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Abstract. This work focuses on the dynamics around a partially elliptic, lower
dimensional torus of a real analytic Hamiltonian system. More concretely, we
investigate the abundance of invariant tori in the directions of the phase space
corresponding to elliptic modes of the torus. Under suitable (but generic) non-
degeneracy and non-resonance conditions, we show that there exists plenty of
invariant tori in these elliptic directions, and that these tori are organized in
manifolds that can be parametrized on suitable Cantor sets. These manifolds
can be seen as “Cantor centre manifolds”, obtained as the nonlinear contin-
uation of any combination of elliptic linear modes of the torus. Moreover, for
each family, the density of the complementary of the set filled up by these tori
is exponentially small with respect to the distance to the initial torus. These
results are valid in the limit cases when the initial torus is an equilibrium point
or a maximal dimensional torus. It is remarkable that, in the case in which the
initial torus is totally elliptic, we can derive Nekhoroshev-like estimates for
the diffusion time around the torus. Due to the use of weaker non-resonance
conditions, these results are an improvement on previous results [7].

1. Introduction

The study of the dynamics in a neighbourhood of a given invariant manifold is a
classical topic in Dynamical Systems. Here we will focus on the description of the
phase space around an invariant torus of a real analytic Hamiltonian system.

Let H be a real analytic Hamiltonian system with � degrees of freedom, having
a r-dimensional invariant torus, 0 ≤ r ≤ �. We assume that this torus is isotropic
(the canonical symplectic form of R

2� vanishes on the tangent bundle of the torus).
Hence, there exists a set of canonical coordinates (θ, x, I, y) ∈ T

r ×R
m ×R

r ×R
m,

m = � − r, in such a way that the torus corresponds to the manifold {x = y =
0, I = 0}, and it is parameterized by the angular variables θ. Moreover, we will also
assume that the dynamics on the torus is a linear quasi-periodic flow with respect
to θ, given by the vector of basic frequencies ω(0) ∈ R

r. So, in these (canonical)
coordinates the Hamiltonian can be written as

H(θ, x, I, y) = 〈ω(0), I〉 +
1
2
〈z,B(θ)z〉 + H1(θ, x, I, y) , (1)
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where z = (x, y) and the Taylor expansion of H1, with respect to (z, I), starts with
monomials of degree 3 (as it is usual in this context, the degree of a monomial zlIs,
l ∈ N

2m, s ∈ N
r, is defined as |l|1 + 2|s|1, being |l|1 =

∑
j |lj |).

As it is usual in KAM theory for lower dimensional tori, we will restrict to
the context of the so-called reducible tori ([3]). So, we will assume that the normal
variational equations of the torus, which are given by ż = JmB(ω(0)t)z (Jm denotes
the matrix of the canonical 2-form of R

2m), can be reduced to constant coefficients
by means of a linear change of variables in z, depending on time in a quasi-periodic
way (with ω(0) as vector of basic frequencies). Then, we can perform a canonical
transformation on the initial Hamiltonian system (depending on θ in a 2π-periodic
way), such that (1) takes the form

H(θ, x, I, y) = 〈ω(0), I〉 +
1
2
〈z,Bz〉 + H1(θ, x, I, y) , (2)

where B is a symmetric matrix with constants coefficients. To simplify the nota-
tions, here we have also kept the names H and H1 for the Hamilton function and
for the higher order terms. Moreover, in order to have a Hamiltonian given by a
real function, we restrict our set-up to the case in which the linear transforma-
tion is given by a real change of variables, and hence, we assume that we have a
real reduced matrix B. The linear normal behavior around the torus is now given
by the system ż = JmBz. For definiteness, we denote the eigenvalues of JmB as
(λ,−λ) = (λ1, . . . , λm,−λ1, . . . ,−λm). As usual, we will call the imaginary part
of these eigenvalues the normal frequencies of the torus.

