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1. Introduction

This talk is dedicated to various aspects of Mirror Symmetry. It summarizes some
of the developments that took place since M. Kontsevich’s report [58] at the Zürich
ICM and provides an extensive, although not complete bibliography.

1.1. Brief history

Mathematical history of Mirror Symmetry started in 1991, when an identity of a
new type was discovered in the ground-breaking paper by four physicists [20] (it
was reproduced in [85] where earlier works are also described and motivated).

The left hand side (or A-side) of this identity was a generating series for the
numbers n(d) of rational curves of various degrees d lying on a smooth quintic
hypersurface in P4. The right hand side (B-side) was a certain hypergeometric
function. The Mirror Identity states that the two functions become identical after
an explicit change of variables which is defined as a quotient of two hypergeometric
functions of the same type.

At the moment of discovery, not only the identity itself remained unproved,
but even its A-side was not well defined: the correct way of counting rational curves
was proposed by M. Kontsevich ([60]) only in 1994. In the same remarkable paper
Kontsevich gave an explicit formula for n(d) creatively using Bott’s fixed point
formula for torus actions at the target space. After the appearance of this paper
one could hope that the Mirror Identity for quintics (and more general toric sub-
manifolds) ought to be provable by algebraic manipulations with both sides. This
turned out to be a difficult problem. A. Givental brought this program to a suc-
cessful completion in 1996, by introducing a new torus action at the source space,
stressing equivariant cohomology and inventing ingenious calculational strategy
(see [40, 43, 45, 15, 90]). For subsequent important developments, see [66, 67, 14].
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This work however did not unveil the mystery of the Mirror Identity. The
point is that the identity itself was discovered by the physicists as only one mani-
festation of a deeper principle. Physicists believe that with any Calabi-Yau man-
ifold X one can associate two N = (2, 2) Superconformal Field Theories (SCFT)
which are the respective A and B models (see e.g. [105]). The Mirror Correspon-
dence between X and Y supposedly interchanges their A and B models. In par-
ticular, in the case of quintics the hypergeometric functions involved are actually
periods of the mirror partner family of our quintics, and B-models generally reflect
properties of variations of periods and Hodge structures.

Unfortunately, a precise and complete mathematical definition of what con-
stitutes an N = (2, 2) ScFT is still lacking. Various components of this structure
with varying degree of precision are described in the papers collected in [85] and
[86]. In particular, a part of this structure is a modular functor in the sense of
Segal, with possibly infinite dimensional Hilbert space. In turn, such theories are
often constructed via representation theory of a vertex algebra. See [73] and [17, 18]
for the most recent mathematical approach to this picture, achieving at least the
construction of what seems to be the right vertex algebra.

The parts that are involved in the statement of Mirror Identity above refer
correspondingly to the Quantum Cohomology (A-model, physicists’ σ-model) and
extended variations of Hodge structure. Both are now well understood mathemat-
ically: see [79] and [4] respectively. However, the Mirror partners are connected
by much more ties than a mere Mirror Identity. These ties, in particular, relate
Lagrangian and complex geometry in a remarkable way: see [96] and [58] for the
basic conjectures to this effect.

Therefore now, more than decade after it was discovered, the Mirror Sym-
metry mathematically looks like a complex puzzle, some of the pieces of which
have found their respective places, some are still lying in disorder, and some, most
probably, are missing.

1.2. Plan of the paper

This puzzle metaphor guided the organization of this report.

Section 2 is devoted to the binary relation of mirror partnership between
families of Calabi-Yau manifolds endowed with additional structures which we call
here cusps. This relation consists in the isomorphism of two Frobenius manifolds,
constructed by two different ways for the respective families. In turn, Frobenius
manifold isomorphisms generalize the Mirror Identity of [20].

Section 3 explains various versions of another mirror partnership relation,
this time between certain symplectic, on the one hand, and complex, on the other
hand, manifolds, endowed with additional structure which in this case is a choice
of a fibration by real tori. Here I have took as starting point a part of Kontsevich’s
package [58], with further detalization taken from [96, 93, 2], and other papers. I
have chosen for these relations the word “partnership”, or “duality”, as opposed
to “symmetry”, because the definition of both of them is explicitly un-symmetric.
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The next part of the section 3 restores the idea of Mirror Symmetry: according
to [96], the Mirror Symmetry relation connects Calabi-Yau manifolds endowed
with Kähler structure, and thus simultaneously with compatible Lagrangian and
complex structures, so that Kontsevich’s duality can be imposed simultaneously
upon two crossover Lagrangian/complex pairs.

Although the Frobenius manifold duality and the Lagrangian/complex dual-
ity some day are expected to become parts of a unified picture, at present contours
of the latter are rather vague.

