
Sobolev Spaces and Quasiconformal Mappings
on Metric Spaces

Pekka Koskela

Abstract. Heinonen and I have recently established a theory of quasiconformal
mappings on Ahlfors regular Loewner spaces. These spaces are metric spaces
that have sufficiently many rectifiable curves in a sense of good estimates on
moduli of curve families. The Loewner condition can be conveniently described
in terms of Poincaré inequalities for pairs of functions and upper gradients.
Here an upper gradient plays the role that the length of the gradient of a
smooth function has in the Euclidean setting. For example, the Euclidean
spaces and Heisenberg groups and the more general Carnot groups admit the
type of a Poincaré inequality we need. We describe the basics and discuss the
associated Sobolev spaces that, for example, allow for a very abstract setting
for variational integrals. We also discuss the concept of a Sobolev mapping
between two metric spaces.

1. Introduction

Let X and Y be metric spaces and f : X → Y a homeomorphism. Then the
distortion of f at a point x ∈ X is

H(x) := lim supr→0

L(x, r)
l(x, r)

, (1)

where
L(x, r) := sup{dY (f(x), f(y)) : dX(x, y) ≤ r} ,

l(x, r) := inf{dY (f(x), f(y)) : dX(x, y) ≥ r} .

We say that f is quasiconformal if there is a constant H so that H(x) ≤ H for
every x ∈ X. This infinitesimal condition is easy to state but not easy to use. For
instance, it is not clear from the definition if the inverse mapping is quasiconformal
as well. It is thus desirable to find conditions on X and Y that would guarantee
the stronger, global requirement:

H(x, r) :=
L(x, r)
l(x, r)

≤ H ′ < ∞

for all x ∈ X and all r > 0 whenever f is a quasiconformal mapping of X onto
Y. We call this global condition quasisymmetry and a homeomorphism satisfying
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it a quasisymmetric mapping. Our notion of quasisymmetry is equivalent to the
concept of a quasisymmetric function introduced by Beurling and Ahlfors in [2]
when X = Y is the real line and to the concept of quasisymmetry defined by
Tukia and Väisälä in [28] for many metric spaces X and Y , especially for all metric
spaces discussed below in theorem 1.1. It is a fundamental fact that quasiconformal
mappings between Euclidean spaces of dimension at least two are quasisymmetric.
This fails in dimension one; consider, for example, f(x) = x + ex. It is immediate
that the inverse mapping of a quasisymmetric mapping is also quasisymmetric and
many other important properties of quasiconformal mappings follow as well easily
from quasisymmetry.

This infinitesimal-to-global principle was shown to hold on the Heisenberg
group by Koranyi and Reimann, [17], and it holds for mappings between spaces
that occur as conformal boundaries of rank-one symmetric spaces by results of
Mostow and Pansu, [23, 24]. This extends to the case of Carnot groups by results of
Heinonen and Koskela in [11] and to the more general case of Carnot-Caratheodory
spaces by the work of Margulis and Mostow, [22].

A natural metric setting that covers all the above cases turns out to be that
of an Ahlfors regular metric space that supports a suitable Poincaré inequality.
Here X is Ahlfors Q-regular if X is equipped with a Borel measure µ and there is
a constant Cµ ≥ 1 such that

C−1
µ rQ ≤ µ(B(x, r)) ≤ CµrQ ,

for all balls B(x, r) ⊂ X of radius r < diamX. We also assume that X is proper:
each closed ball in X is compact.

Theorem 1.1. Let Q > 1. If X is a proper, Q-regular metric space that supports
a Q-Poincaré inequality, then each quasiconformal self-homeomorphism of X is
quasisymmetric.

For the assumption concerning Poincaré inequalities see section 2. This result
of Heinonen and Koskela is from [13] where versions with more general target can
be found as well. We arrived at theorem 1.1 from results more intrinsic to quasi-
conformal mappings. This includes moduli of curve families and so-called Loewner
spaces. The quasisymmetry gives Hölder continuity and other pleasant properties.
If one assumes a p-Poincaré inequality for some p < Q, then the volume derivative
of a quasiconformal mapping is a Muckenhoupt weight. For all this see [13]. We
will now leave quasiconformal mappings with the following philosophical point of
view: for quasiconformal mappings to be quasisymmetric, the infinitesimal distor-
tion of shapes needs to integrate to global control and a Poincaré inequality tells
us that the infinitesimal control of a function by its “gradient” results in global
estimates.

