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Abstract. The study of the maximal p-extension of a global field k unram-
ified everywhere and totally split at a finite set of places of k has at least
two important applications: it gives information on the asymptotic behav-
ior of discriminants versus degree in the number field case (as measured by
the Martinet constant α(t)), and on the relationship between genus and the
number of places of degree one (for large genus) in the function field case (as
measured by the Ihara constant A(q)). We survey recent work on class-field-
theoretical constructions of towers of global fields which are optimal for the
study of these phenomena, including best known examples in both settings;
these contain, among others, an infinite unramified tower of totally complex
number fields with small root discriminant improving Martinet’s record. We
show that allowing wild ramification to limited depth does lead to asymptoti-
cally good towers. However, we demonstrate also that the investigation of the
infinitude of these towers involves difficulties absent in the tame case.

1. Introduction and Definitions

An infinite tower of global fields K0 ⊂ K1 ⊂ K2 · · · is “asymptotically good” if the
relationship between certain of its layers’ invariants is in some sense optimal. The
precise condition is: (1) for number fields, that rdKi := |discKi|1/[Ki:Q] remain
bounded from above, and (2) for function fields with fixed finite constant field Fq,
that NKi/gKi remain bounded away from 0, where gK , NK are, respectively, the
genus, and the number of places of degree 1 of K.

The relationship between these invariants (discK vs. [K : Q], and gK vs. NK)
are governed by important general bounds (Stark-Odlyzko for number fields and
Hasse-Weil for function fields). The interest of asymptotically good towers is that
they measure the sharpness of the leading terms of these bounds.

In the number field case, currently the only method for constructing asymp-
totically good towers is that of p-class field towers, for a fixed prime p. The same
method works well for function fields; however, at least when q is a square, there
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are other rich sources of asymptotically good towers as well: modular curve con-
structions [14], certain types of explicit equations [7] (which potentially are always
modular! cf. [4]), and a new “rigid” construction of Frey, Kani, and Völklein [6].

In this paper, we survey the p-class field tower constructions. One fixes a
prime p and a finite non-empty set S of places of a base field K and studies the
maximal p-extension of K which is everywhere unramified and totally split at S.
For these applications, it is also possible to allow a finite number of places to
ramify, as long as we can obtain a bound for the minimal number of relations of
the Galois groups which appear. In §2 we recall all of this; we give the best known
examples for totally complex and totally real number fields (§3) and for function
fields over fields with 2, 3 and 5 elements (§4).

In §5 we consider extensions where wild ramification can occur but only to
a limited depth; we show first that these lead to asymptotically good towers. We
state a theorem (theorem 5.5) which shows that allowing wild ramification leads
to complications in the study of the minimal number of relations of the resulting
Galois groups.

We conclude with some open problems which come up naturally in the search
for asymptotically good towers.

1.1. Martinet’s constant

For a number field k of degree n = r1 + 2r2 over Q, with signature (r1, r2),
let t = tk := r1/n be its “infinity type,” i.e. the proportion of its embeddings
into C which factor through R. We will write disck, rdk for its discriminant and
root discriminant, respectively. Thanks to the work of Stark [32], Odlyzko [22, 23],
Poitou [25] and Serre [30], we have a very good lower bound for rdk, an asymptotic
version of which reads: for a number field k of infinity type t and large enough
degree,

rdk ≥ AtB1−t , (1)

with A = 60, B = 22; under GRH, one may take A = 215, B = 44.
For fixed t ∈ Q ∩ [0, 1], and integers n such that number fields of degree n

and infinity type t exist, we let αn(t) be the minimal root discriminant attained
by number fields of degree n and infinity type t and define

α(t) = lim inf
n

αn(t) .

For more details see [18, 10]. From (1), we see that

α(t) ≥ AtB1−t, t ∈ Q ∩ [0, 1] .

