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Abstract. I review some recent results on four-manifold invariants which have
been obtained in the context of topological quantum field theory. I focus on
three different aspects: (a) the computation of correlation functions, which
give explicit results for the Donaldson invariants of non-simply connected
manifolds, and for generalizations of these invariants to the gauge group
SU(N); (b) compactifications to lower dimensions, and connections to three-
manifold topology and to intersection theory on the moduli space of flat con-
nections on Riemann surfaces; (c) four-dimensional theories with critical be-
haviour, which give some remarkable constraints on Seiberg-Witten invariants
and new results on the geography of four-manifolds.

1. Introduction

One of the original motivations of Witten [19] to introduce topological quantum
field theories (TQFT) was precisely to understand the Donaldson invariants of
four-manifolds from a physical point of view. This approach proved its full power
in 1994, when it was realized that all the information of Donaldson theory was
contained in the Seiberg-Witten (SW) invariants. These new invariants led to a
true revolution in four-dimensional topology, and they were introduced in [20]
based on nonperturbative results in supersymmetric quantum field theory. The
relation between Donaldson invariants and SW invariants was fully clarified in an
important paper by G. Moore and E. Witten [15], where they introduced the so
called u-plane integral.

In this note, I review some recent results on four-manifold invariants which
have been obtained through the use of u-plane integral techniques. I emphasize
how these results are related to the physics of four-dimensional quantum field
theories. First, I discuss Donaldson invariants as correlation functions in TQFT.
I present some new results for non simply connected manifolds (for product ruled
surfaces, in particular), and for extensions of Donaldson theory to higher rank
gauge groups. Second, I use compactifications of the field theory to make contact
with results in three and two dimensions. In the two-dimensional case, I recover
in fact Thaddeus’ celebrated formula for the intersection pairings on the moduli
space of flat connections on a Riemann surface. Finally, I consider qualitatively



2 M. Mariño

new physics (a field theory with critical behaviour) to obtain new relations between
the SW invariants and classical invariants of four-manifolds. In the last section, I
briefly consider some open problems.

2. Correlation Functions

2.1. General aspects

The Donaldson invariants of smooth, compact, oriented four-manifolds X [2] are
defined by using intersection theory on the moduli space of anti-self-dual connec-
tions. The cohomology classes on this space are associated to homology classes of
X through the slant product [2] or, in the context of topological field theory, by
using the descent procedure [19]. Here we will restrict ourselves to the Donaldson
invariants associated to zero, one and two-homology classes1. Define

A(X) = Sym(H0(X)⊕H2(X))⊗ ∧∗H1(X) . (1)

Then, the Donaldson invariants can be regarded as functionals

D
w2(E)
X : A(X) → Q , (2)

where w2(E) ∈ H2(X,Z) is the second Stiefel-Whitney class of the gauge bundle.
It is convenient to organize these invariants as follows. Let {δi}i=1,...,b1 be a basis
of one-cycles, {βi}i=1,...,b1 the corresponding dual basis of harmonic one-forms,
and {Si}i=1,...,b2 a basis of two-cycles. We introduce the formal sums

δ =
b1∑

i=1

ζi δi, S =
b2∑

j=1

vi Si , (3)

where vi are complex numbers, and ζi are Grassmann variables. The generator of
the 0-class will be denoted by x ∈ H0(X,Z). We then define the Donaldson-Witten
generating function:

ZDW (p, ζi, vi) = D
w2(E)
X (epx+δ+S) , (4)

so that the Donaldson invariants can be read off from the expansion of the left-hand
side in powers of p, ζi and vi. The main result in [19] is that ZDW can be understood
as the generating functional of a twisted version of the N = 2 supersymmetric
gauge theory —with gauge group SU(2)— in four dimensions. In the twisted
theory one can define observables O(x), I1(δ) =

∫
δ
O1, I2(S) =

∫
S

O2 (where Oi

are functionals of the fields of the theory) in one to one correspondence with the
homology classes of X, and in such a way that the generating functional

〈epO(x)+I1(δ)+I2(S)〉
is precisely ZDW (p, ζi, vi).