In this paper we concentrate on metric spaces that support a Poincaré in-
equality. Section 2 deals with the basics of such spaces. One of the crucial concepts
here is the notion of an upper gradient which will be our substitute for the length
of the gradient of a smooth function. In Section 3 we discuss Sobolev spaces and
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notice that one obtains a rich theory as soon as a Poincaré inequality is available.
The issue of a Sobolev mapping between metric spaces gets also briefly addressed.
In the final short section, section 4, we comment on the the consequences related to
calculus of variations in the metric setting and point out some other applications.

2. Spaces that Support Poincaré Inequalities

To simplify the things we will assume that the spaces we consider are relatively
nice. Our standing assumption will be that X is a proper (recall the definition
from Introduction), doubling metric space: X is equipped with a Borel measure µ
so that

µ(2B) ≤ Cdµ(B) (2)

whenever B is a ball and 2B is the ball with the same center as B and with radius
twice that of B. Notice that each Ahlfors regular metric space is automatically
doubling. Moreover, a simple iteration argument shows that the doubling condition
(2) is equivalent to the existence of a constant C > 0 and an exponent s > 0 such
that

µ(B)
µ(B0)

≥ C

(
r

r0

)s

(3)

whenever B0 is an arbitrary ball of radius r0 and B = B(x, r), x ∈ B0, r ≤ r0.

2.1. Upper gradients

In the abstract setting of a metric space we cannot talk about partial deriva-
tives. However, the length of a gradient of a smooth function has a rather natural
generalization.

Definition 2.1. Let u : A → R, A ⊂ X. An upper gradient of u on A is a Borel
function g : A → [0,∞] such that for each rectifiable path γ : [0, l] → A

|u(γ(l))− u(γ(0))| ≤
∫

γ

g ds . (4)

This definition is from [12, 13] except that there functions g as in (4) where
not called upper gradients. The current terminology comes from [20].

If u is Lipschitz:
|u(x)− u(y)| ≤ Ld(x, y)

for all x, y, then trivially g ≡ L is an upper gradient of u, but the local Lips-
chitz constant provides us with a smaller upper gradient than the global Lipschitz
constant: Given u, define

Lip u(x) = lim inf
r→0+

sup
{y:d(x,y)≤r}

|u(x)− u(y)|
r

.

See e.g. [6].
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2.2. Further Examples

1. g ≡ ∞ is always an upper gradient.
2. If there are no rectifiable, non-constant curves in A, then g ≡ 0 is an upper

gradient.
3. Each function u in the usual Sobolev class W 1,p(Rn) has a representative that

has a p-integrable upper gradient. See e.g. [19, 26].
Notice that the existence of an upper gradient that is integrable on many

curves gives good control on u: If
∫

γ

g ds < ∞, then u is continuous and real-valued

on γ.
To save space we only mention here that upper gradients behave quite the

way one expects, see [6, 19, 25, 26].

2.3. Poincaré inequalities

Definition 2.2. Let (X, d, µ) be as before. X is said to support a p-Poincaré in-
equality, p ≥ 1, if there exist C > 0 and λ ≥ 1 such that∫

B

|u− uB | dµ ≤ Cdiam (B)
(∫

λB

gp dµ

)1/p

, (5)

for all balls B, for all continuous functions u on λB and for every upper gradient
g of u on λB. Here uB is the average of u over the ball B and the barred integrals
mean averaged integrals.

When compared with the usual Poincaré inequalities in the Euclidean setting,
two differences appear: instead of the (p, p)-inequality we ask for a (1, p)-inequality
and the ball g gets integrated over is larger (when λ > 1) than the corresponding
ball for u. It follows from theorem 2.4 that we could as well assume a (p, p)-inequal-
ity. It is however immediate from the (1, p)-formulation (using Hölder’s inequality)
that (5) becomes weaker as p increases whereas this is substantially harder to see
from the (p, p)-formulation. In fact, (5) becomes strictly weaker when p dicreases
[10, 13]. Regarding the size of balls, we can omit λ if the geometry of balls is
sufficiently nice, e.g. if the metric is a length metric, but not in general, see [10].

