variant of Drinfeld’s modular varieties; in particular, the techniques of [35] are
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global. For p-adic fields, the first proof was given in joint work with Richard Tay-
lor [20], again using global methods, this time involving the geometry of certain
Shimura varieties, together with cases of non-Galois automorphic induction proved
in [19] (also using Shimura varieties). Shortly after distribution of the first version
of [20], Henniart found a much simpler proof [25], obtaining the local Langlands
correspondence directly from the results of [19]. All of these proofs rely crucially
on a weaker version of the correspondence, the numerical local Langlands corre-
spondence, proved by Henniart in [23].

The present article is a report on the results and techniques of [20]. Many of
these techniques appear to apply to a more general class of Shimura varieties than
those considered in [20]. Shimura varieties1 are conjectured to be moduli spaces for
certain kinds of motives. This was proved by Shimura for many Shimura varieties
attached to classical groups, the motives in this case arising from abelian vari-
eties with additional structure (PEL types). In this way many Shimura varieties,
together with their Hecke correspondences, acquire natural models over p-adic in-
teger rings. The varieties considered in [20] are of PEL type. The starting point of
[20] is the stratification of the special fiber of the integral model, according to the
isogeny type of the universal family of p-divisible groups (with additional struc-
ture) attached to the moduli problem. Such stratifications can be constructed for
any Shimura variety realized as a moduli space for motives.

Let Sh(G,X) be a Shimura variety, with G a connected reductive group over
Q, and X a G(R)-conjugacy class of homomorphisms h : RC/R(Gm,C) → GR, satis-
fying a familiar list of axioms. Then Sh(G,X) has a canonical model over the reflex
field E = E(G,X). Fix a rational prime p and a prime v of E above p with residue
field k(v), and assume Sh(G,X) has a model over the v-adic integer ring Ov. If π
is a cohomological automorphic representation of (the adele group of) G, with fi-
nite part πf , let r�(π) denote the virtual �-adic representation of Gal(Ē/E) on the
πf -isotypic component of

∑
i(−1)iHic(Sh(G,X)Ē ,Q�); more generally, Q� can be

replaced by an �-adic local system. Following a technique introduced by Ihara and
Langlands, and developed systematically by Kottwitz [29, 30], we study the local
behavior at v of r�(π) by comparing the Grothendieck-Lefschetz trace formula on
the cohomology of the special fiber at v of Sh(G,X)2 with the Arthur-Selberg
trace formula for G. Unlike Kottwitz, however, we do not assume Sh(G,X) to
have good reduction at v. Thus r�(π) is ramified in general, and the Lefschetz for-
mula is applied to the cohomology with coefficients in the nearby cycle complex.
In [20] it is proved that the sheaves of nearby cycles are locally constant on each
stratum in the étale topology. This is unlikely to be true in general, but the stalks
can be predicted in terms of the local uniformization theory of Rapoport and Zink
[40]. In this way, we arrive at a conjectural expression for the contribution of each
stratum to r�(π). Up to semisimplification, this contribution depends only on the
local component of π at p.

1For experts: we always assume the weight morphism is rational over Q.
2More precisely, the Shimura variety KSh(G, X) at an appropriate finite level K.



Local Correspondences and Vanishing Cycles 3

Work on this report began in the summer of 1999, during a visit to the
Sonderforschungsbereich in Münster. I thank Christopher Deninger for making
that visit so enjoyable, and Matthias Strauch for encouraging me to lecture on [20].

2. The Local Langlands Correspondence

In what follows, p is a prime number. The local Langlands conjecture for GL(n)
is best stated for all positive integers n and all p-adic fields F simultaneously.
Notation is as in the introduction.

Local Langlands Conjecture. Let F be a finite extension of Qp.
(i) For every integer n ≥ 1, there exists a bijection π → σ(π) between A(n, F )

and G(n, F ) that identifies A0(n, F ) with G0(n, F ).
(ii) Let χ be a character of F×, which we identify with a character of WD(F )

via the reciprocity isomorphism of local class field theory. Then σ(π ⊗ χ ◦
det) = σ(π)⊗ χ. In particular, when n = 1, the bijection is given by local
class field theory.

(iii) If π ∈ A(n, F ) with central character ξπ ∈ A(1, F ), then ξπ = det(σ(π)).
(iv) σ(π̌) = σ̌(π), where ˇdenotes contragredient.
(v) Let α : F → F1 be an isomorphism of local fields. Then α induces bi-

jections A(n, F ) → A(n, F1) and G(n, F ) → G(n, F1) for all n, and we
have σ(α(π)) = α(σ(π)). In particular, if F is a Galois extension of a
subfield F0, then the bijection σ respects the Gal(F/F0)-actions on both
sides.

(vi) Let F ′/F denote a cyclic extension of prime degree d. Let BC : A(n, F ) →
A(n, F ′) and AI : A(n, F ′) → A(nd, F ′) denote the local base change and
automorphic induction maps [1, 26]. Let π ∈ A(n, F ), π′ ∈ A(n, F ′).
Then σ(BC(π))=σ(π)|WD(F ′), σ(AI(π′))=IndF ′/F σ(π′), where IndF ′/F

denotes induction from WD(F ′) to WD(F ).
Let n and m be positive integers, π ∈ A(n, F ), π′ ∈ A(m,F ). Then

(vii) L(s, π ⊗ π′) = L(s, σ(π)⊗ σ(π′)).
(viii) For any additive character ψ of F , ε(s, π ⊗ π′, ψ) = ε(s, σ(π)⊗ σ(π′), ψ).

Here the terms on the left of (vii) and (viii) are as in [27, 43] and are compatible
with the global functional equation for Rankin-Selberg L-functions. The right-hand
terms are given by Artin and Weil (for (vii)) and Langlands and Deligne (for (viii))
and are compatible with the functional equation of L-functions of representations
of the global Weil group. In particular both sides have Artin conductors and (viii)
implies that a(σ(π)) = a(π).

I refer to Carayol’s Bourbaki exposés [11, 12], and the introduction to [20], for
more details on the history of this conjecture. A theorem of Henniart [24] implies
that σ is uniquely determined by these properties. A version of the local Langlands
conjecture for general connected p-adic reductive groups is recalled in §5 below, in
connection with conjecture 5.3.
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The proof of this conjecture in [20] is based on the following considerations.
The logical first step is the

Theorem 2.1. There is a family of maps σvan
0 : A0(n, F ) → G(n, F ), for all positive

integers n and all p-adic fields F , satisfying (iii–vi).

Theorem 2.1 summarizes the contents of Corollary 11.4 and Lemmas 12.1–
12.3, 12.5, and 12.6 of [20]. The map, whose existence was conjectured by Ca-
rayol [10], is realized on a geometric model arising from the deformation theory of
p-divisible groups. Its construction is global, however (see (17), below). A theorem
of Henniart [23, 7] implies that any such family of maps is in fact a family of
bijections A0(n, F ) → G0(n, F ) that preserves conductors and satisfies (i–vii).