One common part of both dualities is the prediction of mirror isomorphisms
connecting the cohomology spaces of mirror partners (X,Y ). In particular, iso-
morphisms of the Frobenius manifolds restricted to their spaces of flat vector
fields produces isomorphisms µX,Y : H∗(X,C) → H∗(Y,∧∗(TY ) ⊗ V −2

Y where
VY = H0(Y,Ωmax

Y ).
Actually, algebraic geometric model of the A-side, the theory of Gromov-

Witten invariants, endows H∗(X,C) with much stronger structure, which is mo-
tivic by its nature. It would be very interesting to understand the geometry of the
mirror reflection of Calabi-Yau motives.

However, even when the intricate inner workings of Mirror Symmetry are
understood, this will not be the end of the story.

1.3. Dualities in string theory

All this machinery emerged as an approximation in the quantum superstring the-
ory whose aim is to provide a unified theory of matter and gravity (space-time).
The first superstring revolution (1984–85) led to the belief that there are five con-
sistent (perturbative, without ultraviolet divergencies) superstring theories, each
on ten-dimensional space-time, or in other words, 10d Poincaré-invariant vacuum.
For all of them, the low-energy approximation is an effective 10d supergravity
theory. The second superstring revolution (1994–??) started with the Witten’s
suggestion that all five theories are limits of a single theory (see review in [94]). In
other words, they are perturbarive expansions of a single underlying theory about
distinct points in the moduli space of quantum vacua. Moreover, a sixth special
point in this space is a 11d Poincaré-invariant vacuum.

C. Vafa suggests to look at the underlying M -theory as patched up from
five/six local descriptions and their compactifications, im much the same way as a
manifold is patched up from coordinate neighborhoods. The transition functions
are called dualities, and according to [96], Mirror Duality is one of them.

If this is true, the Mirror Symmetry acquires an incredibly high epistemo-
logical status as one of the building blocks of the ambitious Unified Quantum
Superstring Theory.

For mathematicians, this means that the puzzle we are trying to assemble, is
only a small piece of the still larger puzzle whose contours are yet barely visible.
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2. Frobenius Manifolds and Mirror Partnership between Families
of Calabi-Yau Manifolds

2.1. Calabi-Yau manifolds

In this section I will call a Calabi-Yau (CY) manifold in the weak sense any pro-
jective (or compact Kähler) complex manifold X with trivial canonical sheaf. Any
such manifold admits a finite unramified covering X̃ with the following property:

X̃ is a direct product of a complex torus A, of a simply connected CY Y with
h2,0(Y ) = h2,0(X̃), and of a simply connected CY Z with h2,0(Z) = 0.

If the factors A and Y are absent in any finite unramified covering of X, then
X is CY in the strong sense.

In dimension 1, the only CY manifolds are elliptic curves, in dimension 2,
besides complex tori, there are K3-surfaces. In dimension 3, the first examples of
CY in the strong sense appear. Quintics in P4 are the simplest of them.

More generally, anticanonical hypersurfaces in any compact toric manifold
associated with a reflexive polyhedron are CY’s: see [6]. This method produces 4319
families of K3-surfaces and 473 800 776 families of CY threefolds, among which
at least 30 178 families can be distinguished by their Hodge numbers (see [63]). It
is still unknown, whether the number of maximal families of CYs in any dimen-
sion ≥ 3 is finite or not.

The toric construction (and its generalization to complete intersections in
arbitrary Fano manifolds) remain the most important testing ground for basic
conjectures about CYs.

A general approach to the complex moduli spaces of CY manifolds is fur-
nished by the deformation theory. The Kodaira-Spencer local versal deformation
of an n-dimensional CY manifold X is unobstructed and has dimension h1,n−1(X).

2.2. Mirror partner families of CYs: preliminarities

The notion which we will describe in this section is interesting mainly for CYs in
the strong sense. It develops the discovery made in [20].

This notion is an asymmetric binary relation between versal local families
{Xs | s ∈ S}, {Yt | t ∈ T} of CYs, satisfying the condition h1,1(X) = h1,n−1(Y ) =
r and endowed with some additional structure.

On the A-side, this additional structure consists in a choice of a ba-
sis (β1, . . . , βr) of the group of numerically effective classes in A1(Xs). When s ∈ S
varies, elements of this basis must be horizontal with respect to the Gauss-Manin
connection. Such a basis determines functions qAj on H2(Xs,C/Z): qAj (L) :=
e2πi(L,βj). We will refer to H2(Xs,C/Z) together with qAj as a Kähler cusp.

On the B-side, this additional structure consists in the choice of a partial
compactification T ⊂ T looking locally like the embedding of a product of pointed
open unit discs in C into the product of non-pointed unit discs. The variation
of Hodge structures of the family Yt must have maximal unipotent monodromy
on this compactification: see [88, 89, 27]. Geometrically, T contains a point of
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“maximal degeneration” of the family Yt and T parametrizes Calabi-Yau mani-
folds “with large complex structure”. The point of maximal degeneration is the
transversal intersection of discriminantal divisors. Building upon [20] and [87, 88],
Deligne has shown in [27] how to define a system of functions qBj on T in terms
of the variation of Hodge structures determined by Yt. We will refer to the germ
of T at its point of maximal degeneration as moduli cusp of the relevant moduli
space.