A nested sequence of distinct number fields K0 ⊂ K1 ⊂ · · · is “asymptotically
good” (Tsfasman-Vladut [34]) if rdKj is bounded from above. An asymptotically
good tower with fixed infinity type t and root discriminant bounded above by R
gives an upper bound α(t) ≤ R. In §4, we will present the best current upper
bounds for α(0) and α(1), namely (see [11])

B ≤ α(0) < 82.2, A ≤ α(1) < 954.3 .
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1.2. Function field case

We will fix a finite field Fq and ask how large the group of rational points X(Fq) of
a smooth absolutely irreducible algebraic curve X of genus g over Fq can be as g
tends to infinity. Actually, to maintain notational consistency with number fields,
we will consider the corresponding function fields K = Fq(X) and count the places
of degree 1. Let Nq(g) be the maximum number of degree 1 places of a genus g
function field with contant field Fq. By the celebrated theorem of Hasse-Weil,

Nq(g) ≤ q + 1 + 2g
√
q .

Various improvements of this bound have been obtained in the last two decades.
To measure the asymptotically optimal bound, Ihara introduced

A(q) = lim sup
g→∞

Nq(g)
g

.

In the 80’s, Ihara [14] and, Tsfasman, Vladut and Zink [35] independently showed
by using modular curves that A(q) ≥ √q − 1 if q is a square. Shortly thereafter,
Drinfeld and Vladut [3] proved that for all q,

A(q) ≤ √q − 1 ,

and so A(q) =
√
q − 1 for square q. Using class field towers, Serre showed that

there is an absolute constant c > 0 such that A(q) > c log q for all q. Variations
on Serre’s proof [31] can be found in Neiderreiter-Xing [21], Temkine [33] and
Li-Maharaj [17]. Recently, Elkies, Kresch, Poonen, Wetherell, and Zieve [5] have
shown that lim infg Nq(g)/g ≥ (

√
q − 1)/3 for square q and lim infg Nq(g)/g ≥

c′ log q for an absolute constant c′ > 0 (all q). When q is not prime, it can be
shown that the growth of A(q) is faster than logarithmic (e.g. [21, 33, 17]). The
major outstanding problem here is, then, to improve Serre’s lower bound for A(q)
when q is prime.

We will be contented here with describing what is known for three small prime
values of q, namely q = 2, 3 and 5. The best known bounds are: A(2) ≥ 81/317
(see [19]), A(3) ≥ 12/25 (see [1]) and A(5) ≥ 8/11 (see [2, 33]): we will present
these examples in §4.

2. Tamely Ramified Situation

We fix a prime p and two finite sets S and T of places of k such that:
1. In the function field case, S is non-empty and contains only degree 1 places.
2. In the number field case, S contains all infinite places S∞ of k.
3. S ∩ T = ∅.
4. For all places p ∈ T , p divides Np− 1, where Np is the absolute norm. In

the function field case that means that p divides qdeg(p) − 1 for p ∈ T .
Now we define kST to be the maximal p-extension (inside a fixed algebraic closure)
of k unramified ouside T in which S splits completely. By our assumptions, the



4 F. Hajir and C. Maire

ramification in kST /k is tame; put GST = Gal(kST /k). One has to introduce two
quantities:

Definition 2.1. Let G be a finitely generated pro-p-group. Then
1. d(G) is the minimal number of generators of G: d(G) = dimFp H

1(G,Fp).
2. r(G) is the minimal number of relations of G: r(G) = dimFp H

2(G,Fp).

By the Burnside Basis Theorem, the generator rank of a group is the same
as that of its maximal abelian quotient, thus d(GST ) can be understood in terms
of class field theory (it is the p-rank of the S-ray class group mod T ). The deepest
known fact about these groups was first established by Shafarevich (see [15], or
[2]):

Theorem 2.2. With the above assumptions,

r(GST )− d(GST ) ≤ |S| − 1 + θk,T ,

where θk,T = 1 when k contains µp and T = ∅, 0 otherwise.

Remark 2.3. One has the trivial inequalities: d(GS∅ ) ≤ d(GST ) ≤ d(GS∅ ) + |T |.
The famous Theorem of Golod-Shafarevich says that for a non-trival finite

p-group G, r(G) > d(G)2/4. Thus,

Theorem 2.4. If

d(GST ) ≥ 2 + 2
√
|S|+ θk,T ,

then GST is infinite.