It therefore remains to prove (viii). The proof is global in nature. We work
over a CM field E, a quadratic extension of a totally real subfield E+ of degree d.
Let Π be a cuspidal automorphic representation of GL(n)E , unramified outside
a finite set S. For any finite set S′ containing S, let LS

′
(s,Π) denote the partial

standard L-function of π with the Euler factors at S′ removed. Let L be a number
field, {λ} the set of finite places of L. Let σ = {σλ} be a compatible family of
n-dimensional λ-adic representations of Gal(E/E). We say σ is weakly associated
to Π if

LS
′
(s, σ) = LS

′
(s,Π) (1)

as Euler products for some finite set S′ containing S. Here LS
′
(s, σ) denotes the

partial L-function of {σ}. Both sides of (1) are normalized so that the functional
equation is symmetric around the line Re(s) = 1

2 . Let Reg(n,E) denote the set of
Π for which Π∞ is of cohomological type. We assume the coefficient system to be
trivial, for simplicity, but this is not necessary. The following theorem is mainly
due to Clozel, with improvements due to Taylor and Blasius, and depends crucially
on Kottwitz’ study of points on Shimura varieties over finite fields [13, 30, 31, 5];
cf. [20, Theorem 11.11]:

Theorem 2.2. ([13, Théorème 5.7], [14]) Let c denote complex conjugation on E.
Let Π ∈ Reg(n,E). Suppose (i) The local component Πv at at least one finite
place v is square-integrable (supercuspidal or generalized Steinberg); (ii) Π is dual
to Πc.

Then there exists a compatible family σ(Π) = {σλ(Π)} of semi-simple n-di-
mensional λ-adic representations of Gal(E/E), weakly associated to Π.

To any π ∈ A(n, F ) we associate its supercuspidal support Supp(π), consisting
of a partition n = n1 + · · ·+nr and, for each i ∈ {1, . . . , r}, a πi ∈ A0(ni, F ), such
that π is an irreducible constituent of the (normalized) induced representation
I
GL(n,F )
P (π1⊗ · · · ⊗ πr), where P ⊂ GL(n, F ) is any parabolic subgroup with Levi

factor
∏
i(GL(ni, F )). Suppose we have bijections σ0 : A0(m,F ) ↔ G0(m,F ) for

all m and all F . We extend these bijections to all π in two steps. Let Gss(n, F ) ⊂
G(n, F ) denote the subset of representations of WD(F ) factoring through the Weil
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group W (F ). If π ∈ A(n, F ), Supp(π) = {(ni, πi)}, let

σss(π) = ⊕ri=1σ(πi) ∈ Gss(n, F ) . (2)

The set of π ∈ A(n, F ) with support {(ni, πi)} was classified by Zelevinski,
who proved the existence of a natural extension of σss to a set of bijections
σ : A(m,F ) ↔ G(m,F ) [45]. If σ0 satisfies (iii), (iv), (vi), (vii), and (viii) for
all m, then so does σ [24, 3.4]. The situation for (vi) is a bit more complicated,
since BC and AI do not preserve supercuspidality in general, but allowing for this
complication, it also suffices to verify (vi) for σ0.

The main purpose of [20] is to remove the modifier “weakly” from theo-
rem 2.2:

Theorem 2.3. ([20, Theorem 11.11]) Let Π ∈ Reg(n,E). Assume Π satisfies (i)
and (ii) of theorem 2.2. Then for all primes v of E not dividing the characteristic
of λ, the following relation holds:

σλ(Π)v,ss
∼−→ σss,λ(Πv) . (3)

Here Πv ∈ A(n, F ) is the local component at v of Π, and σλ(Π)v,ss is the semi-
simplification of the restriction of σλ(Π) to W (F ).

Remarks 2.4. (i) When Πv is unramified, this comes down to the equality of
local Euler factors asserted in theorem 2.2.

(ii) The article [18] uses rigid-analytic uniformization of slightly different Shi-
mura varieties to obtain maps σrig

0 : A0(n, F ) → G(n, F ), with the proper-
ties indicated in theorem 2.1. As above, Henniart’s theorem implies that
these maps define a family of bijections A0(n, F ) → G0(n, F ). Both σrig

0

and σvan
0 satisfy theorem 2.3 when πv is supercuspidal. A posteriori, it

follows that the two correspondences coincide.
(iii) For n = 2, Carayol proved the stronger result [9] that σλ(Π)v

∼−→ σλ(Πv)
as representations of the full Weil-Deligne group; T. Saito has proved
the analogous result without restriction on the residue characteristic of
λ [42]3. Removal of the subscript ss in theorem 2.3 seems to require proof
of Deligne’s conjecture on the purity of the monodromy weight filtration.

The reduction of the local Langlands conjecture to theorem 2.3 is the subject
of [19]. The point is to show that, as E varies over CM fields, the set of represen-
tations Reg(n,E) × Reg(m,E), for varying n and m, contains sufficiently many
pairs (Π,Π′) whose global L-functions are known a priori to satisfy two functional
equations, one involving the automorphic local constants ε(s,Π⊗Π′, ψ), the other
involving the Galois-theoretic local constants of Langlands and Deligne. A tech-
nique originating with Deligne then permits identification of the corresponding
local constants at the prime v of interest.
3Note added in proof. Saito’s work concerns the representation D(σλ(Π)v) of WD(F ) defined
by Fontaine when v divides the characteristic of λ. Saito has recently announced joint work with
K. Kato implying that, for general n, D(σλ(Π)v) and σλ(Πv) coincide after restriction to the
wild ramification subgroup.
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An argument involving Brauer’s theorem shows that it suffices to construct
Π = Π(χ) ∈ Reg(n,E) such that the associated σ(Π) are induced from appropriate
Hecke characters χ, of CM extensions E′/E, with fixed local behavior at primes
dividing v, such that the Galois closure of E′ over E is solvable. It follows that σ(Π)
is the compatible system associated to a complex representation of the global Weil
group of E, hence that its L-function satisfies a functional equation of Artin-Weil
type.

This version of non-Galois automorphic induction, carried out in §4 of [19],
relies on Clozel’s theorem 2.2, and thereby on Kottwitz’ analysis of the good reduc-
tion of Shimura varieties. Henniart’s simple proof of the local Langlands conjecture
in [25] proceeds in the opposite direction. Starting with the π(χ) constructed in
[19], he defines maps πn : G0(n, F ) → ⊕n≥1Z · A(n, F ), where the target of πn is
a formal direct sum. The maps πn are defined globally, but using properties of
L-functions Henniart shows that they are well-defined, and that the image of πn
is contained in A0(n, F ). The results of [23, 24] then suffice to prove that πn are
independent of all choices and have properties (i)–(viii).