We are concerned with the local behaviour around this lower dimensional
torus. Let us start by looking at the linear approximation to this dynamics. As the
dynamics in the hyperbolic directions (eigenvalues with nonzero real part) is locally
very simple —trajectories either escape or tend asymptotically to the torus—
we will focus on the elliptic directions. For simplicity, let us start by assuming
that ±λ1 are a conjugate pair of purely imaginary eigenvalues, λ1 = iω

(0)
r+1. It is

clear that the dynamics in the corresponding two-dimensional real invariant space
is that of a linear oscillator, with frequency ω

(0)
r+1. More concretely, this linear

subspace is filled by a 1-parametric family of periodic orbits whose frequency
is fixed, i.e., it does not depend on the amplitude. Hence, taking into account
that these linear oscillations take place around a r-dimensional torus carrying a
linear dynamics with frequency ω(0), we have that the (linear approximation to
the) dynamics in the (real) eigenspace corresponding to ±λ1 is described by a
1-parametric family of (r + 1)-dimensional tori, having (ω(0), ω

(0)
r+1) as a vector of

basic frequencies. This family is degenerate, in the sense that the frequencies are
constant. A natural question is the effect that the nonlinear terms have on this
picture. We will show that, under generic conditions, this family “survives” the
effect of the nonlinear terms, but it becomes Cantorian (and now, the frequencies
depend on the amplitudes), see [4, 17, 20, 7, 21]. The dense set of holes that
conform the Cantor structure is due to the resonances between the basic and



Cantor Families of Invariant Tori 3

normal frequencies. We will also show that the size of those holes is exponentially
small with respect to the distance to the initial torus.

The above description has been done using a single normal frequency and a
single r-dimensional torus. A similar discussion can be made using several normal
frequencies: if we select a set of m1 normal frequencies then, in the correspond-
ing directions, the dynamics of the linear system is described by a m1-parametric
family of m1-dimensional tori, having all of them the same frequencies. Moreover,
if we skip the term H1 in (2), it is clear that the initial torus is embedded in a
r-parametric family of r-dimensional tori (parameterized by I), that also becomes
Cantorian when we consider the nonlinear part (see [4, 17, 3, 7, 21]). Combining
this family with the families in the normal directions we obtain a (r + m1)-para-
metric family of (r+m1)-dimensional tori. As we will see, most of these tori survive
the effect of H1, and are organized as Cantor manifolds. As before, the measure
of the holes of the Cantor structure is exponentially small with respect to the
distance to the initial torus.

In the next sections we will discuss these issues in more detail, and we will
give some hints about the scheme used in the proofs (full details can be found in
[7] and [9]). Moreover, in the case in which the torus is totally elliptic, we will
derive lower bounds on the escaping time from a neighbourhood of the torus.

2. Hypotheses and Set-Up

We will assume that the Hamiltonian (2) is a real analytic function, defined on

Dr,m(ρ0, R0) =
{
(θ, x, I, y) ∈ C

2� : | Im(θ)| ≤ ρ0, |z| ≤ R0, |I| ≤ R2
0

}
, (3)

for certain 0 < ρ0 < 1 and 0 < R0 < 1, where | · | refers to the sup norm of complex
vectors. We will denote by ‖·‖ρ,R the sup norm of a function on the set Dr,m(ρ,R)
and we will also assume that ‖H‖ρ0,R0 < +∞.

As we are interested in the dynamics in the elliptic directions of the torus,
let us define me as the number of elliptic directions of the initial torus, and let us
write λ = (λe, λh), where ±λe denotes the 2me elliptic eigenvalues, and ±λh the
2mh hyperbolic ones (m = me +mh). Let m1 be any number of elliptic directions
(0 ≤ m1 ≤ me) that, without loss of generality, we will assume that correspond
to the first m1 elliptic eigenvalues. So, we will write λe = (λ̃e, λ̂e), where λ̃e are
these first m1 components and λ̂e the remaining ones. Moreover, we will denote
λ̃e = iω̃(0), and Ω(0) = (ω(0), ω̃(0)) ∈ R

r+m1 . We want to construct the family of
invariant tori for the elliptic directions corresponding to the frequency ω̃(0) (so, the
basic frequencies of this family will be close to Ω(0)). These tori will have me −m1

elliptic directions and mh hyperbolic ones.