The relation of mirror partnership between such enhanced families X/S and
Y/T , in particular, identifies qAj with qBj and thus establishes an isomorphism be-
tween a domain in H2(X,C/Z) where qAj are sufficiently small and the respective
domain in the moduli cusp. This isomorphism must identify two functions: poten-
tial of the small quantum cohomology at the A-side, and an integral involving a
holomorphic volume form on the fibers Yt at the B-side.

A fuller formulation of the mirror partnership relation consists in the iden-
tification of two formal Frobenius manifolds (FM): quantum cohomology of any
Xs at the A-side, and Barannikov-Kontsevich’s FM on a formal extended moduli
space at the B-side.

Most of the remaining part of this section will be devoted to the description
of the relevant Frobenius manifolds.

However, the reader must be aware of more global aspects of this essen-
tially local picture. In fact, moduli stack of complex variations of Y may have
many cusps; they are acted upon by the Teichmüller group Diff(Y )/Diff0(Y ).
One can speculate that mirror partnership is stable with respect to such moduli
cusp changes. Then the question arises, what corresponds to them at the A-side.

Two partial answers were suggested. In [3] it was argued that different bira-
tional models of some Xs can produce canonically isomorphic cohomology groups,
in particular H2, in which however Kähler cones will form a non-trivial fan (in
the sense of toric geometry). Maximal cones of this fan support Kähler cusps that
might correspond to different moduli cusps of the same family at the B-side. In
this picture, one does not see what should correspond to the Teichmüller group.
M. Kontsevich suggested in the framework of his conjectured Lagrangian/complex
duality that it must be the autoequivalence group of the derived category of co-
herent sheaves on Xs. Some evidence for this was furnished by comparison of the
stabilizing subgroups of the cusps: see [52, 95].

2.3. Frobenius manifolds

LetM be an analytic or formal supermanifold. A structure of the Frobenius mani-
fold on it is given by a flat metric g (symmetric non-degenerate form on the tangent
sheaf) and a function (potential) Φ with the following property. Let (xa) be a local
g-flat coordinate system, ∂a = ∂/∂xa, Φabc = ∂a∂b∂cΦ. Raise one index of Φabc

using g and define an OM -bilinear multiplication ◦ on TM by ∂a ◦∂b :=
∑

c Φab
c∂c.

Then this multiplication must be associative (it is obviously (super)commutative).
Additional structures that are present in the mirror picture are the flat identity e
for ◦ and an Euler vector field E satisfying the conditions LieE(g) = Dg for some
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constant D and LieE(◦) = ◦. It expresses homogeneity properties of Φ: we have
EΦ = (D + 1)Φ + a polynomial in flat coordinates of degree ≤ 2.

At the A-side, the relevant Frobenius manifold is formal: M is the formal
completion of the linear space H∗(Xs,C), with its Poincaré pairing as g and the
potential Φ constructed as formal series whose Taylor coefficients are Gromov-
Witten invariants of Xs. At the B-side the relevant Frobenius manifold can be
conceived as a certain formal neighborhood of the classical moduli space T near
the relevant cusp: extended moduli space of the B-family. Both formal spaces can
be refined to germs of analytic spaces.

Here are some details.

2.4. Quantum cohomology

Potential Φ of the quantum cohomology can be defined for any projective com-
plex (or compact symplectic) manifold X. After taking into account the relevant
homogeneity properties of the Gromov-Witten invariants it can be written as a
formal series in linear coordinates (xa) on ⊕k �=2H

k(X,C) and their exponentials
on H2(X):

Φ(x) =
1
6
((

∑
xa∆a)3)

+
∑
β �=0

e
(β,

∑
|∆b|=2 xb∆b)

∑
n≥0,(ai):|∆ai

|�=2

〈∆an . . .∆a1〉0,n,β
xa1 . . . xan

n!
. (1)

Here (∆a) is the basis of H∗(X,C) dual to (xa), ∆k ∈ H |∆k|(X), the first term in
the rhs of (1) is the cubic self-intersection index, β runs over numerically effective
1-classes in X. Finally, the Gromov-Witten invariant 〈∆an

. . .∆a1〉0,n,β counts
virtual number of stable maps of genus zero (C;x1, . . . , xn; f : C → X) such that
f∗([C]) = β and f(xi) ∈ Dai where Dai is a cycle representing homology class dual
to ∆ai . Physically, ∆a are called the primary fields of the respective Conformal
Field Theory, and the Gromov-Witten invariants are their correlators.

The small quantum cohomology potential is obtained by restricting Φ(x) to
H2, that is, putting xa = 0 for |∆a| �= 2.