Based on the low-energy effective descriptions of N = 2 gauge theories ob-
tained in [17], Witten obtained a explicit formula for (4) in terms of SW invariants

1The inclusion of three-classes has been considered in [11].
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for manifolds of b+
2 > 1 and simple type [20]. The general framework to give a

complete evaluation of (4) was established in [15]. The main result of Moore and
Witten is an explicit expression for the generating function ZDW :

ZDW = Zu + ZSW (5)

which consists of two pieces. ZSW is the contribution from the moduli space MSW

of solutions of the SW monopole equations. Zu (the u-plane integral henceforth) is
the integral of a certain modular form over the fundamental domain of the group
Γ0(4), that is, over the quotient Γ0(4) \H, where H is the upper half-plane. The
explicit form of Zu was derived in [15] for simply connected four-manifolds, and
extended to the non-simply connected case in [11]. Zu is non-vanishing only for
manifolds with b+

2 = 1, and provides a simple physical explanation of the failure
of topological invariance of the Donaldson invariants on those manifolds [15].

2.2. Donaldson invariants in the non-simply connected case

Most of the computations of Donaldson invariants have focused on simply con-
nected manifolds. The study of the nonsimply connected side was initiated in
[15, 8], and finally a complete description of the invariants was given in [11]. Some
additional results were obtained in [7]. The nonsimply connected case presents
some new features, mostly when b+

2 = 1. Of particular interest are the Donaldson
invariants of product ruled surfaces S2×Σg, which as far as I know have not been
completely determined from a mathematical point of view. Recall that the invari-
ants depend on the chamber chosen in the Kähler cone. The result gets simpler in
the limiting chambers of very small or large volumes for S2. We will take a symplec-
tic basis of one cycles in Σg, δi, i = 1, · · · , 2g, and consider the Sp(2g,Z)-invariant
element ι = −2

∑g
i=1 δiδi+g. In the limit of small volume for S2, the generating

functions Z
w2(E)
g = D

w2(E)
S2×Σg

(epx+rι+sΣg+tS2
) are given by [11, 7]:

Z
w2(E)=0
g = − i

4

[
(h2
∞f2∞)−1e2pu∞+2stT∞

(
2f1∞h2

∞s + 2r
)g

coth
(

is
2h∞

)]
q0

, (6)

Z
w2(E)=[S2]
g,S2 = − 1

4

[
(h2
∞f2∞)−1e2pu∞+2stT∞

(
2f1∞h2

∞s + 2r
)g

csc
(

s
2h∞

)]
q0

, (7)

and they vanish for the other choices of Stiefel-Whitney class. For g = 0, one
recovers the expressions for S2 × S2 which were obtained in [15, 5]. The above
equations involve the modular forms with q-expansions:

u∞ =
1
2

ϑ4
2 + ϑ4

3

(ϑ2ϑ3)2
=

1
8q1/4

(1 + 20q1/2 − 62q + · · · ) ,

T∞ = − 1
24

(
E2

h2
∞
− 8u∞

)
= q1/4(1− 2q1/2 + 6q + · · · ) ,

h∞(τ) =
1
2
ϑ2ϑ3 = q1/8(1 + 2q1/2 + q + · · · ) ,
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f1∞(q) =
2E2 + ϑ4

2 + ϑ4
3

3ϑ8
4

= 1 + 24q1/2 + · · · ,

f2∞(q) =
ϑ2ϑ3

2ϑ8
4

= q1/8 + 18q5/8 + · · · , (8)

and the subscript q0 means that one has to extract the q0 power in the q-expansion.
The expressions for the other limiting chamber can be found in two ways: since
the wall-crossing formula in the nonsimply connected case was obtained in [11],
one can sum to the above expression an infinite number of wall-crossing terms.
Alternatively, one can perform a direct evaluation of the u-plane integral [7].