2.1. Non-resonance conditions

An important point for the quantitative analysis is the control of the small divisors.
So, we will assume that some linear combinations of basic frequencies and normal
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eigenvalues satisfy a standard Diophantine condition. More concretely, we suppose
that, for certain c > 0 and γ > r + m1 − 1, we have∣∣∣i〈k,Ω(0)〉 + 〈λ̂e, l̂e〉

∣∣∣ ≥ c

(|k|1 + |l̂e|1)γ
, (4)

for any k ∈ Z
r+m1 and any l̂e ∈ Z

me−m1 , with |l̂e|1 ≤ 2, |k|1 + |l̂e|1 �= 0. It is well
known that if we take a fixed γ > r +m1 − 1, the set of (Ω(0), λ̂e) for which these
conditions are not fulfilled, for any c > 0, has zero measure.

3. Normal Form

This is the first step of the methodology used. The purpose is to apply a (canon-
ical) change of variables to bring Hamiltonian (2) into a more convenient form.
So, we will perform a finite number of normal form transformations, in order to
kill some specific monomials of the Taylor-Fourier expansion of the Hamiltonian.
In order to enumerate these monomials, we introduce the following notation. Let
us split z as (ze, zh), where ze denotes the variables corresponding to the elliptic
normal directions, and zh to the hyperbolic ones. Moreover, we write ze = (z̃e, ẑe),
where z̃e refers to the variables related to the first m1 elliptic directions (the cor-
responding frequencies are ω̃(0)), and ẑe refers to the remaining elliptic directions.
Finally, zn is defined as (ẑe, zh) (zn will be the normal directions to the new family
of invariant tori). Hence, the monomials we would like to remove are:

1. all the monomials of order one in zn; then, zn = 0 is an invariant manifold,
2. all the monomials that do not contain zn (except the unavoidable reso-

nances); then, the manifold zn = 0 is foliated by invariant tori,
3. all the monomials of order two in zn that involve either one elliptic and

one hyperbolic direction or two elliptic directions (except, of course, the
unavoidable resonances); then, the elliptic part of the normal variational
equation of these tori is reduced to constant coefficients.

As it is well known, killing these monomials at all orders is a (generically) divergent
process, so we will remove them up to a suitable finite degree. This degree will
be selected depending on the distance to the initial torus, in order to have an
exponentially small remainder with respect to that distance (see theorem 3.1). To
write this normal form, let Ĩj be 1

2 ((xe
j)

2 + (ye
j )

2) (j = 1, . . . ,m1), and Ī = (I, Ĩ).
Then, skipping the higher order terms that do not belong to the normal form, we
have that

H(θ, x, I, y) = F (Ī) +
1
2
〈zn, Qn(θ, I, z̃e)zn〉 + O3(zn) , (5)

where the matrix Qn takes the following form:

〈zn, Qn(θ, I, z̃e)zn〉 = 〈ẑe, Qe(I)ẑe〉 + 〈zh, Qh(θ, I, z̃e)zh〉 ,
and ∂ĪF (0) = Ω(0). The action Ĩ can be taken as a parameter in the normal
direction. It is easy to check that we have the following quasi-periodic solutions
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for the canonical equations associated to (5):

θ(t) = ∂IF (Ī(0))t + θ(0) ,

I(t) = I(0) ,

x̃e
j(t) =

√
2Ĩ(0)

j sin
(
∂Ĩj

F (Ī(0))t + θ̃
(0)
j

)
,

ỹe
j (t) =

√
2Ĩ(0)

j cos
(
∂Ĩj

F (Ī(0))t + θ̃
(0)
j

)
,

zn(t) = 0 ,

(6)

where Ī(0) = (I(0), Ĩ(0)) and θ̃
(0)
j are arbitrary initial conditions. The following

result contains the estimates for the normal form.