In the Euclidean setting the Poincaré inequality for Sobolev functions follows
from that inequality for smooth functions. In the abstract setting we cannot speak
about smooth functions but Lipschitz functions make sense. It is then natural
to ask if a Poincaré inequality for Lipschitz functions guarantees that the space
supports a Poincaré inequality. This turns out to be true in great generality.

Theorem 2.3. Assume that X is path-wise connected. Then X supports a p-Poin-
caré inequality if and only if (5) holds for each ball B and for all Lipschitz func-
tions u and their upper gradients. In fact, (5) will then hold for all measurable
functions u.

Here our standing assumption that X be proper is essential (see [10]). For a
proof of theorem 2.3 see [14, 19].
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Recall that we required inequality (5) for every continuous function u and
each upper gradient of u. It is then natural to inquire how good the functions u
are for which (5) holds for some Lp-function g. According to the following result,
such functions share many of the good properties of Euclidean Sobolev functions.
The various constants C below are not necessarily the same as the constant in (5)
but they depend only on the given data, of which u, g are not part of.

Theorem 2.4. Let X be a doubling space and s be an exponent as in (3). Assume
that g ∈ Lp(X), p ≥ 1, and a locally integrable u satisfy inequality (5) for all
balls B.

1. If p < s, and q < ps
s−p , then(∫

B

|u− uB |q dµ

)1/q

≤ Cdiam (B)
(∫

5λB

gp dµ

)1/p

.

for all balls B.
2. If X is connected and p = s > 1, then∫

B

exp
(
(t|u− uB |)

s
s−1

)
dµ ≤ C2 . (6)

for each ball B, where

t =
C1µ(B)1/s

diam (B)||g||Ls(5λB)
.

3. If p > s, then u (after redefinition in a set of measure zero) is locally
Hölder continuous:

|u(x)− u(y)| ≤ Cr
s/p
0 d(x, y)1−s/p

(∫
5λB0

gp dµ

)1/p

(7)

for all x, y ∈ B0, where B0 is an arbitrary ball of radius r0.
4. Let x ∈ X. If p > s−1, then u (after redefinition in a set of measure zero)

is uniformly Hölder continuous with exponent 1 − (s − 1)/p for almost
every r > 0 on the set {y : d(y, x) = r}.

5. Suppose that a sequence of pairs (ui, gi)i∈N satisfies inequality (5) with
uniform constants. If ||ui||L1(B) + ||gi||Lp(5λB) ≤ C for each i for a ball
B, then there exists a subsequence (uik

)k∈N that converges in Lq(B) to a
function u. Here one can take any 1 ≤ q < ps/(s − p) when p < s and
any finite q ≥ 1 when p ≥ s. Moreover, when p > 1, there is a function g
in Lp(5λB) so that (5) holds for the pair (u, g) (with a possibly different
constant C).

For a proof of these results see [10] (part 1 can be found already in [9]).
The last conclusion in part 5 is however not covered by [10] but it easily follows
by selecting a weakly convergent subsequence of the subsequence gik

and using
Mazur’s lemma to get a strongly convergent sequence of convex combinations of
these functions.
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By theorem 2.4, the Poincaré inequality (5) implies versions of Sobolev-
Poincaré and Trudinger inequalities, a version of the Sobolev embedding theorem
on spheres and of the Rellich-Kondrachov theorem. Besides the Sobolev-Poincaré
inequality and the Sobolev embedding on spheres, we obtain as good results as in
the Euclidean setting. If we assume that X supports a p-Poincaré inequality, then
we have the full analog of the Sobolev-Poincaré inequality in (1) with q = ps

s−p for
function - upper gradient pairs (see [10]).

When does X then support a Poincaré inequality? A look at (4) should
soon convince the reader that this is the case whenever the concept of a smooth
function makes sense and one has a “usual” Poincaré inequality. This covers the
case of Carnot groups and the vector field setting (c.f. [10]). Regarding necessary
conditions, a Poincaré inequality implies the existence of “many” short curves, in
particular, that any pair of points in X can be joined with a curve whose length
is no more than a fixed constant times the distance between the points. Spaces
with this property are called quasiconvex. For sufficient conditions and “exotic”
examples see [4, 10, 13, 21, 25, 27]. We wish to stress that the spaces we consider
need not be integer dimensional. Indeed, Laakso [21] constructs for each Q > 1
Ahlfors Q-regular spaces that support even a 1-Poincaré inequality. The first non-
integer-dimensional examples were constructed by Bourdon and Pajot ([4]) as the
Gromov boundaries of certain hyperbolic buildings.