2.3. Extension to gauge group SU(N)
The Donaldson invariants are usually defined for the gauge group SU(2). In prin-
ciple, one can formally consider invariants of four-manifolds defined from anti-self
dual SU(N) gauge connections. Although this seems to be pretty difficult from
a mathematical point of view, the evaluation of the would-be SU(N) Donaldson
invariants turns out to be tractable using quantum field theory [10]. The result is
simpler for manifolds of simple type and with b+

2 > 1. Not surprisingly, it can be
expressed in terms of the cohomology ring of X and of SW invariants:

〈epO(x)+I2(S)〉SU(N) = αχ
Nβσ

N

N−1∑
k=0

ωk(N2−1)χh

∑
λI

N−1∏
I=1

SW (λI)

·
( ∏

1≤I<J≤N−1

q
−(λI ,λJ )
IJ

)
exp

[
pω2kN + 2ω2kS2 + 2ωk

N−1∑
I=1

(S, λI) sin
πI

N

]
, (9)

where ω = exp[iπ/N ], χh = (χ + σ)/4, and χ, σ are the Euler characteristic and
the signature of X, respectively. The qIJ are expπiτIJ , where τIJ , I 6= J , are the
leading terms of the offdiagonal effective couplings τIJ , which have been computed
in [3]. The sum in (9) is over basic classes, and ( , ) is the intersection form of X.
Finally, αN and βN are universal constants. In the above expression we have only
considered SU(N) bundles with zero Stiefel-Whitney class. In addition, one can
consider additional operators associated to higher Casimirs of the gauge group,
that we have not included in (9). Notice that the above expression shows that the
theory factorizes down to the “magnetic” Cartan torus U(1)N−1, but there is an
important mixing measured by the off-diagonal effective couplings.

3. Compactification

3.1. Down to three dimensions

To make contact with results in three-dimensional topology, one should consider
four-manifolds of the form X = S1 × Y . Donaldson theory on these manifolds
has been explored in [12]. Using results from supersymmetric gauge theory, we
would expect the partition function of Donaldson-Witten theory on Y × S1 for
gauge group G to agree with the Rozansky-Witten invariant ZRW (Y, XG) [16],
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where XG is a hyperKähler manifold. When G = SU(2), XSU(2 is the Atiyah-
Hitchin manifold and the Rozansky-Witten invariant is the Casson-Walker-Lescop
invariant λCWL(Y ). For G = SU(N), XSU(N) is the reduced moduli space of N
monopoles, which is a hyperKähler manifold of dimension 4(N − 1).

This expectation can be partially checked. Using (9) and the Meng-Taubes
theorem [14], one can prove that, for b1(Y ) > 1

Z
SU(N)
DW (Y × S1) = N2(λCWL(Y ))N−1 , (10)

and the left hand side is in fact (up to an overall constant) ZRW (Y, XSU(N)),
which has been recently computed by Habegger and Thompson [6]. This gives an
interesting non-trivial check of (9). For b1(Y ) = 1 there are important subtleties
in the correspondence with Rozansky-Witten theory, which have been discussed
in [12] when the gauge group is SU(2).

3.2. Down to two dimensions

The connection to two-dimensional moduli problems appears when one considers
product ruled surfaces X = S2 × Σg. Anti-self dual connections on X = S2 × Σg

with zero instanton number and w2(E) = [S2] are in one-to-one correspondence
with flat connections on Σg with odd degree, which form a moduli space Mg.
Donaldson invariants correspond to intersection pairings on Mg, which were de-
termined by Thaddeus in [18]. The Sp(2g,Z)-invariant cohomology ring of Mg is
generated by cohomology classes α, β and γ, of degrees 2, 4 and 6, respectively.
The relation between the intersection pairings and the Donaldson invariants of
product ruled surfaces is given by:

〈αmβnγp〉Mg
= −D

w2(E)=[S2]
S2×Σg

((2Σg)m(−4x)nιp) , (11)

where the overall minus sign is due to a different choice of orientation. On the
other hand, we know the explicit expression for the Donaldson invariants, which is
given in (7), and we can then rederive some important results about the intersection
pairings [7]. The first thing that we can prove is the recursive relation for insertions
of γ. One easily sees that