The last ingredient we need is a standard genus theory bound for the p-rank
of the S-class group in a degree p Galois extension.

Theorem 2.5. Suppose k/k′ is a Galois extension of degree p. Let S′ = S ∩ k′ be
the set of places of k′ lying under the places in S. Suppose r places of k′ ramify in
k. Then

d(GS∅ ) ≥ r − |S′| − δk′ ,
where δk′ = 1 when k′ contains µp, 0 otherwise.

For this and more refined genus theory bounds, see e.g. [28, 27].

3. Number Fields

A first observation is that the layers of an infinite tamely ramified tower form an
asymptotically good family, (i.e. they have bounded root discriminant) [10]:

Theorem 3.1. Let k be a number field of degree n over Q of infinity type t such
that GST is infinite. Then

α(t) ≤ rdk
∏
p∈T

(
Nk/Qp

)1/n
.
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3.1. Martinet’s example

The first idea was to construct a number field k with small root discriminant
admitting an infinite unramified 2-extension (S = S∞, T = ∅). The layers of
such a tower comprise a family with constant root discriminant. Since 1978, the
best such example known has been that of Martinet [18]: he proved that the
field Q(cos(2π/11),

√
2,
√
−23) with root discriminant 23/2114/5231/2 has an in-

finite unramified 2-tower (T = ∅, S = S∞), and so α(0) < 92.4. Martinet also
provided a totally real infinite unramified tower: Q(

√
2,
√

29,
√

3 · 5 · 7 · 23 · 29) has
an infinite unramified 2-tower, giving α(1) < 1058.6.

3.2. An infinite unramified tower which improves Martinet’s record

In [10], we found that class field towers over non-Galois base fields seem to yield
asymptotically good towers. We now apply that idea to give an unramified tower
with root discriminant smaller than the previous example.

Let k′ = Q(ξ) where ξ is a root of f = x5 − 2x4 + 3x3 − 3x2 − x + 1. The
discriminant of f is −31391, a prime; thus, this is also the discriminant of k′,
and Ok′ = Z[ξ]. Since disck′ is negative, k′ has signature (3, 1). Since disck′ is a
quadratic discriminant, it follows (see Kondo [16]) that the Galois group of f is
S5; indeed, the Galois closure of k′ is an unramified A5-extension of Q(

√
−31391).

We will not need this fact, however.
The element η = −36ξ4 + 125ξ3 − 221ξ2 + 182ξ − 80 ∈ Ok′ is negative at all

three real places of k′. Its minimal polynomial is g(y) = y5 + 223y4 + 18336y3 +
10907521y2 + 930369979y + 18559139599. The Ok′ -ideal it generates factors into
nine prime ideals of Ok′ : η = π7π

′
7π11π

′
11π13π19π

′
19π23π29 where πr generates an

ideal of norm r. We let k = k′(
√
η), a totally complex field of degree 10. A defining

polynomial for k is g(y2). We note that η is congruent to a square modulo 4Ok;
explicitly, η = β2− 4γ with β = ξ4 + ξ+ 1 and γ = 11ξ4− 31ξ3 + 56ξ2− 45ξ+ 20.
Thus, k/k′ is ramified at the three real places and at the nine primes dividing η
and nowhere else. Thus, the root discriminant of k is rdk = 313911/5(72 · 112 · 13 ·
192 · 23 · 29)1/10 = 84.375 . . . By theorem 2.5 (p = 2), the 2-rank of the ideal class
group of k is at least 9+3−(3+1)−1 = 7. (This is confirmed by a Pari calculation
which gives Clk = Z/3⊕ (Z/2)7.) By theorem 2.4, k admits an infinite everywhere
unramified 2-tower since 2 + 2

√
5 + 1 = 2 +

√
24 < 7. To our best knowledge, this

tower gives the least root discriminant for an unramified tower which is known to
be infinite.