2.4. Stability

One good property of the concept of a metric space supporting a p-Poincaré in-
equality is that it is stable both under bi-Lipschitz changes of the metric and under
pointed, measured Gromov-Hausdorff convergence. The first stability is immedi-
ate; recall that f : X → Y is bi-Lipschitz if there is a constant L so that

dX(x, y)/L ≤ dY (f(x), f(y)) ≤ LdX(x, y)

for all x, y ∈ X. The second result is more complicated and essentially due to
Cheeger [6]. Recall that all the spaces we consider are assumed to be proper and
doubling.

Theorem 2.5. Suppose that (Xi, di, µi) is a sequence of spaces that all support a
p-Poincaré inequality with fixed C, λ and are all doubling with a fixed doubling con-
stant Cd. If this sequence converges (as a subsequence always does) in the pointed,
measured Gromov-Hausdorff sense to a space (X, d, µ), then X also supports a
p-Poincaré inequality.

Cheeger only obtains a q-Poincaré inequality for X for all q > p but relying
on his work one can verify even a p-Poincaré inequality, as was done in [19].

Above the Poincaré inequality, doubling and the properness of the spaces
guarantee that each of the spaces Xi is quasiconvex with a fixed constant. Thus,
using approriate bi-Lipschitz changes of metric, each Xi can be assumed to be
a length space, and it follows that also X carries a length space metric. The
requirement that the convergence be measured then means that, whenever xi ∈ Xi
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converge to x ∈ X, the measures of the balls B(xi, r), when normalized by the
measure of B(xi, 1), converge to the measure of B(x, r) for r > 0; here the balls
are given in the length space metrics.

3. Sobolev Spaces

3.1. The real-valued case

Following Shanmugalingam [26] we define the Newtonian space N1,p(X) by

N1,p(X) = {u ∈ Lp(X) : ∃ an upper gradient gu ∈ Lp(X)}
and equip it with the norm

||u||1,p = ||u||p + inf
gu

||gu||p .

Naturally, we need to identify u and v if ||u−v||1,p = 0. Motivated by the Euclidean
setting we further define

H1,p(X) = Lip (X)
||·||1,p

.

Finally we let

P 1,p(X) = {u ∈ Lp(X) : ∃g ∈ Lp(X) such that (5) holds for the pair u, g} .

If X supports a p-Poincaré inequality, then all these spaces coincide, and the
Newtonian space has many of the properties of the classical Sobolev spaces.

Theorem 3.1. Assume that X supports a p-Poincaré inequality, p > 1. Then

N1,p(X) = H1,p(X) = P 1,p(X)

coincide as sets. Moreover, N1,p(X) is a reflexive Banach space, and the usual
Sobolev inequalities hold for functions in N1,q(X), q ≥ p.

By Sobolev inequalities we mean the results from theorem 2.4 with the expo-
nent p there any exponent larger or equal to the exponent p in theorem 3.1, except
that for p < s we allow q = ps/(s−p) in the first of the inequalities. Other than for
this improvement, the Sobolev inequalities directly follow from theorem 2.4. For
the above endpoint result, one uses truncation arguments, see [10]. The reflexivity
is not easy to establish. This is due to Cheeger [6]; his definition for the Sobolev
space is slightly different from the above definitions but, as shown by Shanmu-
galingam [26], the resulting space is isometrically equivalent to N1,p(X). For the
coincidence of the three spaces above see [7, 10, 26]. There are also other possible
definitions for a Sobolev class. The class introduced by Korevaar and Schoen [18]
coincides with the above Sobolev spaces under the Poincaré inequality assumption
but the space introduced by Haj lasz only for exponents q > p, see [20].

