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Abstract. One of the central observations of quantum chaology is that sta-
tistical properties of quantum spectra exhibit surprisingly universal features,
which seem to mirror the chaotic or regular dynamical properties of the under-
lying classical limit. I will report on recent studies of simple regular systems,
where some of the observed phenomena can be established rigorously. The
results discussed are intimately related to the distribution of values of qua-
dratic forms, and in particular to a quantitative version of the Oppenheim
conjecture.

Quantum Chaos

One of the main objectives of quantum chaology is to identify characteristic prop-
erties of quantum systems which, in the semiclassical limit, reflect the regular or
chaotic features of the underlying classical dynamics.

Take for example the geodesic flow on the unit tangent bundle of a compact
two-dimensional Riemannian surface M . The corresponding quantum system is
described by the stationary Schrödinger equation

−∆ϕj = λjϕj , (1)

where ∆ is the Laplacian of M , λj represent the quantum energy eigenvalues and
ϕj the corresponding eigenfunctions. The spectrum of the negative Laplacian is a
discrete ordered subset of the real line,

0 ≤ λ1 < λ2 ≤ λ3 ≤ · · · → ∞ . (2)

According to Weyl’s law, the number of eigenvalues below λ is asymptotically

#{j : λj ≤ λ} ∼ area(M)
4π

λ (3)

as λ → ∞. Hence the mean spacing between adjacent levels is asymptotically
4π/ area(M). For simplicity, we may assume in what follows that area(M) = 4π.

One quantity measuring the “randomness” of such a sequence on the scale of
the mean spacing is the consecutive level spacing distribution, which is defined as

P (s,N) =
1
N

N∑
j=1

δ(s− λj+1 + λj) , (4)
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where δ(x) is the Dirac mass. If the deterministic sequence {λj} is sufficiently
“random” we may expect to find a limit distribution P (s) of P (s,N) for N → ∞,
that is,

lim
N→∞

∫ ∞

0

P (s,N)h(s) ds =
∫ ∞

0

P (s)h(s) ds , (5)

for any sufficiently nice test function h.
It was conjectured by Berry and Tabor in 1977 [1] that if the corresponding

classical dynamics is completely integrable, then P (s) exists and is equal to the
waiting time between consecutive events of a Poisson process,

P (s) = exp(−s) . (6)

That is, {λj} behaves like a sequence of independent random variables. There
are a number of obvious (and less obvious) counter examples to this behaviour
already known to Berry and Tabor [1], which is why one expects the above to
hold only for “generic” systems. Let us compare this with the case of “generic”
chaotic dynamical systems. Here, the statistical nature of the limit distribution
is completely different: Bohigas, Giannoni, and Schmit [3] suggested in 1984 that
if the geodesic flow is hyperbolic, then P (s) exists and is equal to the consecutive
level spacing distribution of a suitable Gaussian ensemble of hermitian random
matrices. In the case of the Gaussian unitary ensemble, the distribution is for
example (approximately)

PGUE(s) ≈ 32
π2
s2e−

4
π s2
. (7)

The characteristic level repulsion (i.e., P (s) → 0 as s → 0) was observed already
by McDonald and Kaufman [16] and Berry [2] in the case of chaotic billiards.

There has been some recent progress on the above conjectures in the case
of integrable systems, which will be reported here. The chaotic chase is less well
understood.

Lattice Point Problems

The eigenvalues λj of the Laplacian on a compact two-dimensional surface with in-
tegrable geodesic flow are asymptotically given by the values F (m) ∼ λj at lattice
points m ∈ Z

2, where the function F = F2 + F0 is piecewise analytic and F2, F0

homogeneous of degree 2 and 0, respectively [6]. The question of spectral statistics
may therefore be reformulated as a lattice point problem of lattice points m ∈ Z

2

close to the curve F (x) = λ.
Sinai [22] and Major [11] proved that the statistics of λj converge to the