3. Shimura Varieties Attached to Twisted Unitary Groups

If G is a connected reductive group over a global or local field F , we denote by
Ĝ its Langlands dual group, viewed as the points of a reductive group over an
algebraically closed field F. Denote by LG the L-group of G, a semi-direct product
of Ĝ with either the Weil group W (F ) or the Galois group Gal(F̄ /F ), depending
on context.

Let (G,X) be a Shimura datum, as in the introduction. Let µ : Gm,C → GC

be the cocharacter attached to a point h ∈ X. The G-conjugacy class of µ is
independent of h and its field of definition is the reflex field E(G,X); we will write
µX for any point in this conjugacy class. This is a cocharacter of some maximal
torus ofG, hence a character of a maximal torus T̂ ⊂ Ĝ. We let rµ be the irreducible
representation of Ĝ with extreme weight µ. The weight µ is necessarily minuscule.
Langlands has defined an extension of rµ, also denoted rµ, to a representation of
the L-group LG of G over the base field E(G,X). The Shimura variety Sh(G,X)
has a canonical model over the field E(G,X).

The article [20] is concerned with a specific family of Shimura varieties. Let p
be a rational prime, E an imaginary quadratic field in which p splits, F+ a totally
real field of degree d, and F = F+ · E; let c ∈ Gal(F/F+) denote complex conju-
gation. Choose a prime u of E above p, and let w = w1, w2, . . . , wr be the primes
of F above u. Choose a distinguished embedding τ0 : F → C. Let σ0 (resp. τE)
denote the restriction of τ0 to F+ (resp. to E), and let Σ denote the set of complex
embeddings of F restricting to τE on E.

Let B be a central division algebra of dimension n2 above F , admitting an
anti-automorphism # restricting to c on the center F . Assume B is split at w and
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at every prime that does not split over F+, and that at every place B is either
split or a division algebra.

Define a connected reductive Q-algebraic group G by

G(R) = {g ∈ (Bop ⊗Q R)× | g · g# = ν(g) ∈ R×} (4)

for any Q-algebra R. The kernel G1 of the map ν : G → Gm is the restriction of
scalars to Q of a group G+ over F+. Under a certain parity condition [13, §2];
[20, Lemma 1.1], which we assume, we can choose # so that G is quasi-split at
all rational primes that do not split in E/Q and so that G+

σ0 is isomorphic to
U(1, n− 1) but G+

σ is a compact unitary group for all real places σ �= σ0.
Since p splits in E, we can identify

G(Qp)
∼−→ GL(n, Fw)×

∏

i>1

Bop,×
wi ×Q×

p , (5)

where the map G(Qp) → Q×
p is given by ν.

Choose an R-algebra homomorphism h0 : C → Bop⊗Q R such that h0(z)# =
h0(z̄) for all z ∈ C. The image is contained inG and we may assume it is centralized
by a maximal compact subgroup of G(R). Let (G,X) be the Shimura datum for
which X is the G(R)-conjugacy class containing h0. Then the reflex field E(G,X)
is isomorphic to F , identified with its image in C under τ0.

3.1. The moduli problem

If A is an abelian scheme over a base scheme S, let Tf (A) denote the direct
product of the Tate modules T�(A) over all primes �, Vf (A) = Q ⊗ Tf (A). Let
K ⊂ G(Af ) be a compact open subgroup. Consider the functor AK(B, ∗) on
schemes over F , which to S associates the set of equivalence classes, for the usual
equivalence relation, of quadruples (A, λ, i, η), where A is an abelian scheme over S
of dimension dn2, λ : A→ Â is a polarization, i : B ↪→ End(A)⊗Q is an embedding,
and η : V ⊗Q Af

∼−→ Vf (A) an isomorphism of B ⊗Q Af -modules, modulo K
[30, p. 390]. These data are assumed to satisfy the standard compatibilites. More
importantly, i induces an action iF of the center F of B on the OS-module Lie(A).
For each embedding τ : F → C, we let OS,τ = OS ⊗F,τ C, and let Lie(A)τ =
Lie(A)⊗F,τ C. We then assume that

(i) Lie(A)τ = 0, τ ∈ Σ, τ �= τ0; module of rank n2, τ �= τ0;
(ii) Lie(A)τ0 is a projective OS,τ module of rank n.
For K sufficiently small, AK(B, ∗) is represented by a smooth projective

scheme over F , also denoted AK(B, ∗), isomorphic to | ker1(Q, G)| copies of the
canonical model of KSh(G,X), where ker1(Q, G) measures the defect of the Hasse
principle for H1(Q, G).

Assume K factors as Kp ×Kp, with Kp sufficiently small, Kp =
∏
iKwi ×

Z×
p , with respect to (5), and Kw = Kw1 = GL(n,Ow). Then AK(B, ∗) has a

smooth model over Spec(Ow), also denoted AK(B, ∗), that represents a slightly
modified version of the functor considered above: in conditions (i)–(ii), the OS,τ ’s
are replaced by OS ⊗Ow Ow̃, where w̃ run through the primes of F above p. As
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above, AK(B, ∗) is the union of | ker1(Q, G)| copies of a smooth model Ow-model
SK(G,X) of KSh(G,X). We let S̄ = S̄K(G,X) denote the special fiber of this
model.

The moduli space AK(B, ∗) admits a universal abelian scheme (with PEL
structures) denoted A = AK(B, ∗). Let A[w∞] denote the corresponding p-divisible
Ow-module. The action of a maximal order in Bw

∼−→M(n, Fw) breaks up A[w∞]
as a sum of n-copies of a p-divisible Ow module G. Conditions (i)–(ii) imply that G
is a one-dimensional height n divisible Ow module. The Serre-Tate theorem implies
that the infinitesimal local structure of AK(B, ∗) near a point s of the special fiber
is controlled by the deformation theory of the fiber Gs at s. This is the basis of
the stratification of the special fiber S̄, discussed in the following section.

4. Stratifications of Shimura Varieties

We will work with a general Shimura variety Sh(G,X), as in the introduction; to
avoid complications, we assume the derived subgroup of G to be simply connected.
Fix a prime p and a level subgroup K = Kp ×Kp ⊂ G(Af ). Assume G is quasi-
split at p and Kp is sufficiently small, so that KSh(G,X) is smooth. Let v be a
prime of the reflex field E dividing p, F = Ev. Let W denote the ring of Witt
vectors of k(v), K = Frac(W ), L the compositum of F and K, σ the (arithmetic)
Frobenius automorphism of L over F . We assume that KSh(G,X) has a smooth
model S over Spec(Ov), to which the Hecke correspondences extend; we let S̄
denote the special fiber. The usual hypothesis is that p be unramified in E and
thatKp be a hyperspecial maximal compact subgroup. This hypothesis is sufficient
when Sh(G,X) is of PEL type ([34, 30]), but is certainly stronger than necessary.
Results of Labesse [33, Prop. 3.6.4] suggest it may suffice to take Kp to be a “very
special” maximal compact subgroup, provided G splits over F ; this is true in the
cases considered in [20].