3.3. The best known bounds for α(0) and α(1)

Tamely ramified towers and asymmetric (non-Galois) constructions of the base
(such as the one presented above) were two ideas introduced in [10] for improving
Martinet’s constant. We briefly present the best known current estimates for α(0)
and α(1) (see [11] for details).
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3.3.1. Totally complex situation The totally imaginary field k = Q(θ) where
θ is a root of

x12 + 339x10 − 19752x8 − 2188735x6 + 284236829x4

+ 4401349506x2 + 15622982921

has discriminant 7 · 13 · 192 · 234 · 29 · 31 · 355092; it admits an infinite 2-extension
ramified at a prime p9 with absolute norm 9 and unramified everywhere else. Thus
α(0) ≤ rdk ·91/12 < 82.2.

3.3.2. Totally real situation The totally real field k = Q(θ) where θ is a
root of

x12 − 56966x10 + 959048181x8 − 5946482981439x6 + 14419821937918124x4

− 12705425979835529941x2 + 3527053069602078368989

has discriminant 710 · 137 · 294 · 414 · 97 · 1132; it admits an infinite 2-extension
ramified at a prime p13 with absolute norm 13 and unramified elsewhere. Thus
α(1) ≤ rdk ·131/12 < 954.3.

4. Function Fields

As in the number field case, a tamely ramified p-extension of function fields is
asymptotically good, meaning NK/gK is bounded from below for the layers K of
the p-extension. (This was used in [2] to give improved lower bounds for A(3) and
A(5).) To be precise, [2]:

Theorem 4.1. Fix a prime p not dividing q. Let k be a genus g function field with
constant field Fq, S a non-empty set of degree 1 places of k, T a (possibly empty)
set of places of k disjoint from S. If GST is infinite, then

A(q) ≥ |S|
g − 1 + 1

2

∑
p∈T deg p

.

4.1. Unramified towers

The best lower bound for A(2) has been given by Niederreiter and Xing [19]:
Let k = F2(x), N0 = x4 and N1 = (x2 + x+ 1)(x6 + x3 + 1) ∈ F2[x]. Let Ki

be the subfield of the cyclotomic function field kNi associated to Ni for i = 0, 1
(for more details see [13]). Consider now the subfield Fi of Ki fixed by 〈x+ i〉. Put
F = F0F1. Then [F : k] = 84. Now let S be the set of places of F lying over ∞
together with one place lying over x. Then |S| = 81. For this example, and p = 2,
GS∅ is infinite, and so

0.255 <
81
317
≤ A(2) ≤

√
2− 1 < 0.414 .



Asymptotically Good Towers of Global Fields 7

4.2. Tamely ramified towers

The following example is from [1]: Let k = F3(x,
√
D), where D = (x27 − x)(x9 −

x)(x + 1)(x3 − x)−2(x3 − x2 + x + 1)−1 ∈ F3[x]; the polynomial D has 11 prime
factors over F3. If we take p = 2, S to be the set of k-places above x, x − 1 and
1/x, T to consist of the unique k-place above x + 1, Golod-Shafarevich implies
that kST is infinite, hence by theorem 4.1,

0.48 = 12/25 ≤ A(3) ≤
√

3− 1 < 0.74 .

The following example is from [2]. For the field k = F5(x,
√
D) where D =

(x− 1)(x− 2)(x− 3)(x− 4)(x2 + x+ 1)(x2 + 3)(x2 + 2)(x2 + x+ 2)(x2 + 2x+ 3)
with p = 2, S all places above x and 1/x, and T the place above x − 1, one has
kST /k is infinite and then

0.72 < 8/11 ≤ A(5) ≤
√

5− 1 < 1.24 .

Note that by using unramified extensions, Temkine [33] has recovered the
same bound for A(5).

5. Wild Ramification

We fix a prime p. Now we suppose (for simplicity) that T consists solely of places
dividing p in the number field case, and in the function field case we suppose that
p | q. To each prime p ∈ T we associate ip ∈ [0,∞]. We call T (I) = {(p, ip), p ∈ T},
and define kST (I) as being the maximal p-extension of k unramified outside T ,

totally decomposed for all places in S, such that D(ip)
p is trivial, for all p in T ,

where D(ip)
p is the ramification group with upper numbering (see for example [29]

for more details). The condition ip = ∞ means that there is no restriction for
ramification at p. Note that we can assume without loss of generality that ip > 1
as the following proposition demonstrates.