Poisson limit if F is generic in a certain function space. Unfortunately, a “generic”
function in that space is not twice differentiable, and hence there is no correspond-
ing smooth classical dynamical system. It is still open, if the Poisson limit exists
for smooth F . Let us have a look at a few examples.
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The sphere and other Zoll surfaces We begin by discussing an obviously
non-generic example with respect to the above conjectures. Consider the geodesic
flow on the unit tangent bundle of the sphere, which clearly is completely inte-
grable. The eigenvalues of −∆ are (up to some constant factor) l(l+ 1) with inte-
ger l = 0, 1, 2, . . . , each with multiplicity 2l+1. Label these numbers in increasing
order by λ1, λ2, . . . ; due to the high multiplicity one thus has P (s) = δ(s). The
same result holds for all Zoll surfaces, since the eigenvalues are strongly clustered
around the values l(l + 1), compare [8, 24, 7, 23]. The reason for this clustering
is that all geodesics are closed and have the same period. Zoll surfaces are clearly
quite non-generic in this respect, and it is therefore of no surprise that their eigen-
values do not follow the expected statistical behaviour.

Flat tori We now turn to a more generic class of surfaces, flat two-dimensional
tori T

2 = R
2/L, where L is some lattice in R

2. The Laplacian on T
2 is the standard

Euclidean Laplacian acting on functions which are invariant under the lattice L.
The eigenvalues λj are easily seen to be values at integers (m,n) ∈ Z

2 of the
positive definite quadratic form

Q(m,n) = αm2 + βmn+ γn2 , (8)

where the coefficients α, β, γ depend on the lattice L. In the special case when
L = Z

2 one has

Q(m,n) = m2 + n2 . (9)

The spacings are in this case clearly integer, so P (s,N) cannot converge to the
conjectured exponential distribution. In fact, one can show that the limit distribu-
tion is again P (s) = δ(s), which is in disagreement to what is expected generically.
This result follows directly from a classical result of Landau, which says that the
number of ways of representing an integer as a sum of two squares grows on av-
erage logarithmetically. The same holds when Q is proportional to a form with
rational coefficients [21].

Results which support the Berry-Tabor conjecture on a rigorous level have so
far only been obtained for a statistic which is easier to handle than the consecutive
spacing distribution: the pair correlation density.

Pair Correlation

The pair correlation density of the sequence {λj} is defined as

R2(s,N) =
1
N

N∑
j,k=1

δ(s− λj + λk) , (10)
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where one therefore considers the distribution of all spacings, instead of just near-
est neighbours. According to the Berry-Tabor conjecture, we expect that

lim
N→∞

∫ ∞

−∞
R2(s,N)h(s) ds =

∫ ∞

−∞
R2(s)h(s) ds (11)

exists for generic integrable systems, where R2(s) is the pair correlation density of
a Poisson process1

R2 Poisson(s) = δ(s) + 1 . (12)

Sarnak [21] was able to prove the Berry-Tabor conjecture for the pair cor-
relation of a almost all flat tori: almost all with respect to Lebesgue measure in
the moduli space of two-dimensional flat tori. His proof uses averaging techniques
to reduce the pair correlation problem to estimating the number of solutions of
systems of diophantine equations. The almost-everywhere result then follows from
a variant of the Borel-Cantelli argument.2

Eskin, Margulis and Mozes [10] recently strengthened Sarnak’s result by giv-
ing explicit diophantine conditions on (α, β, γ) under which the Berry-Tabor con-
jecture holds. Admissible forms are for example

m2 + γn2 (13)

with γ diophantine. [γ is called diophantine if there exist constants κ ≥ 2, C > 0
such that |α− p

q | > Cq−κ for all rationals p
q .3] These diophantine conditions cannot

be dropped, since one can construct an uncountable set of tori with area 4π (say),
whose pair correlation density does not converge, as pointed out by Sarnak [21]. In
some sense, such tori feel the degeneracies in the spectra of tori corresponding to
rational forms. The above uncountable set is in fact a set of second Baire category,
and hence “generic” in the topological sense. This illustrates the subtlety of the
problem: “generic” tori —in the measure-theoretic sense— follow the Berry-Tabor
conjecture, topologically “generic” tori do not.