For any algebraic torus T , let X∗(T ) and X∗(T ) denote the group of its
characters and cocharacters, respectively. Let P0 ⊂ G be a Qp-rational minimal
parabolic subgroup, with Levi factor T0 and unipotent radical N0. This determines
an order on the root lattice of G and, dually, on that of Ĝ. The prime p being fixed,
we let B(G) denote the set of σ-conjugacy classes in G(L), and let κ : B(G) →
X∗(Z((Ĝ))Γp) be the invariant defined in [28], with Γp = Gal(Qp/Qp). Let A ⊂ T0

be the maximal split torus, a = X∗(A) ⊗Z R, aQ = X∗(A) ⊗Z Q. Let C̄ ⊂ a be
the closed positive chamber corresponding to N0, C̄Q = C̄ ∩ aQ. The Newton
map ν̄ : B(G) → C̄Q is defined in [39, 32]; it is known that

ν̄ × κ : B(G) → C̄Q ×X∗(Z((Ĝ))Γp)

is injective [32, 4.13]. The class b is basic if and only if ν̄(b) is in the intersection
of all root hyperplanes. In that case, b defines an inner twist of G [28, 4.4].

On the other hand, the cocharacter µ can be interpreted as a character of
the dual torus T̂0; let µ# ∈ X∗(Z(Ĝ)Γp) denote the restriction of this character.
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Following Kottwitz [32, §6], we let B(G,µ) = B(GQp , µ) be the set of b ∈ B(G)
satisfying κ(b) = µ# and such that ν̄(b) ≤ µa with ≤ the usual lexicographic order.

Consider the Langlands representation rµ of LG. Let P = LU ⊂ G be a
standard parabolic. The representation rµ decomposes, upon restriction to LL, as
a sum of irreducible components C0(L, µ), each intervening with multiplicity one.
Indeed, µ is a minuscule weight, with stabilizer Wµ = WQµ for a certain parabolic
subgroup Q = Qµ ⊂ G defined over Q̄. Here WQµ is the Weyl group of any Levi
factor of Qµ. The irreducible components of rµ are indexed by (WP \WĜ/WQµ)
where WP is the Weyl group of the Langlands dual L̂ of L and WĜ is the absolute
Weyl group of G. The highest weight of the component corresponding to w, relative
to the standard ordering induced by P0, is the one in the orbit containing wµ. We
identify two elements λ, λ′ ∈ C0(L, µ) if they are associate; i.e., if there is an
element of the (relative) Weyl group WG that normalizes L that takes λ to λ′. Let
C(L, µ) be the set of equivalence classes for this relation, and let C(µ) =

∐
L C(L, µ),

where L runs through the classes of standard Levi subgroups of G. The set C(µ)
of pairs (L,wµ) is partially ordered by inclusion on the first factor. If L ⊂ G is an
F -rational Levi factor, let iLG : B(L) → B(G) denote the natural map.

Proposition 4.1. (i) There is a canonical surjective map Strat : C(µ)→B(G,µ)
such that, for any (L,wµ) ∈ C(µ), Strat(L,wµ) = iLG(bL(wµ)), where
bL(wµ) ∈ B(L) is the unique basic class such that κ(bL(wµ)) = (wµ)#

for L.
(ii) Let b ∈ B(G,µ), and let Rep(b) = Strat−1(b) ⊂ C(µ). The set Rep(b)

contains a unique maximal element (M = M(b), wbµ). Here M(b) is the
centralizer of the slope morphism attached to b [39, 32] and b is the image
of a basic σ-conjugacy class bM ∈ B(M) under the natural map B(M) →
B(G).

(iii) There is a bijection between Rep(b) and the set of P(b) of standard Qp-ra-
tional parabolics P ⊂ M = M(b) that transfer to the inner form J(b)
of M defined by the basic σ-conjugacy class b. (We call such parabolics
b-relevant.)

The proof of this proposition makes use of simple properties of minuscule
weights. It is an amusing exercise to work it out explicitly when G = GL(n) and
µ is any minuscule weight.

We assume S̄ admits a stratification by locally closed reduced k(v)-rational
subschemes

S̄ =
∐

b∈B(G,µ)

S(b) , (6)

with each S(b) stable under Hecke correspondences. This is conjectured to be
true in general. In the PEL case, the existence of such a stratification follows
from Theorem 3.6 of [39]. This defines a map from S̄(k̄(v)) to B(G), with image
necessarily in B(G,µ) (by Mazur’s theorem). We define S(b)geom to be the inverse
image of b with respect to this map. Theorem 3.6 of [39] asserts that S(b)geom is
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the set of geometric points of a locally closed reduced subscheme S(b). Stability
under Hecke correspondences follows from invariance of isocrystals with respect to
isogeny. The same theorem of [39] asserts moreover that S(b′) ⊂ S(b) if and only
if ν̄(b′) ≤ ν̄(b). We assume our stratification to have this property as well.

4.1. Example (notation as in §3)

With respect to the factorization (5), we can write µ = (µ1, . . . , µr;µ0), where µ0 is
the Q×

p -factor; likewise, we write b = (b1, . . . , br; b0). With our conventions, µi = 0
for i > 1, and µ1 is the minuscule coweight (1, 0, . . . , 0) in the usual coordinates;
i.e., rµ1 is the standard n-dimensional representation of GL(n). Then b ∈ B(G,µ)
if and only if b1 ∈ B(GL(n)Fw , µ1), bi = 0 for i > 1, and κ(b0) = µ#

0 ∈ X∗(Ĝm).
Let M r

s
denote a simple isocrystal with slope rs . We can write B(GL(n)Fw , µ1) =

{b1(h), 0 ≤ h ≤ n − 1}, where b1(h) corresponds to the height n Fw1-isocrystal
M with slope decomposition M 1

n−h
⊕ Mh0 . Let b(h) be the element of B(G,µ)

corresponding to b1(h). Then the group J(b(h)) is isomorphic to

D×
1

n−h
×GL(h, Fw)×

∏

i>1

Bop,×
wi ×Q×

p , (7)

where D 1
n−h

is the division algebra over Fw with invariant 1
n−h .

Let S̄ denote the special fiber of the smooth Ow-model SK(G,X) of
KSh(G,X). Then the stratification (6) holds with S(b(h)) defined as follows. As
mentioned at the end of §3, SK(G,X) carries a natural family G of p-divisible
Ow-modules of height n and dimension 1. For each dimension h = 0, 1, . . . , n− 1,
there is a unique stratum S(h) = S(b(h)) ⊂ S̄ of dimension h, defined by the prop-
erty that, over every geometric point x ∈ S(h), the maximal étale quotient Hetx
of Hx is of height h (i.e., of height h[F : Qp] as p-divisible group). It is proved in
[20] that each stratum S(h) is smooth. The proof makes use of Drinfeld’s explicit
deformation theory for one-dimensional formal Ow-modules.