We began by considering upper gradients that form a substitute for the length
of a gradient. Very surprisingly, the Poincaré inequality guarantees that even the
differential of a function makes sense. This is a remarkable result of Cheeger [6]
and it is a crucial part of his proof for the reflexivity. Another amazing conclusion
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of Cheeger is that the “minimal upper gradient” of a Sobolev function can be
realized as the point-wise Lipschitz constant. Unfortunately, we have no space to
discuss this in detail here, and we have to confine ourselves to referring to his
paper.

3.2. Sobolev mappings

We originally got interested in Sobolev functions on metric spaces because of the
need for tools suitable to handle quasiconformal mappings. For the basic questions,
like theorem 1.1, the real-valued theory was sufficient: the trick to be used was to
replace “locally” a mapping f with u(x) = dY (f(x), f(x0)), where x0 is a “locally”
fixed base point. The limits in this approach showed in that we were not able to
obtain an analytic definition for quasiconformality under the Q-Poincaré inequal-
ity assumption. The above switch from a mapping f to a real-valued function u
can be used to define the class of (local) Sobolev mappings from X to Y, but a
better definition is obtained using post-composition with Lipschitz functions. This
replaces the mapping with a family of real-valued functions. Our obstacle was the
lack of Lipschitz approximations to our quasiconformal mapping.

The key for us was to embed Y isometrically into `∞(Y ) to gain linear struc-
ture; this can be done for any metric space Y . This allows us to conveniently invoke
the vector-valued integration theory of Bochner and Pettis. The nice thing here
is that the validity of a real-valued p-Poincaré inequality on X is equivalent with
that for the `∞(X)-valued case, see [15]. Even though usual convolutions cannot
be used, one can still use certain “discrete” convolutions to approximate our qua-
siconformal mapping to show that the mapping belongs to the desired Sobolev
class. As an application to the theory of quasiconformal mappings we have the
following consequence.

Theorem 3.2. Let X be a proper, Q-regular metric space that supports a Q-Poincaré
inequality and f a self-homeomorphism of X. Then f is quasiconformal if and only
if f ∈ N1,Q

loc (X, X) and

Lip f(x)Q ≤ Kµf (x)

for a.e. x ∈ X.

Here Lip f(x) is a local Lipschitz constant of f, this time defined as

Lip f(x) = lim sup
r→0+

sup
{y:d(x,y)≤r}

d(f(x), f(y))
r

and

µf (x) = lim sup
r→0+

µ(fB(x, r))
µ(B(x, r))

is the volume derivative of f. For this result see [15].
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4. Minimization Problems and other Related Topics

By the reflexivity of the Sobolev space N1,p(X) under the p-Poincaré inequality
assumption, direct methods from the calculus of variations are available. Thus one
has the existence and uniqueness for solutions to the Dirichlet problem (c.f. [6]).

What about the regularity of the solutions? It seems plausible that one could
use the Moser iteration scheme to obtain Harnack’s inequalities for positive solu-
tions and as a consequence Hölder continuity of the solutions. There is, however, a
hidden danger which surfaces when trying to establish Caccioppoli-type inequali-
ties: the norm on the differentials need not necessarily be smooth. This problem
can be overcome by using De Giorgi’s method, and the solutions are indeed Hölder
continuous; see [16]. There are also recent results on the boundary continuity [3].

Another area where Poincaré inequalities in our sense have appeared is geo-
metric measure theory. This relates to the borderline case p = 1 of Sobolev func-
tions where functions of bounded variation occupy the theory. Ambrosio [1] studies
properties of sets of finite perimeter in Ahlfors regular metric spaces that support
a 1-Poincaré inequality. For applications to the setting of the Heisenberg groups
see [8]. It is not a big suprpise that the 1-Poincaré inequalities surface here: there
is an intimate connection between isoperimetric and 1-Poincaré inequalities as
observed already years ago by Maz’ya, Federer and Fleming.

Let us close this note by going back to the origin for our motivation to
look at quasiconformal mappings and Sobolev functions in the metric setting. The
quasiconformal mappings appeared for the first time in non-Riemannian setting in
the work of Mostow on rigidity of symmetric spaces. It would thus be desireable
that the metric theory of quasiconformal mappings also would result in rigidity
results. This is indeed the case: Bourdon and Pajot [5] have very recently obtained
ridigity results for hyperbolic buildings using the metric theory of quasiconformal
mappings.
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