2.5. Barannikov-Kontsevich’s construction

On the B-side, the relevant formal Frobenius potential is constructed on the com-
pletion at zero of the cohomology space H∗(Y,∧∗(TY )) interpreted as a formal
moduli space MA∞ of A∞-deformations of Y . This construction was introduced
in [4]; it refines the earlier proposal from [5]. Unlike the case of quantum coho-
mology, here it is essential to require Y to be a (weak) Calabi-Yau manifold. This
condition will be used, in particular, through a choice of the global holomorphic
volume form Ω on Y .

This geometric setup produces first of all an algebraic object (A, δ,∆,
∫

),
special differential Batalin-Vilkovyski algebra (dBV), consisting of the following
data which we will describe in axiomatized form.
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(i) A is a supercommutative C-algebra.
In the Calabi-Yau setup, A = ΓC∞(Y,∧∗(T

∗
Y ) ⊗ ∧∗(TY )).

(ii) δ is an odd C-derivation of A, δ2 = 0.
In our case, δ = ∂, the operator defining the complex structure on Y and its

tangent bundle, so that A is the Dolbeault resolution of the exterior algebra of the
tangent bundle.

Therefore, the δ-cohomology space H = H(A, δ) = Ker δ/ Im δ in our case is
identified with coherent cohomology H∗(Y,∧∗(TY )). Generally, we assume it to be
of finite dimension.

The space H plays the central role, because it will support the structure of
the formal Frobenius manifolds.

We will denote by K = C[[xa]] the ring of formal functions on H, (xa) being
coordinates on H dual to a basis (∆a).

(iii) ∆ is another odd differential, ∆2 = 0, which is a differential operator of
order two with respect to the multiplication in A.

More precisely, we assume that for any a ∈ A the formula

∂ab = (−1)ã∆(ab) − (−1)ã(∆a)b− a∆b
defines a derivation ∂a. Moreover, we assume that δ∆ + ∆δ = 0.

In our case, ∆ is obtained from the ∂-operator on the complexified C∞ de
Rham complex of Y after the identification of this complex with A with the help
of Ω: ∆(a) := (� Ω)−1 ◦ ∂ ◦ (a � Ω).

From the ∂∂-Lemma in Kähler geometry, it follows that the two canonical
embeddings of differential spaces

(Ker ∆, δ) → (A, δ), (Ker δ,∆) → (A,∆) (2)

are quasi-isomorphisms, and moreover, homology of all four differential spaces can
be idemtified with (Ker ∆ ∩ Ker δ)/ Im δ∆.

As a part of this package, one also obtains the following formality property:
the natural map Ker ∆ → H(A,∆) induces surjection of differential Lie algebras
which is a quasi-isomorphism:

(Ker ∆, [•], δ) → (H(A,∆), 0, 0) .

In the axiomatized situation, we impose these conditions as an additional
axiom. This condition can be weakened: it suffices to require only that cohomology
of differentials δ + ∆ and δ have the same dimension.

(iv)
∫

: A → C is a linear functional which must satisfy two integration by
parts identities:∫

(δa)b = (−1)ã+1

∫
aδb,

∫
(∆a)b = (−1)ã

∫
a∆b . (3)

The integral is given by the formula∫
a =

∫
Y

(a � Ω) ∧ Ω (4)
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where Ω means a holomorphic volume form on Y whose period over the unique
monodromy invariant cycle at the chosen cusp is (2πi)d, d = dimY .

(v) Algebra grading A = ⊕An, C ∈ A0.
We assume that with respect to this grading, δ and ∆ are of degree 1, and

∫
has a definite degree. (This is at variance with [78, 79], but agrees with [4].)

Grading produces an Euler field on H, whereas the image of 1 ∈ A serves as
flat identity.

In the Calabi-Yau setup, we can grade ∧pT
∗
Y ⊗ ∧qTY by q − p.

2.5.1. Frobenius structure Having thus described the formal properties of a
Batalin-Vilkovyski algebra (A, δ,∆,

∫
), we can now explain the derivation of the

Frobenius structure on H.
One starts with checking that the bilinear operation [a • b] = ∂ab, together

with multiplication, endows A by the structure of Gerstenhaber, or odd Poisson
superalgebra, in which the Lie bracket is a parity changing operation, and all the
usual axioms are valid after inserting appropriate signs.

The basic ingredient of the construction from [4] is a certain exponential
map ΦW . In the Calabi-Yau setup it is an A∞-analog MA∞ →H∗(Y,C)[[�−1, �]][d]
of the classical period map. Roughly speaking the map ΦW is described by the
formula

ΦW (xa,�) =
[
exp

1
�
Γ̃
]

where Γ̃ ∈ A⊗̂K[[�]] is a W -normalized generic solution to the Maurer-Cartan
equation (δ + �∆)Γ̃ + 1

2 [Γ̃ • Γ̃] = 0 and [a] denotes the cohomology class with
respect to the differential δ + �∆. Here δ and ∆ are assumed to be extended
to A⊗̂K[[�]] by linearity and Γ̃ is supposed to be W -normalized generic in the
following sense: firstly,

[
exp 1

�
Γ̃
]

∈ 1 + LW , where LW , �
−1LW ⊂ LW is semi-

infinite subspace associated with an increasing isotropic filtration on cohomology
of δ + ∆, and, secondly, the map (ΦW − 1) mod(�−1LW ) : H → LW /�

−1LW is
linear and is an isomorphism. In the Calabi-Yau setting W is the monodromy
weight filtration associated with the relevant cusp. Existence of such solution Γ̃
for W satisfying certain transversality condition can be proved by induction on
the order of coefficients of Taylor expansion.