Proposition 5.1. If ip ≤ 1, p is unramified in kST (I)/k.

Proof. Fix p ∈ T . Let K be a field such that k ⊂ K ⊂ kST (I). By the restric-

tion property of ramification groups, D(ip)
p (K/k) is trivial. Put n = ψK/k(ip)

where ψK/k is the Herbrand function associated to p in K/k: D(ip)
p (K/k) =

{1} ⇒ Dp,(n)(K/k) = {1} where Dp,(j)(K/k) is the ramification group with
lower numbering. If n ≤ 1, then since Dp,(1)(K/k) ⊂ Dp,(n)(K/k), we find that
Dp,(1)(K/k) = {1}. But Dp,(0)(K/k)/Dp,(1)(K/k) has order prime to p and
Dp,(0)(K/k) is a p-group, hence Dp,(0)(K/k) = {1}.

Now we want to show that n ≤ 1. Suppose n ≥ 1; m = bnc ≥ 1. We have

ip = ψ−1
K/k(n) =

g1 + · · ·+ gm + (n−m)gm+1

g0
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where gi = |Dp,(i)(K/k)|. Since Dp,(0)(K/k)/Dp,(1)(K/k) is trivial, g0 = g1. So
one obtains ([29, Chapter IV §3]):

1 +
m− 1
g0

+
(n−m)gm+1

g0
≤ ip ≤ 1 ,

giving n = m = 1. ¤
The main question of this section is the following:

Problem 5.2. What is the relation rank of the group GST (I)?

Before looking more closely at this question we explain why it is interesting
for the problem of finding asymptotically good towers.

Theorem 5.3. Assume that for all p ∈ T , ip > 1 is finite. Suppose that kST (I)/k is
infinite. Then

1) In the number field case, if k has degree n and infinity type t, one has:

α(t) ≤ rdk ·

∏
p∈T

Nk/Qp
ip+1

1/n

.

2) In the function field case, suppose p | q, k is a genus g function field with
constant field Fq, S is a non-empty set of degree 1 places of k disjoint from
T ; then one has:

A(q) ≥ |S|
g − 1 + 1

2

∑
p∈T (ip + 1) deg p

.

Proof. Let K be such that k ⊂ K ⊂ kST (I). By restriction, for all p ∈ T , D(ip)
p (K/k)

is trivial. Let p ∈ T . By definition one has:

D
(ip)
p (K/k) = Dp,(ψK/k(ip))(K/k) ,

where ψK/k is Herbrand function. Put n = ψK/k(ip) and m = bnc. Then for all
P | p, P a prime of K, one knows the P-valuation vP(DK/k) of the different of
K/k [29]:

vP(DK/k) = g0 + g1 + · · ·+ gm − (m+ 1) ,

where gj = |Dp,(j)(K/k)|; gj = 1 for all j ≥ m + 1. If we use the definition of ψ,
and the fact that ϕ = ψ−1 is the reciprocal function, one gets:

ip = ϕK/k(n) =
g1 + · · ·+ gm + (n−m)

g0
,

and then
vP(DK/k) = g0 + g1 + · · ·+ gm − (m+ 1)

= g0(ip + 1)− (m+ 1)− (n−m)

≤ eP(K/k)(ip + 1)

because g0 = eP(K/k). The rest follows easily as in [2]. ¤
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5.1. A sub-extension of kST (I)

For a finite extension K/k we consider TK and SK the set of places of K above T
and S. For all places P ∈ TK we let iP = ip where P ∩Ok = p ∈ T , and we write
simply KS

T (I) instead of KSK
TK(IK).

So now we can define k∞ ⊆ kST (I) inductively as follows: start with k0 = k; for
each i ≥ 0, let ki+1 be the maximal abelian extension of ki contained in (ki)ST (I);
for the whole tower, put k∞ = ∪ki. Then k∞ ⊆ kST (I). Note that in the tamely
ramified situation, k∞ = kST (I). Put G = Gal(K∞/k). In [24] Perret proposed a
bound for r(G) − d(G) when G is finite. Niederreiter and Xing [20] showed that
Perret’s conjecture would imply the infinitude of a certain tower over F2 violating
the Drinfeld-Vladut bound.