∂

∂r
Zw2(E)=[S2]

g = 2gZ
w2(E)=[S2]
g−1 , (12)

and this implies, using (11), that 〈αmβnγp〉Mg
= 2g〈αmβnγp−1〉Mg−1 , which is

precisely Thaddeus’ recursive relation.
We now compute the intersection pairings 〈αmβn〉. To do this, we use the

expansion:

csc z =
∞∑

k=0

(−1)k+1(22k − 2)B2k
z2k−1

(2k)!
, (13)

where B2k are the Bernoulli numbers. We have to extract now the powers smpn

from the generating function (7). Fortunately, only the leading terms contribute in
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the q-expansion of the modular forms. Taking into account the comparison factors
from (11), and the dimensional constraint 2m + 4n = 6g − 6, one finds

〈αmβn〉 = (−1)g m!
(m− g + 1)!

22g−2(2m−g+1 − 2)Bm−g+1 , (14)

which is exactly Thaddeus’ formula for the intersection pairings.
The relation between topological Yang-Mills theory on S2 × Σg and two-di-

mensional moduli problems is in fact more interesting, since the Donaldson invari-
ants in the limiting chamber of small volume for Σg correspond to the Gromov-
Witten invariants of Mg. We refer the reader to [7] for results in this direction.

4. Critical Behaviour

4.1. Superconformal points

When one considers topological quantum field theories in four dimensions with
qualitative new physics, one also finds a completely different kind of predictions
from a mathematical point of view. In [13] we studied a quantum field theory with
a critical behaviour on a four-manifold X of simple type and with b+

2 > 1, namely
twisted N = 2 supersymmetric QCD with gauge group SU(2) and one massive
hypermultiplet with mass m. It is known [1] that the low-energy theory becomes
superconformal for a certain critical value of the mass m∗, and that the quantities
that characterize the theory (like the masses of the BPS particles) have a scaling
behaviour near the critical point. The theory has the same BRST operators than
topological Yang-Mills theory, although mathematically it describes equivariant
intersection theory on the moduli space of SU(2) monopoles (see [9] for a review).
Using the results of [15] and some additional input, one can compute the analog
of the generating function (4) for this theory, which now depends on the extra
parameter m. To write the result, we need the family of Seiberg-Witten elliptic
curves for the Nf = 1 theory [17], parameterized by (u, m) ∈ C2 and given by:

y2 = x2(x− u) + 2mx− 1 . (15)

The curve is easily put into standard form y2 = 4x3 − g2x − g3, with g2(u;m) =
4
3 (u2 − 6m), g3(u;m) = 1

27 (8u3 − 72mu + 108), and discriminant ∆(u;m) =
g3
2 − 27g2

3 . This discriminant is a cubic in u and has three roots uj(m), j = 1, 2, 3.
For generic, but fixed, values of m one of the periods of (15) goes to infinity as
u → uj while the other period, $j ≡ $(uj(m);m) remains finite, and in fact is
given by ($j)2 = g2/(36g3). The generating function of the critical theory is given
by a sum over the singular fibers of the Weierstrass family (15) and over the basic
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classes of X:

Z(p, S;m) = k
3∑

j=1

(
g3
2(uj(m);m)

∆′(uj(m);m)

)χh

($j(m))7χh−c2
1

·
∑

x

SW (x)(−1)(υ
2+υ·x)/2 exp

[
2puj + S2Tj − i

(S, x)
2$j

]
(16)

Here ∆′ = ∂
∂u∆, Tj = − 1

24

(
($j)−2 − 8uj

)
, and k is a nonvanishing constant,

independent of p, S,m. The topological data of the manifold X enter through υ,
which is an integral lifting of w2(X), the basic classes x and their SW invariants,
and the numerical invariants χh and c2

1 = 2χ + 3σ.
The critical behaviour of this theory is associated to the cusp singularity of