As a matter of fact, at this stage this construction exhibits certain common
features with the K. Saito’s construction of FM structures on unfolding spaces of
singularities. It seems that if one chooses for W a certain special filtration then
the primitive form from the K. Saito theory can be identified with an analog of
ΦW (xa,�). The existence of a primitive form in K. Saito’s theory is a nontrivial
fact which follows in general from the theory of mixed Hodge modules of M. Saito.

Let us put now Γ = Γ̃(xa, � = 0) and δΓ := id⊗ δ+[Γ•]. The operator δΓ is a
homological differential acting on AK := K⊗̂A. By continuity, one can canonically
identify H(AK , δΓ) with K⊗H. On the other hand, multiplication in AK induces
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a multiplication on H(AK , δΓ). This is our ◦. The map ΦW (xa,�) induces a pairing
on the tangent sheaf to H:

〈∂a, ∂b〉W :=
∫
∂aΦW (xa,�)∂bΦW (xa, − �) .

The properties of the map ΦW imply that this pairing is constant: 〈∂a, ∂b〉W = gab.
This is our flat metric.

2.5.2. Mirror identities for complete intersections in projective spa-
ces After these preparations, Barannikov’s proof runs as follows. Barannikov
invokes the famous Givental’s result ([40, 43, 66]) establishing the mirror identity
on the level of “small quntum cohomology” (restriction to H2) replacing A-model,
and classical moduli space replacing B-model. This furnishes identification of a
part of Gromov-Witten invariants as coming from the relevant Picard-Fuchs equa-
tions. Now, Kontsevich-Manin’s “First reconstruction theorem” from [61] shows
that this part suffices for the identification of the remaining invariants as soon
as we know that Associativity Equations (= Frobenius structure) hold. In dimen-
sion 3 the latter supply no additional information, but the larger dimension is, the
more important Associativity Equations become.

2.5.3. Extended moduli spaces The context of Mirror Symmetry served to
increase awareness of the importance of extended moduli spaces in many other
contexts of algebraic geometry. Roughly speaking, any classical deformation prob-
lem is governed by a cohomology group Hk classifying infinitesimal extensions
and the next cohomology group Hk+1 classifying obstructions. In the stable and
unobstructed case, Hk is the tangent space to the base of versal deformation.
Extended moduli space in the unobstructed case has total cohomology H∗ as tan-
gent space. Barannikov-Kontsevich’s B-model is such an extended moduli space
for Calabi-Yau manifolds.

See [62, 23, 74] for a discussion of this matter in general, and [84] for inter-
esting constructions, related to the Frobenius structure.

2.6. Other mirror isomorphisms

There exist isomorphisms of auxiliary Frobenius manifolds connecting certain un-
folding spaces of singularities (B-model) and moduli spaces of curves with spin
structure (A-model) respectively, as was suggested by Witten [106] and mathemati-
cally developed in [55, 56]. See also [78] about possible relations to the Calabi-Yau
mirror picture, developing the context in which the Mirror Symmetry was first
discussed in [36, 37].

3. Lagrangian/Complex Duality and Mirror Symmetry

3.1. Classical phase spaces

Consider a C∞ symplectic manifold (X,ω), endowed with a submersion pX : X →
U whose fibers are Lagrangian tori, and a Lagrangian section 0X : U → X. This is
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the classical setup of action-angle variables in the theory of completely integrable
systems.

The form ω identifies the bundle of Lie algebras of the tori p−1
X (u), u ∈ U,

with the cotangent bundle T ∗
U . Hence T ∗

U can be seen as fiberwise universal cover
of X, and we have a canonical isomorphism X = T ∗

U/H where H is a Lagrangian
sublattice in T ∗

U with respect to the lift of ω which is the standard symplectic form
on the cotangent bundle. There exists also a canonical flat symmetric connection
on T ∗

U for which H is horizontal.
Put Ht = Hom(H,Z). This local system is embedded as a sublattice into TU ,

and we can define the mirror partner of (pX : X → U, ω, 0X) as the toric fibration
Y := TU/H

t endowed with the projection to the same base pY : Y → U and the
zero section 0Y .

3.2. Complex structure on Y

Passing from X to Y we have lost the symplectic form. To compensate for this
loss, we have acquired a complex structure J : TY → TY which can be produced
from (p : X → U, ω, 0X) in the following way. The flat connection on TU obtained
by the dualization from T ∗

U produces a natural splitting TY = p∗Y (TU ) ⊕ p∗Y (TU ).
With respect to this splitting, J acts as (t1, t2) �→ (−t2, t1).