For general Shimura varieties, S(b) is almost never expected to be smooth
(see, e.g., [37]). Langlands and Rapoport have formulated a conjecture describing
S̄(k̄(v)) as a disjoint union of subsets S(φ), each stable under Hecke correspon-
dences. Here φ runs through the set Φ(G,X) of Langlands-Rapoport parameters:
admissible homomorphisms φ : P → GG, where P is the pseudomotivic groupoid
and GG is the neutral groupoid attached to G [34, 36].

There is a map b : Φ(G,X) → B(G,µ), defined by restricting φ to the
Dieudonné groupoid Dp (cf. [36, p. 181]), so that S(φ) ⊂ S(b(φ))(k̄(v)). More-
over, every point in S(b)(k̄(v)) belongs to exactly one S(φ) with b(φ) = b. We add
the assumption that, to each admissible φ, we can associate a locally finite disjoint
union S̃(φ) of closed reduced subschemes such that S(φ) is the set of k̄(v) points of
S̃(φ). Under these conditions, the formal completion S/S̃(φ) of the scheme S along
the subset S̃(φ) of its special fiber can be defined as in [40, 6.22].
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Let Iφ denote the automorphism group of the admissible homomorphism φ,
in the sense of [34]. Iφ is a reductive algebraic group over Q, an inner form of the
centralizer in G of the torus T (φ) := φ(P+), where P+ is the identity component
of P. There is a natural homomorphism Iφ(Q) → J(b(φ)), well-defined up to
conjugacy. At all finite primes � �= p, the inner twist is trivial, hence there is a
natural map Iφ(Q) → G(Apf ), well-defined up to conjugacy. For any b ∈ B(G), we
let Gb(Af ) = G(Apf )× J(b). The superscript rig denotes the rigid-analytic generic
fiber of a formal scheme.

Conjecture 4.2. (i) For each b ∈ B(G,µ), there is a formal scheme M̆(b, µ)
over Spf(OL), with a Weil descent datum [40, 3.45] over Spf(Ov) and a
compatible action of J = J(b).

(ii) There is an étale J(b)-equivariant surjective rigid-analytic morphism

π : M̆rig(b, µ) → F̆wa(b, µ)×∆′ ,

where F̆wa(b, µ) is the rigid-analytic open subset of weakly admissible flags
(relative to b) in the flag variety G/Qµ [40, §1] and ∆′ is a discrete homoge-
nous space for G(Qp). The morphism π is compatible with Weil descent
data on both sides.

(iii) For any open subgroup K ′ ⊂ Kp, there is a rigid-analytic covering
πK′ : MK′(b, µ) → M̆rig(b, µ), and for any pair K ′′ ⊂ K ′ of open sub-
groups of Kp, a morphism πK′′,K′ : MK′′(b, µ) → MK′(b, µ), such that
πK′′ = πK′ ◦πK′′,K′ . The projective system MK′(b, µ) thus inherits a con-
tinuous action of G(Qp), covering the natural action on the second factor
of F̆wa(b, µ)×∆′.

(iv) Let φ be a Langlands-Rapoport parameter, and let b = b(φ). Let x ∈ S̃(φ)
be a basepoint. There is an isomorphism of formal schemes ( local uni-
formization):

uφ,x : [M̆(b, µ)× (Iφ(Q)\Gb(φ)(Af )/Kp)]/J(b(φ)) ∼−→ S/S̃(φ) .

Here J(b(φ)) acts diagonally, on the first factor as in (i) and on the second
via the inclusion of J(b(φ)) in Gb(φ). The Weil descent datum on M̆(b, µ)
induces an effective descent datum on the left-hand side, and uφ,x is an
isomorphism of formal schemes over Spf(Ov). Moreover uφ,x is equivari-
ant with respect to the actions of the Hecke correspondences (relative to
K) on both sides.

(v) More generally, for any open subgroup K ′ ⊂ Kp, there is an isomorphism
of rigid-analytic spaces

uφ,x,K′ : [MK′(b, µ)× (Iφ(Q)\Gb(φ)(Af )/Kp)]/J(b(φ)) ∼−→ (ΠK′)−1([S/S̃(φ)]
rig .

Here ΠK′ : K′×KpSh(G,X) → KSh(G,X) is the standard étale covering
in characteristic zero. The isomorphism uφ,x,K′ is rational over E and
equivariant with respect to Hecke correspondences (relative to K ′ ×Kp).
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Sections 5 and 6 of [40] are largely devoted to proving a version of conjec-
ture 4.2 for the PEL-type Shimura varieties considered there, in which Langlands-
Rapoport parameters are replaced by isogeny classes of PEL abelian varieties4.
In particular, the conjecture is true for the Shimura varieties considered in [20].
However, much more is true.

Theorem 4.3. Let Sh(G,X) be the Shimura variety considered in §3. Then
(i) Conjecture 4.2 is valid for Sh(G,X), with Langlands-Rapoport parameters

replaced by isogeny classes for the moduli problem 3.1.
(ii) For any isogeny class φ for Sh(G,X), the connected components of S̃(φ)

are closed points.
(iii) For any open subgroup K ′ ⊂ Kp, and any b ∈ B(G,µ), there is a for-

mal scheme M̆K′(b, µ) over Spf(OL), with J(b)-action, a Weil descent
datum over Spf(Ov), and a J(b)-equivariant isomorphism M̆rig

K′(b, µ) ∼−→
MK′(b, µ). These isomorphisms are compatible with inclusions K ′′ ⊂ K ′

of open subgroups, and the G(Qp)-action on the projective system
{M̆rig

K′(b, µ)} induced by the isomorphism with {MK′(b, µ)} extends to a
continuous G(Qp)-action on the projective system {M̆K′(b, µ)} of formal
schemes. Each M̆K′(b, µ) is regular.

(iv) Similarly, there is a G(Af )-equivariant system of regular Ov-schemes
SK′×Kp with G(Af )-equivariant isomorphisms

SK′×Kp ⊗Spec(Ov) Spec(F ) ∼−→ K′×KpSh(G,X) .

(v) Let φ denote an isogeny class for the moduli problem (?), and let b =
b(φ). Let S̃K′×Kp(φ) denote the scheme-theoretic inverse image of S̃(φ) in
SK′×Kp . The rigid uniformization of 4.2(v) extends to a Hecke equivariant
isomorphism of formal schemes over Spf(Ov):

u : [M̆K′(b, µ)× (Iφ(Q)\Gb(φ)(Af )/Kp)]/J(b(φ)) ∼−→ [SK′×Kp ]/S̃K′×Kp (φ) .