Theorem 3.1. For any R > 0 small enough, there exists a real analytical canonical
transformation ΨR : Dr,m(ρ0/2, R e−ρ0/2) �→ Dr,m(ρ0, R), with ΨR−Id 2π-periodic
in θ and small. More concretely, if we write ΨR − Id = (ΘR,XR, IR,YR), and
ZR = (XR,YR), we have

‖ΘR‖ ≤ ρ0/2, ‖IR‖ ≤ R2(1 − e−4ρ0), ‖ZR‖ ≤ R(1 − e−2ρ0) .

The transformed Hamiltonian HR = H ◦ ΨR takes the form

HR(θ, x, I, y) = FR(Ī) +
1
2
〈zn, QR,n(θ, I, z̃e)zn〉 + SR(θ, x, I, y) + TR(θ, x, I, y) ,

where, skipping the term SR, we have the normal form (5), with TR ≡ O3(zn).
Moreover, we have the following estimate:

‖SR‖ ≤ c1 e−(c1/R)
2

γ+1
,

where c1 > 0 is a constant. All the norms are taken on the set Dr,m(ρ0/2, R e−ρ0/2).

We point out that the kind of dependence of ΨR on R does not matter for
our purposes. What follows from the proof is that it is piecewise analytic.

Remark 3.2. If the torus is totally elliptic (mh = 0), the bound on the remainder
SR immediately implies a Nekhoroshev estimate on the diffusion time around the
torus (see [14, 16, 12, 7, 15]). More concretely, it can be shown that the time
needed to go from a distance of R to a distance of 2R has to be bigger than
c2 exp((c2/R)2/(γ+1)), for some constant c2 > 0. This includes the limit cases
of elliptic equilibrium points as well as of maximal dimensional tori.

4. Cantor Manifolds of Lower Dimensional Tori

The usual schemes to prove the existence of invariant tori are based on an iterative
process with quadratic convergence (Newton method), to overcome the effect of
the small divisors ([10, 1]). These methods are usually constructed by means of
a sequence of canonical transformations, that puts the initial Hamiltonian into a
form where the existence of the tori follows immediately.
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The equations that define the canonical transformations used at each step of
the Newton method are given by a linear system of partial differential equations.
In order to simplify the resolution of these equation we only deal with tori that are
reducible in the elliptic directions: in this way, we directly solve this part of the
equations by reducing them to constant coefficients while the hyperbolic part can
be easily solved by means of a standard fixed point scheme ([5]). The reducibility
has been imposed in the construction of the normal form in section 3 and in the
Diophantine condition (4) by asking for |l̂e|1 = 2. Following the ideas in [2], it
should be possible to construct invariant tori without asking for reducibility, that
is, only asking for |l̂e|1 ≤ 1 in (4).

As it is usual in these situations, we need to control the frequencies along
the iterative process, to avoid divisors that are too small. To this end we will use
suitable non-degeneracy conditions to control the dependence of the frequencies
with respect to a suitable set of parameters. The internal frequencies of the tori
in the family can be easily controlled by the corresponding actions Ī (see hypoth-
esis H1 in theorem 4.1). The control of the frequencies in the elliptic directions
is more involved, since we do not have free parameters available (this constitutes
the so-called lack-of-parameters problem, [13, 6, 22, 3, 8]). Here we also use the
actions Ī, by asking for a suitable transversality condition with respect to the set
of resonant frequencies (see hypothesis H2 in theorem 4.1).