The pair correlation problem for positive definite quadratic forms may be
viewed as a special case of the quantitative version of the Oppenheim conjecture
of quadratic forms of signature (2, 2), which is particularly difficult [9].

Tori with Aharonov-Bohm flux We have seen that the eigenvalue statistics
for the standard square torus with lattice L = Z are non-generic. In order to break

1Here, the delta mass δ(s) is a result of our definition which counts spacings between equal
elements whose spacing is trivially zero. The interesting part is the “1”, the mean density of the
eigenvalue sequence.
2For further related examples of sequences whose pair correlation function converges to the
uniform density almost everywhere in parameter space, see [17, 19, 25, 26, 28]. For recent results
on higher correlations see [18, 20, 27].
3Almost all numbers are diophantine. An example of a diophantine number is γ =

√
2, where

κ = 2.
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the degeneracy, let us replace the periodicity conditions with quasi-periodicity
conditions,

ϕ(x+ k, y + l) = e−2πi(αk+βl)ϕ(x, y), k, l ∈ Z . (14)

The eigenvalues of the negative Laplacian are then

(m− α)2 + (n− β)2 . (15)

Such an effect is observed for instance in the presence of Aharonov-Bohm flux lines
threading the torus. This is a pure quantum-topological effect, the corresponding
classical geodesic flow is not affected. Cheng and Lebowitz have studied such a
system numerically, and found good agreement with the Berry-Tabor conjecture
for generic α, β. Cheng, Lebowitz and Major [5] were able to prove the convergence
of the pair correlation density to the expected Poisson distribution on average over
(α, β) ∈ [0, 1]2.

In [15] it is proved that the conjecture is in fact true for fixed α, β, provided
α or β is diophantine (e.g. α =

√
2, β =

√
3). This diophantine condition is neces-

sary: there is a set of second Baire category of (α, β) ∈ [0, 1]2 for which the pair
correlation density does not converge. The idea of the proof is as follows. Consider
the Fourier transform of the pair correlation density,

K2(τ,N) =
∫ ∞

−∞
R2(s,N) e2πiτs ds (16)

hence

K2(τ,N) =
∣∣N−1/2

N∑
j=1

e2πiλjτ
∣∣2 . (17)

The function K2(τ,N) is often called the spectral form factor. We are interested
in the asymptotics of∫ ∞

−∞
R2(s,N)h(s) ds =

∫ ∞

−∞
K2(τ,N) ĥ(τ) dτ

where ĥ is the Fourier transform of the test function h. The trick is now that
the exponential sum

∑
e2πiλjτ turns out to be a theta sum that can be identified

with a function on a noncompact manifold Σ with finite measure, and that the
integral over τ corresponds to an average over a unipotent orbit on Σ that becomes
equidistributed on Σ, as N → ∞. The equidistribution follows essentially from
Ratner’s classification of invariant measures of unipotent flows. The average over
τ can therefore be replaced by the average over the whole space Σ, which luckily
turns out to be exactly the expected limit. A crucial subtlety in the proof is that
the theta sum is unbounded on Σ, which is where the diophantine conditions come
in.

It is quite interesting to remark that, although the pair correlation statistics
of the λj follow the Poisson prediction, the value distribution of the sum

∑
e2πiλjτ

defining the form factor does not satisfy a central limit theorem in general. For
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example, in the case of the rectangular torus discussed above, where λj = m2+γn2,
a limiting distribution exists [14] but has a power-like tail, and is therefore not
normal. The proof is based on the asymptotic distribution of values of theta sums
[12, 13]. A similar deviation from the normal distribution is observed whenever the
eigenvalues λj are values of quadratic forms at lattice points, e.g. also when λj =
(m−α)2 + (n− β)2. If, however, the quadratic form is replaced by a more generic
smooth function F homogeneous of degree two, I expect the limiting distribution
to be normal. This will be discussed in detail elsewhere.
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