As noted above, (i) is a special case of the results of [40]. Assertion (iii) is due
to Drinfeld [16], and uses his theory of level structures for one-dimensional divisible
Ov-modules (Drinfeld bases); (ii) is a consequence of the explicit deformation
theory of [16]. Assertion (iv) is proved using Drinfeld bases, and (v) is a formal
consequence of the corresponding assertion when K = Kp.

5. Vanishing Cycles

Let E, v, and F be as above. Henceforward, we assume G to be anisotropic modulo
its center; then Sh(G,X) is a projective limit of projective varieties. For any open
K ′ ⊂ Kp, the direct image πK′,∗Q� of the constant sheaf on K′×KpSh(G,X) is
a locally constant étale sheaf on KSh(G,X). We use the same notation for the
corresponding étale sheaf on KSh(G,X)rig. We let RΨK′ denote the nearby cycles

4Assertion (ii) is proved in [40] assuming a conjecture of Fontaine, recently proved by Breuil.
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complex RΨ(πK′,∗Q�) on the special fiber S̄. We view RΨK′ as an object in the
bounded derived category of constructible �-adic complexes on S̄. For K ′′ ⊂ K ′,
pullback via πK′′,K′ induces a canonical morphism RΨK′ → RΨK′′ . Define

RΓ(S̄, RΨ) := lim−→
K′,Kp

RΓ(S̄, RΨK′) ;

RΓ(Sh(G,X),Q�) = lim−→
K′,Kp

RΓ(K′×KpSh(G,X),Q�) .

Here the subscript Kp is omitted from S̄ for convenience. There is a canonical
spectral sequence

Ep,q2 = Hpc (S̄,Ψ
q) ⇒ Hp+qc (Sh(G,X),Q�) (8)

of G(Af )×Gal(F̄ /F )-modules, with Ψq = RqΨ.
We work in a modified Grothendieck group Groth(G) of equivalence clas-

ses of admissible G(Af ) × W (F )-modules [6, 20]. If M is an admissible
G(Af ) ×W (F )-module, [M ] denotes the corresponding object of Groth(G). Let
[H(Sh(G,X),Q�)] =

∑
i(−1)iHi(Sh(G,X),Q�) ∈ Groth(G). Then (8) corre-

sponds to an equality in Groth(G):

[H(Sh(G,X),Q�)] =
∑

p,q

(−1)p+q[Hpc (S̄,Ψ
q)] . (9)

Here and below, the constant sheaf Q� can be replaced by the �-adic local system Lξ
attached to a finite-dimensional absolutely irreducible representation ξ of G with
coefficients in Q̄�.

On the other hand, the stratification S̄ =
∐
b∈B(G,µ) S(b) gives rise to a spec-

tral sequence of dévissage, for each term on the right-hand side of (9). Let Ψqb
denote the pullback to S(b) of Ψq. When Πf is an irreducible admissible represen-
tation of G(Af ), let [Πf ] denote the Πf isotypic component, which makes sense
in the Grothendieck group. Then

[H(Sh(G,X),Q�)][Πf ] =
∑

p,q,b

(−1)p+q[Hpc (S(b),Ψqb)][Πf ] , (10)

for any Πf .
Now let (b, µ) be a general weakly admissible pair for G(Qp), in the sense of

[40]. Consider the G(Qp) × J(b) ×W (F )-equivariant system MK′(b, µ) of rigid-
analytic converings of M̆rig(b, µ). Let Groth(G, b) be the Grothendieck group, in
the above sense, now of smooth representations of G(Qp)× J(b)×W (F ). Define

[H(b,µ)] =
∑

i

(−1)ilim−→
K′
Hic(MK′(b, µ),Q�)] .

The cohomology is �-adic étale cohomology, in the sense of Berkovich [2]. It
is smooth as a representation of G(Qp) × J(b) [3]. It is reasonable to assume
(cf. [18, 20]) it is a direct limit of finite-dimensional representations of W (F ).
Let RΘ(b,µ) = lim−→K′RΘ(πK′,∗Q�), where πK′,∗Q� is viewed as an étale sheaf on
M̆rig(b, µ) and RΘ is Berkovich’s nearby cycle functor for formal schemes [3, I.,
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§4]: RΘ(b,µ) belongs to the derived category of constructible �-adic sheaves on the
special fiber M̄(b, µ) of the formal Spf(Ov)-scheme M̆(b, µ). Writing Θj = RjΘ,
and letting Θ̌j denote the G(Qp)-smooth contragredient, we then have

[H(b,µ)] =
∑

i,j

(−1)i+j [Hic(M̄(b, µ), Θ̌j(b,µ)] . (11)

Conjecture 5.1. Let φ be a Langlands-Rapoport parameter for the special fiber S̄
of Sh(G,X) at v. Let b = b(φ), and let µ = µX . Let Ψq(φ) be the pullback of Ψq

(or equivalently of Ψqb) to the locally finite scheme S̃(φ). For every j, there is a
G(Af )×W (F )-equivariant isomorphism of ind-constructible sheaves:

u∗φ,x : [Θq(b,µ) × (Iφ(Q)\Gb(φ)(Af )/Kp)]/J(b(φ)) ∼−→ Ψq(φ) ,

covering the uniformization map uφ,x.

When Sh(G,X) is one of the PEL type Shimura varieties treated in [40], the
analogue of this conjecture for torsion coefficients has been proved by L. Fargues.

5.1. Reduction to basic classes

Suppose b ∈ B(G,µ) is the image under the map Strat of a pair (L,wµ), as in
proposition 4.1. Let bL = bL(wµ) ∈ B(L) be the corresponding basic class. Then
there is (conjecturally!) a Rapoport-Zink space M̆(bL, wµ), and thus a cohomology
representation [H(bL,wµ)] ∈ Groth(L, bL). Let P ⊂ G(Qp) be a parabolic subgroup
with Levi factor L. Note that J(bL) = J(b). There is a thus a natural map (non-
normalized parabolic induction)

IndGP : Groth(L, bL) → Groth(G, b) .

Suppose (M(b), wµ) is the maximal element in Strat−1(b); we write bM in-
stead of bM(b) for the corresponding basic element of B(M(b), wµ). Then one par-
abolic P is better than the others. On any representation (ρ, V ) of G, the class b
defines the structure of an isocrystal. We may thus define the slope filtration on V
to be the decreasing filtration Fa, indexed by a ∈ Q, such that Fa(V ) is the sum of
the isoclinic subspaces of slope ≥ a. Let P (b) ⊂ G be the parabolic stabilizing the
slope filtration attached to b in any finite-dimensional representation of G. Since
M(b) is maximal, it is the centralizer of the slope morphism attached to b, hence
M(b) is a Levi factor of P (b). On global grounds, it seems reasonable to propose
the following

Conjecture 5.2. There is an isomorphism

[H(b,µ)] = IndGP (b)(Qp)[H(bM ,wµ)] .