(15) when m∗ = 3
2 , u∗ = 3. Indeed, when z = m − m∗ → 0, two of the roots of

∆(u;m) = 0, call them u±(m), coincide, and the period $± diverges as z−1/4,
while g2(u±(m);m) ∼ z and ∆′(u±(m);m) ∼ δu± ∼ z3/2. At the third singularity
all the various factors in (16) are given by nonvanishing analytic series in z, but,
evidentally, the contributions from u±(m) contain factors which are diverging or
vanishing as z → 0. What can we say about the behaviour of the complete function
Z(p, S,m) as z → 0? For physical reasons, we do not expect any divergence in the
correlation functions: there are no infrared divergences in spacetime, since X is
compact, and since the moduli space of vacua is also compact for b+

2 > 1, we do
not expect any divergence from the target geometry. In more physical terms, since
we are working at finite volume, correlation functions should still be finite near
the critical point. This implies that Z(p, S,m) must be a regular analytic function
of z near z = 0.

4.2. Mathematical implications

Let’s now see what are the mathematical implications of this fact. We first define
the “twisted” Seiberg-Witten series as follows.

SW
w2(X)
X (z) :=

∑
x

(−1)
υ2+υ·x

2 SW (x)ezx . (17)

This is a finite sum [20]. Notice that a change of lifting changes (17) only by a
sign. We now make the key definition:

Definition 4.1. Let X be a compact, oriented 4-manifold of simple type with b+
2 > 1.

We say that “X is SST” if SW
w2(X)
X (z) has a zero at z = 0 of order ≥ χh−c2

1−3.

One has the following result, whose proof can be found in [13]:

Theorem 4.2. If X is SST, then Z(p, S,m) is regular at m = m∗.

It is interesting to notice that, for most of the SST manifolds, the contri-
butions to Z(p, S,m) from the colliding singularities u± go to infinity separately
as z → 0, but when we sum the two contributions (and we are forced to do that
because the manifold is compact) the infinities cancel and we get a finite result.
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All the simple type, four-manifolds we are aware of are in fact SST. Using
the definition, one can check that SST manifolds satisfy the following remark-
able property, which gives a relation between SW invariants and the problem of
geography for four-manifolds:

Theorem 4.3. (Generalized Noether inequality) Let X be SST. If X has B distinct
basic classes and B > 0, then

B ≥
[
χh − c2

1

2

]
.

In particular, c2
1 ≥ χh − 2B − 1.

Although being SST is only a sufficient condition for Z(p, S,m) to be finite,
the analysis of [13] leads naturally to the following conjecture:

Conjecture 4.4. All compact four-manifolds of simple type and with b+
2 > 1 are

SST.

In fact, Feehan, Kronheimer, Lenness and Mrowka have proved in [4] that
the above conjecture is true under some mild assumptions, by using the PU(2)
monopole equations.

5. Conclusions and Open Problems

I think it is fair to say that we have a rather complete understanding of the relation
between Donaldson theory and TQFT in four dimensions. There are however a few
open problems that deserve investigation, both in physics and in mathematics:

1) There are many predictions from TQFT that should still be checked from
the mathematical side, and I think that this is interesting by itself. For example,
the results (6) and (7), as well as the wall-crossing formula of [11] for nonsimply
connected manifolds, may be obtained by generalizing [5]. The extension to SU(N)
seems still out of reach mathematically, but it would be extremely interesting to
check (9) in some detail. One can invert the logic and say that (9) gives a good
reason not to study the SU(N) Donaldson invariants, since it shows that these
generalizations have the same topological information than the SW invariants!

2) In a different direction, it would be interesting to study the theory for
four-manifolds with b+

2 = 0. A motivation to do that would be to shed some
four-dimensional light (via compactification on a circle) on the relation between the
Casson invariant and the three-dimensional Seiberg-Witten invariant for homology
three-spheres.

3) Finally, the twisted counterparts of superconformal field theories in four
dimensions certainly deserve closer scrutiny.
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