We note that if k∞/k is infinite, it gives better estimates for α(t) and A(q)
than those of theorem 5.3, namely:

• α(t) ≤ rdk ·

∏
p∈T

(
Nk/Q

)
p
bipc∗+1

1/n

, in the number field case and

• A(q) ≥ |S|
g − 1 + 1

2

∑
p∈T (bipc∗ + 1) deg p

in the function field case,

where bipc∗ = bipc if ip is not an integer, bipc∗ = ip − 1 otherwise.
This comes from the following observation: If p is ramified in K/k, let

n(ip) = sup
j
{D(j)

p (K/k) 6= {e}} .

Then n(ip) ≤ ip. But if K/k is an abelian extension we know that n(ip) is an
integer and so n(ip) ≤ bipc∗: this is the Hasse-Arf Theorem (see [29] for example).
To conclude we use the proof of Perret [24].

5.2. Iwasawa theory

Suppose that for all p ∈ T , ip = ∞. Then the difference r − d is well-understood
(see [15, 9]). In particular, if T contains all places of k above p with ip =∞, then
r − d = −(r2 + 1) (for p > 2).

One has the following natural question:

Problem 5.4. Can one give explicitly a function f depending on S and on T (I)
with values in R such that

r(GST (I))− d(GST (I)) ≤ f(S, T (I))?

When all the indices ip =∞, Shafarevich has given a very satisfactory answer.
However, at least when some of the indices in I are finite and others are not, the
groups in question are not even necessarily finitely presentable! For example, we
have the following theorem [12]:



10 F. Hajir and C. Maire

Theorem 5.5. Let p = 2. Let ` be a prime such that ` ≡ −1 (mod 16) and put
k = Q(

√
−`). Let p1 and p2 be the two primes of k above 2. Take 1 < ip1 < ∞

and ip2 =∞. Then GST (I) is a finitely generated pro-2-group with r(GST (I)) =∞.

Proof. We give only the two crucial points of the proof:
1) The condition on ` forces the decomposition group of p1 in kST (I)/k to be

exactly the absolute Galois group of the maximal p-extension Kp1 of kp1

(the completion of k at p1): this is an application of a result of Wing-
berg [36].

2) Let G be the Galois group of the absolute p-extension of a local field k, and
let Gi be the subgroup of G with upper numbering. Then for
i > 1 the number of relations of G/Gi is infinite: this is a result of
Gordeev [8]. ¤

In view of theorem 5.3, it would be very interesting to investigate the above
problem when all the indices are finite.

6. Two Further Questions

To finish we want to mention two questions. The first is studied in [11]:

Problem 6.1. Does every infinite T -ramified p-tower kST /k contain an intermediate
field K (of finite degree over k) such that K has an infinite unramified p-tower
KS
∅ /K?

Problem 6.2. Consider, for simplicity, the number field situation and p = 2. Sup-
pose that for all primes p of k not dividing 2, the maximal {p}-ramified 2-extension
k{p} over k is infinite. Does this imply that the maximal unramified 2-extension of
k is infinite?

The second can give a very nice application for bounding α(t) and is, in
essence, a refinement of the Golod-Shafarevich criterion. For instance, it has long
been conjectured that the imaginary quadratic field k of discriminant −5460 =
−4 · 3 · 5 · 7 · 13 whose class group has exponent 2 and rank 4 has an infinite
unramified 2-class field tower. It is easy to see that this field satisfies the hypothesis
of problem 6.2, a positive answer to which would then yield α(0) ≤

√
5460 < 74.
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baki, Vol. 1975/76, 28ème année, Exp. No. 479, pp. 136–153, Lecture Notes in Math.
567, Springer 1977.

[26] P. Roquette, On Class field towers, in Algebraic Number Theory, ed. J. Cassels,
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