There is apparently no geometric relation between the two sides, but Strauch’s
methods [44] may suffice to establish the corresponding identity of distribution
characters5.

5Note added in proof. In the PEL case, this conjecture should follow from recent work of Zink
on the slope filtration of a p-divisible group.
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Now assume b basic, so that M(b) = G. Write J = J(b). Kottwitz has
proposed a conjecture [38, §5] for the contribution to [H(b,µ)] of discrete series
representations of G × J(b), generalizing Carayol’s conjectures in [10]. Kottwitz’
conjecture is expressed in terms of the conjectural classification of L-packets by
Langlands parameters, here denoted ψ : WQp → LG, and the characters of their
centralizers Sψ. Assume ψ is discrete; i.e., that the identity component S0

ψ of Sψ
is contained in Z(Ĝ)Γp . Let Ŝψ denote the set of equivalence classes of irreducible
representations of Sψ. We let

Πψ(G) = {τ ∈ Ŝψ|τ |Z(Ĝ)Γp = 1}; Πψ(J) = {τ ′ ∈ Ŝψ|τ ′|Z(Ĝ)Γp = κ(b)} .
The local Langlands conjecture for G identifies elements of Πψ(G) (resp. Πψ(J))
with irreducible discrete series representations of G(Qp) (resp. J), and conjectures
that, as ψ varies over discrete Langlands parameters and τ varies over characters
of Ŝψ as above, this gives a complete parametrization of the discrete series.

For π ∈ Πψ(J), let

[H(b,µ)][π′] =
∑

i,j,k

(−1)i+j+k[ExtkJ(H
i
c(M̄(b, µ), Θ̌j(b,µ)), π

′)] . (12)

The Ext groups are taken in the category of smooth J-modules. The result
[H(b,µ)][π] is a virtual representation of G(Qp) × W (F ), and should belong to
the Grothendieck group of admissible G(Qp) ×W (F )-modules in the naive sense
(i.e., modules of finite length).

Recall that rµ is taken to be a representation of Ĝ�W (F ). In what follows,
π̌ and τ̌ denote the contragredients of π and τ , respectively.

Conjecture 5.3. (Kottwitz) Let ψ be a discrete Langlands parameter for G(Qp),
and let π′ ∈ Πψ(J). Then

[H(b,µ)][π′] =
∑

π∈Πψ(G)

[π̌ ⊗HomSψ (τπ ⊗ τ̌π′ , rµ ◦ ψ)]

as virtual representation of G(Qp)×W (F ).

The global theory of Shimura varieties, in conjunction with proposi-
tion 4.1(iii), suggests a generalization of conjecture 5.3 to accomodate Langlands
parameters induced from b-relevant parabolic subgroups of G. Let P ⊂ G be a
b-relevant parabolic, with Levi subgroup L, and let PJ ⊂ J be a transfer of P ,
with Levi subgroup LJ . There is a basic bL ⊂ B(L) such that iLG(bL) = b. The
bijection of proposition 4.1(iii) realizes bL as Strat(L, µ(bL)) for some minuscule
character µ(bL) of (a maximal torus of) L̂, corresponding to a minuscule rep-
resentation rµ,bL . We consider discrete Langlands parameters ψ for L(Qp), and
define the L-packets Πψ(L) and Πψ(JL) as above. Let IGP , IJPJ denote normalized
induction. For π ∈ Πψ(L), let

[H(b,µ)][π] =
∑

i,j,k

(−1)i+j+k[ExtkG(Qp)(H
i
c(M̄(b, µ), Θ̌j(b,µ)), I

G
P π)] . (13)
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We make the analogous definition for π′ ∈ Πψ(LJ).

Conjecture 5.4. Let ψ be a discrete Langlands parameter for L(Qp), and let π′ ∈
Πψ(LJ). Suppose IPJ is irreducible. Then

[H(b,µ)][π′] =
∑

π∈Πψ(L)

[IGP (π̌)⊗HomSψ (τπ ⊗ τ̌π′ , rµ,bL ◦ ψ)]

as virtual representation of L(Qp)×W (F ).

Remark 5.5. Here and in conjecture 5.3, our sign conventions differ from those of
[38]. There are analogous conjectures with the roles of G and J exchanged.

It is not clear whether the formula in (5.4) should still hold when IGP π is
reducible. For example, is it compatible with conjecture 5.3 when P = B is a
Borel subgroup and IGP π contains the Steinberg representation as subquotient?

5.2. The twisted unitary case

In the remainder of this section, we restrict attention to the Shimura varieties
Sh(G,X) of §3. In that case, conjecture 5.2 holds for straightforward geometric
reasons, and nearly all the conjectures considered above are established in [20].
The starting point is theorem 4.3. Note that the conjectures simplify considerably.
As in (4.1), we can factor

M̄(b, µ) ∼−→ M̄(b1, µ)×
∏

i �=1

M̄(bi, µi) . (14)

For i > 1 the factors M̄(bi, µi) are discrete sets with trivial Galois action. Similarly,
M̄(b0, µ0)

∼−→ Q×
p /Z

×
p ; the Weil group action on this factor is non-trivial but

elementary. Finally, let L(h) ⊂ GL(n, Fw) be the Levi factor corresponding to
b1(h) ∈ B(GL(n, Fw), µ1). Then

M̄(b1(h), µ1)
∼−→ GL(n, Fw)×L(h) [M̄(h)×GL(h, Fw)/GL(h,Ow)] . (15)

In the first place, the schemes M̄(b, µ) are zero-dimensional (more precisely,
are inductive limits of zero-dimensional reduced schemes) for all b ∈ B(G,µ). Thus
i = 0 in (12) and Θ̌j(b,µ) is just a vector space. Next, one sees easily from (14) and

(15), and from compactness of D×
1

n−h
modulo its center, that Θ̌j(b,µ) is a projective

object in the category of smooth J(b)-modules. Thus (when G is replaced by J)
the index k in (12) can also be taken to be zero. Finally, the L-packets Πψ are all
singletons. Let J = J(b) = J(b(h)). There is a map JL : Πψ(J) → Πψ(G) defined
as follows. We write Πψ(J) = π′ = [π′

1(n−h)⊗π′
1(h)]⊗

∏
i>1 π

′
i⊗π′

0, with respect
to the factorization (7). Here π′

1(n−h) (resp. π′
1(h)) is an irreducible representation

of D×
1

n−h
(resp. GL(h, Fw)), and the other factors are clear. Let P (h) = P (b(h)).