Note that the lower bound (4) for the small divisors appears in the denom-
inators of the coefficients of the series involved in the Newton process. As this
iterative process will be applied to the Hamiltonian obtained from theorem 3.1,
the remainder to be killed is exponentially small. Then, we can select the value of
c in (4) to be of the same order as this remainder, such that the measure of the
frequencies that do not satisfy (4) is also exponentially small. Then, the above-
mentioned non-degeneracy conditions allows to complete the proof, except for a
set of frequencies of exponentially small measure.

Theorem 4.1. Assume the same hypotheses as in theorem 3.1, and compute the
normal form (5) up to degree 2. Let us define µ(Ī) as the normal frequencies of
the elliptic directions of the family of lower dimensional tori in this normal form.
Then, we assume the following non-degeneracy conditions:

H1: det ∂2
Ī,Ī

F (0) �= 0,
H2: Re(l�∂Īµ(0)(∂2

Ī,Ī
F (0))−1) /∈ Z

r+m1 , for any l ∈ Z
me−m1 , 0 < |l|1 ≤ 2.

Then, there exists c0 > 0 such that for any R > 0 small enough, there is a Cantor
set WR ⊂ VR = {Ω ∈ R

r+m1 : |Ω − Ω(0)| ≤ c0R
2} such that, for any Ω ∈ WR,

the Hamiltonian system H has an invariant torus of dimension r + m1, having
Ω as vector of basic frequencies, that is close to the one predicted by the normal
form. The elliptic directions of the normal variational equations of these tori are
reducible. Moreover, WR can be characterized in terms of the Lebesgue measure:

meas(VR \WR) ≤ c0 e−(c0/R)
2

γ+1
.



Cantor Families of Invariant Tori 7

Conditions H2 are usually called first order Melnikov conditions (see [11, 4]).

Remark 4.2. Condition H1 is a standard (and generic) non-degeneracy condition
on the dependence of the basic frequencies on the actions ([10, 1]). A similar result
can be proved replacing H1 by a higher order non-degeneracy condition ([18, 19]).

Remark 4.3. It can also be proved that the invariant Cantor manifold can be ex-
tended to a (non invariant) C∞ manifold that contains all the invariant tori in
the family (see [23]). The measure of the complementary of the set of tori on this
manifold is also exponentially small.

Remark 4.4. Some of the invariant tori provided by theorem 4.1 are “complex
tori”, in the sense that the corresponding quasi-periodic trajectories (for real time)
live in C

2�. This follows immediately from (6) by selecting some Ĩj negative.
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[9] À. Jorba and J. Villanueva. On the density of quasi-periodic motions around a
partially elliptic lower dimensional torus. In preparation.

[10] A. N. Kolmogorov. On the persistence of conditionally periodic motions under a
small change of the Hamilton function. Dokl. Acad. Nauk. SSSR, 98(4):527–530,
1954.

[11] V. K. Melnikov. On some cases of the conservation of conditionally periodic motions
under a small change of the Hamiltonian function. Soviet Math. Dokl., 6:1592–1596,
1965.

[12] A. Morbidelli and A. Giorgilli. Superexponential stability of KAM tori. J. Statist.
Phys., 78(5–6):1607–1617, 1995.

[13] J. Moser. Convergent series expansions for quasi-periodic motions. Math. Ann.,
169:136–176, 1967.

[14] N. N. Nekhoroshev. An exponential estimate of the time of stability of nearly-
integrable Hamiltonian systems. Russian Math. Surveys, 32:1–65, 1977.

[15] L. Niederman. Nonlinear stability around an elliptic equilibrium point in a Hamil-
tonian system. Nonlinearity, 11(5):1465–1479, 1998.

[16] A. D. Perry and S. Wiggins. KAM tori are very sticky: rigorous lower bounds on
the time to move away from an invariant Lagrangian torus with linear flow. Phys.
D, 71:102–121, 1994.
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Universitat Politècnica de Catalunya,
Diagonal 647,
08028 Barcelona, Spain
E-mail address: jordi@tere.upc.es