Conversely, suppose that we have a complex manifold Y endowed with a
fibration by real tori Y → U with zero section, such that the operator of complex
structure along the zero section identifies TU with the bundle of Lie algebras of
fibers. Then we can consecutively construct the lattice Ht ⊂ TU , the dual fibration
X := T ∗

U/H and the symplectic form on X coming from the cotangent bundle.

3.3. Fourier-Mukai transform and further relationships between Lagrangian and
complex geometry

Consider first a pair of dual real tori T = HR/H and Tt = Ht
R/H

t where H is
a free abelian group of finite rank, Ht the dual group. Denote by 〈 , 〉 the scalar
product Ht × H → Z and its real extensions. Each point xt ∈ Tt can be in-
terpreted as a local system of one dimensional complex vector spaces with mon-
odromy π1(T) = H → S1 : h �→ e2πi〈xt,h〉. Hence Tt becomes the moduli space of
such systems on T, and similarly with roles of T and Tt reversed.

This can be conveniently expressed by introducing the Poincaré bundle
(P,∇P) on T⊗Tt which is rank one complex bundle with connection. The connec-
tion is flat along both projections, but has curvature 2πi〈∂t, ∂〉 on (∂t, ∂) ∈ Ht×H.

Using (P,∇P), we can extend the correspondence between points of T and
local systems on Tt in the following way. Call a skyscraper sheaf F on T a sheaf
consisting of a finite number of vector spaces Fi supported by points xi. We can
define a functorial map

F �→ pTt∗(p∗T(F) ⊗ P) (5)
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whose image, if one takes in account the induced connection, is a unitary local
system on Tt, that is, a complex vector bundle with flat connection and semisimple
monodromy with eigenvalues in S1.

Let now X and Y be mirror partners in the sense of 3.1–3.2. The construction
above shows first of all that points y of Y bijectively correspond to pairs consisting
of a Lagrangian torus L = p−1

X (pY (y)) and a unitary local system of rank one on
it.

Moreover,X×UY carries the relative Poincaré bundle which we again will de-
note (P,∇P): connection is extended in an obvious way in the horizontal directions.
An appropriate relative version of skyscraper sheaves is played by pairs (L,L) con-
sisting of a Lagrangian submanifold of X transversal to the tori and a unitary local
system L on L. The Fourier transform (5) of such a system is defined by

(L,L) �→ pY ∗(p∗LL ⊗ (i× id)∗P) (6)

where we denote by i : L → X the Lagrangian immersion, and pY : L×U Y → Y ,
i× id : L×U Y → Y , pL : L×U Y → L. The image of (6) also carries the induced
connection. We can calculate the ∂-component of it in the complex structure of
Y and find out that it is flat. In other words, the rhs of (6) is canonically a
holomorphis vector bundle on Y .

3.3.1. An example: mirror duality between complex or p-adic abelian
varieties In this subsection we propose a definition of mirror duality for abelian
varieties which works uniformly well over arbitrary complete normed fields K. We
will represent such a variety A as a quotient (in the analytic category) of an alge-
braic K-torus T by a discrete subgroup B of maximal rank. Such a “multiplicative
uniformization” goes back to Jacobi. The passage to the algebraic-geometric pic-
ture is mediated by the classical or p-adic theta-functions which are defined as
analytic functions on T with the usual automorphic properties with respects to
shifts by elements of B, see e.g. [80] for details. The choice of multiplicative uni-
formization adequately models the choice of a cusp in the moduli space of abelian
varieties.

To be precise, algebraic torus T with the character group H over a field K
is the spectrum of the group ring of H. The dual torus T t, as above, has the
character group Ht.

Consider now any diagram of the form

(j, jt) : T (K) ← B → T t(K) (7)

where B is free abelian group of the same rank as H and j, resp. jt, are its
embeddings as discrete subgroups into T (K), resp. T t(K).

We will say that pairs (A := T (K)/j(B), jt) and (B := T t(K)/jt(B), j) are
mirror dual to each other. The quotient spaces A, B not always have the structure
of abelian varieties, but this is not important for the following.

In order to motivate this definition, we will show that for K = C, we can
produce from (7) a pair of dual real toric fibrations over a common base.
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We have the Lie group isomorphism C∗ → S1 × R : z �→ (z/|z|, log |z|). This
induces an isomorphism

(α, λ) : T (C) → Hom(H,S1) × Hom(H,R) . (8)

Since j(B) is discrete of maximal rank, then λ ◦ j(B) is an additive lattice in the
real space Hom(H,R). Thus (8) produces a real torus fibration of T (C) over the
base which is as well a real torus of the same dimension:

0 → Hom(H,S1) → T (C)/j(B) → Hom(H,R)/λ ◦ j(B) → 0 . (9)

Similarly, we have

0 → Hom(Ht, S1) → T t(C)/jt(B) → Hom(Ht,R)/λt ◦ jt(B) → 0 (10)

where λt is defined for T t in the same way as λ for T . Let us identify linear real
spaces HR with Ht

R in such a way that lattice points λ ◦ j(b) and λt ◦ jt(b) are
identified for all b ∈ B. Then (2.5) and (2.6) become dual real torus fibrations over
the common base.