Define

JL(π′) = IndGL(n,Fw)
P (h) [JL(π′

1(n− h))⊗ π′
1(h)]⊗

∏

i �=1

π′
i ⊗ π′

0 (16)
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where the JL on the right-hand side is the Jacquet-Langlands correspondence
[41, 15] between representations of D×

1
n−h

and discrete series representations of

GL(n− h, Fw). Thus conjecture 5.4 asserts
∑

j

(−1)j [HomJ(b)(Θ̌
j
(b,µ), π

′)] = JL(π̌′)⊗ σ(JL(π̌′)) . (17)

This formula, a version of Carayol’s conjecture [10], is the substance of Theo-
rem 11.5 of [20], at least in the supercuspidal case.

6. Local Terms in the Lefschetz Formula

We return to the general setting of §§4 and 5, and assume the truth of con-
jectures 4.2 and 5.1. The identity (10) reduces study of the representation of
G(Af )×W (F ) on [H(Sh(G,X),Q�)] to the determination of the representations
on the individual strata. For fixed b ∈ B(G,µ), we write

[H(S(b), RΨ)] =
∑

p,q

(−1)p+q[Hpc (S(b),Ψq(b))] .

Fix an admissible irreducible representation Πf of G(Af ), and suppose the
p-adic component Πf,p is induced from a discrete representation π of the Levi com-
ponent L of a parabolic subgroup P ⊂ G(Qp). Let ψ be the corresponding discrete
Langlands parameter for L. Roughly speaking, one expects that the map Strat of
proposition 4.1 identifies the set of b for which [H(S(b), RΨ)][Πf ] �= 0 with the
set C(L, µ). Conjectures 5.3 and 5.4 suggest that the semisimplified local Galois
representation on

∑
b[H(S(b), RΨ][Πf ] then should be something like

∑

w∈WP \WG/WQµ

rwµ ◦ ψ . (18)

This natural generalization of (3) needs to be modified [29] when Πf is attached
to an endoscopic automorphic representation, but it provides a heuristic interpre-
tation of proposition 4.1 as well as conjectures 5.3 and 5.4.

It is plausible that conjectures 5.3 and 5.4 can be established by global
methods, using a trick due to Boyer [6]. Assuming conjecture 5.2 is true,
as in [20] (and [6]), identity (10) shows that, if Πf,p is supercuspidal, then
[H(S(b), RΨ)][Πf ] �= 0 only for b basic. If b = b(φ) is basic, Iφ is a twisted inner
form of G. Conjecture 5.3 should then follow by comparing stable trace formulas
for G and Iφ, at least when all π ∈ Πψ are supercuspidal.

Remark 6.1. Boyer’s trick should also provide a means to apply the argument of
Taylor-Wiles to study deformations of (mod �) Galois representations in the part
of the cohomology of Sh(G,X) supercuspidal at p. See [21] for an application of
this type in a case where the whole special fiber at p is basic.
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Assuming conjectures 5.2, 5.3, and 5.4, one obtains a formula similar to (18)
for all strata, by purely local means, except that the terms rwµ occur with unde-
termined multiplicities. It appears that the multiplicities can only be calculated by
global means, generalizing Kottwitz’ techniques for “counting points” in [29, 30].

Let H(G(Af )) denote the big Hecke algebra of locally constant compactly
supported functions on G(Af ), and define H(G(Qp)), H(J(b)), and H(G(Apf ))
analogously. ForK ′ ⊂ G(Af ) an open compact subgroup, we letHK′ ⊂ H(G(Af ))
be the subalgebra of K ′-biinvariant functions. These define correspondences on
K′Sh(G,X), and we suppose these extend compatibly to cohomological corre-
spondences on [H(S(b), RΨ)]K

′ ⊂ [H(S(b), RΨ)], covering an action by correspon-
dences on S(b). We will consider functions f = fp⊗fp ∈ HK′ , with fp ∈ H(G(Apf ))
and fp ∈ H(G(Qp)) such that the fixed point set Fix(f) ∈ S(b)(k̄(v)) is finite. As
K ′ varies, such functions generate H(G(Af )), hence their traces determine the
admissible virtual G(Af )-module [H(S(b), RΨ)] up to isomorphism.

Since the actions ofG(Af ) andW (F ) commute, the trace Tr(f |[H(S(b), RΨ)])
takes values in Q�⊗Groth(W (F )), where Groth(W (F )) is the Grothendieck group
of virtual W (F )-modules. Indeed, if f ∈ HK′ , for each p, q, and a ∈ Q�, the
generalized eigenspace Hpc (S(b),Ψqb)

K′
((f − a)) of f with eigenvalue a is a finite-

dimensional W (F )-module. We let

W Tr(f |[H(S(b), RΨ)]) =
∑

p,q,a

(−1)p+qa⊗ [Hpc (S(b),Ψqb)
K′

((f − a))] , (19)

where [] denotes passage to Groth(W (F )).
Similarly, if fp ∈ H(G(Qp)), and π′ is any admissible representation of J(b),

we can define a virtual trace

Loc(fp, b, π′) = W Tr(fp|[H(b,µ)][π′]) =
∑

k

(−1)kW Tr(fp|ExtkJ(b)([H(b,µ)]), π′) .

(20)

Here [H(b,µ)][π′], defined as in (13), is an admissible virtual representation of
G(Qp) × W (F ), and Loc(fp, b, π′) ∈ Q� ⊗ Groth(W (F )). The following conjec-
ture is presumably a straightforward application of the Paley-Wiener theorem [4].

Conjecture 6.2. For any fp ∈ H(G(Qp)) there is a function Fb(fp) ∈ H(J(b)) ⊗
Groth(W (F )) such that

Loc(fp, b, π′) = Tr(π′)(Fb(fp)) .

For γ ∈ Iφ(Q), let Iγ ⊂ Iφ denote its centralizer, and let v(γ) = vol(Iγ(Q)\
Iγ(Af )). The choice of measure on Iγ(Af ) is irrelevant at this stage. The point-
counting argument in [20] begins with a formula of the following type:

W Tr(f |[H(S(b), RΨ)]) =
∑

{φ|b(φ)=b}

∑

γ∈Iφ(Q)/∼=
c(γ)v(γ)Oγ(fp · Fb(fp)). (21)
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Here Iφ(Q)/ ∼= is the set of conjugacy classes in Iφ(Q), Oγ(fp · fπ′) is the or-
bital integral of fp over the conjugacy class of γ in Gb(Af ), and c(γ) is a “di-
mensionless constant” involving signs and the like. Moreover, it is assumed f
belongs to a certain class of “acceptable” functions, sufficiently large to determine
[H(S(b), RΨ)] up to isomorphism, for which Fujiwara’s simple version of the Lef-
schetz formula [17] applies. Theorem 2.3 is obtained by relating this formula to
the global trace formula on cohomology and combining the result with (10) and
(17).

It is tempting to hope that a formula like (21) holds for general groups.
However, it is not clear whether the coefficients c(γ) can be defined to make this
formula comparable to the global trace formula without assuming the fundamental
lemma for endoscopy.
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