The relevant complex structures in our context come from covering tori. They
produce symplectic forms as was explained above.

3.4. Kontsevich’s package

We now return to the general mirror dual toric fibrations. With some stretch of
imagination, one can see the following pattern in the picture described above:
Lagrangian cycles with local systems on X, whose projection to U have real di-
mension k, must correspond to coherent sheaves on Y with support of complex
dimension k.

Kontsevich in [58] suggested a considerably more sophisticated conjecture.
Namely, let X be a compact symplectic manifold with c1(X) = 0, and Y some
compact complex Calabi-Yau manifold.

Then the relation of mirror partnership between X and Y consists in an
equivalence between the Fukaya triangulated category D(FukX) concocted out
of Lagrangian cycles with local systems on the one side, and (a subcategory of)
Db(CohX) on the other side.

Briefly, to constructD(FukX) one proceeds in three steps: first, one constructs
an A∞-category FukY , then one produces from it another A∞-category of twisted
complexes, and finally, one passes to the homology category of the latter.

Objects Λ = (L,L, λ) of FukY are Lagrangian submanifolds L in X with
unitary local systems L, endowed with a lifting λ to the fiberwise universal cover
of the Lagrangian Grassmannian of X.

Morphism space between a pair of such objects admits a transparent descrip-
tion in the case when their Lagrangian submanifolds L1, L2 intersect transversally.
In this case it is simply Hom(L∞,L2) in the category of sheaves 6on X. This space
is Z-graded with the help of a construction using λ and Maslov index.
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However, the composition of morphisms is not at all the composition of these
morphisms of sheaves. In fact, a modification of Floer’s construction using sum-
mation over pseudoholomorphic parametrized discs in X produces a series of poly-
linear maps

m1 : Hom(Λ1,Λ2) → Hom(Λ1,Λ2) ,

m2 : Hom(Λ1,Λ2) ⊗ Hom(Λ2,Λ3) → Hom(Λ1,Λ2) ,

and generally

mr : Hom(Λ1,Λ2) ⊗ · · · ⊗ Hom(Λr−1,Λr) → Hom(Λ1,Λr) .

If the respective sums converge, m1 endows the graded Hom-spaces with the struc-
ture of a complex, m2 becomes the morphism of complexes, and higher multipli-
cations are interrelated by the A∞-identities ensuring that the associativity con-
straints for the composition of morphisms are valid up to explicit homotopies.

For more detailed discussion, see [58, 93, 35], and the literature quoted
therein. In particular, the case of elliptic curves is rather well understood thanks to
Polishchuk and Zaslow, and Fukaya started treating abelian varieties and complex
tori.

Both categories involved in the Kontsevich’s conjecture generally have non-
trivial discrete symmetries, induced in the CY-context by monodromy at the La-
grangian side and by derived correspondences at the complex side. Thus some
additional data have to be chosen in order to pinpoint the expected functor. The
awareness of symmetries led Kontsevich to beautiful predictions about the corre-
spondence between monodromy actions and automorphims of derived categories:
see [52, 95, 97]. We mentioned these predictions above, when we discussed the
global properties of the Frobenius partnership relations.

Kontsevich was vague about both the origin of the equivalence functor and
exact geometric relation betweenX and Y . One can interpret the picture described
in 3.1–3.3 which emerged later as a precise guess about the nature of several data
left implicit in Kontsevich’s presentation:

(i) The character of additional data to be chosen: dual toric fibrations of X,
Y over a common base.

We will see below how this choice at the complex side is related to the no-
tion of cusp of the relevant moduli space which we introduced in the context of
Frobenius mirror partnership.

(ii) The structure of the restriction of the equivalence functor acting on the
simple objects: Fourier-Mukai transform corresponding to the choice (i).

With exception of the case of complex tori, there is not much chance that X
or Y would admit a global fibration by real tori: degenerate fibers are generally
unavoidable, and their geometry and influence on the global geometry of the mirror
picture are poorly understood. The case of K3-surfaces offers some testing ground,
because K3-surfaces are hyperkähler, and Lagrangian tori can be transformed into
a pencil of elliptic curves by an appropriate rotation of the complex structure.
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Recently M. Kontsevich and A. Todorov came up with a conjectural limiting
metric picture of the maximally degenerating family of CY manifolds of dimen-
sion d (private communication). Namely, fix a cohomology class of Kähler forms
and a moduli cusp. Deform the complex structure by moving to the maximal de-
generation point, and the Calabi-Yau metric in the chosen class by multiplying it
by a real number in such a way that the diameter of the space remains 1.

Todorov and Kontsevich expect that the limit X in the Hausdorff-Gromov
sense of this family of metric spaces will be a real d-dimensional manifold with a
Riemannian metric which might have singularities in codimension two. Moreover,
the remnants of the special real torus fibration consist in the following additional
data: affine structure and a sublattice in the tangent bundle. In local affine coor-
dinates, the metric must be the second derivative of a convex function H, and the
volume form of the metric must be constant.

Conjecturally, mirror dual family (endowed with appropriate cusps) produces
the same limiting metric space Y = X , but with a different affine structure and
sublattice in the lattice bundle.

3.5. Mirror Symmetry between Calabi-Yau manifolds

Let nowX, Y be two C∞-manifolds each of which is endowed by a symplectic form,
real toric fibration over a common base, and a complex structure, (ωX , pX , JX) and
(ωY , pY , JY ) respectively. We will say that they are related by Mirror Symmetry,
if (X, pX , ωX) is the mirror partner of (Y, pY , JY ) and (X, pX , JX) is the mirror
partner of (Y, pY , ωY ) in the sense of Lagrangian/complex duality. An example of
this setup is described in 3.3.1.

The structures J and ω at each side, of course, can be related. The most rigid
connection between them is the presence of the Riemann metric g producing the
Kähler package (J, ω, g). In the case of Calabi-Yau manifolds, the natural choice
is Yau’s Ricci-flat metric g.

The program of [96] develops this setup, in particular, supplying the topo-
logical and the metric characterization of the basic toric fibrations. Namely, the
cohomology class of any toric fiber in X, resp. Y must be the generator of the
cyclic group of invariant cycles in the middle cohomology with respect to the local
monodromy action at the chosen cusp of moduli space. Moreover, non-degenerate
toric fibers (and other relevant Lagrangian submanifolds) must be not simply La-
grangian, but special Lagrangian. This produces a version of Lagrangian geometry
whose rigidity is comparable to that of complex one, and makes it fit for compar-
ison with the complex picture: see [48, 49, 98, 99] for many details.

It would be important to develop a version of Fukaya’s category in this rigid
context where the usual tools of homological algebra might work better.

3.6. Motives in the looking glass

One of the most basic expressions of the Mirror Symmetry of the Calabi-Yau man-
ifolds is the existence of highly nontrivial isomorphisms between their cohomology
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spaces: the relation of mirror partnership betweenX and Y is expected to produce,
roughly speaking, an isomorphism H∗(X) → H∗(Y ).

More precisely, any isomorphism between the quantum cohomology of X and
Barannikov-Kontsevich formal Frobenius manifold of Y produces an identification
of their spaces of flat vector fields, that is a mirror isomorphism of the cohomology
spaces

µX,Y : H∗(X,C) → H∗(Y,∧∗(TY )) ⊗ V −2
Y , VY := H0(Y,Ωmax

Y ) . (11)

Near a cusp in the moduli space of Y , VY can be trivialized by the choice of
a volume form Ω having period (2πi)dim Y along the invariant cycle. Then (11)
becomes a ring isomorphism. Trace functionals and flat metrics on both sides
are identified via (4). Comparing Euler fields, one sees that Hp,q(X) is identified
with Hq(Y,∧p(TY ). In particular, H1,1(X) becomes H2(Y, TY ), and the induced
integral structure on the latter space (exponential coordinates near the cusp) are
described in [27].

Notice now that that the Frobenius structure at the left hand side of (11)
is essentially motivic, in the sense that numerical Gromov-Witten invariants of
X come from algebraic correspondences between Xn and M0,n, n ≥ 3. More
generally, theory of Gromov-Witten invariants can be conceived as a chapter of al-
gebraic and/or non-commutative geometry over the category of motives, replacing
the more common category of linear spaces. This geometry deals, for example, with
affine groups whose function rings are Hopf algebras in the category of Ind-mo-
tives. P. Deligne developed basics of this geometry in [25, 26], in order to clarify
the notion of motivic fundamental group. Further examples come from or are moti-
vated by physics: besides Gromov-Witten invariants, one can mention Nakajima’s
theory of Heisenberg algebras related to Chow schemes of surfaces, and a recent
paper [72].

It makes sense to ask then, what can be the mirror reflection of this mo-
tivic geometry. Since the mirror maps are highly transcendental, developing the
adequate language presents an interesting challenge. Starting with the category
of motives in the sense of [1] generated by Calabi-Yau manifolds, we can try to
extend it by adding mirror isomorphisms as new motivated morphisms. In this
context, Kontsevich’s correspondence between CY Teichmüller groups and autoe-
quivalences of derived categories might have an analog, saying that the mirror
isomorphisms connect the motivic fundamental groups (see [26]) and motivic au-
tomorphism groups of CYs whose Lie algebras were studied in [71]. For abelian
varieties, this phenomenon is stressed in [46].

Acknowledgement

I am grateful to S. Barannikov, M. Kontsevich and Y. Soibelman, who suggested
revisions and corrections to the first version of this talk. Of course, I am fully
responsible for the final text.



16 Y. I. Manin

References
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