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The aim of this talk is to explain and compare some approaches to the leaf
space (or “transverse structure”) of a foliation. A foliation is a certain partition F
of a manifold M into immersed submanifolds, the leaves of the foliation. Identifying
each of the leaves to a single point yields a very uninformative, “coarse” quotient
space, and the problem is to define a more refined quotient M/F , which captures
aspects of that part of the geometric structure of the foliation which is constant
and/or trivial along the leaves.

It is possible to distinguish (at least) three approaches to this problem. One
is in the spirit of non-commutative geometry [4], and uses the duality between
the manifold M and the ring C∞

c (M) of compactly supported smooth functions
on M . The quotient M/F is then modelled, dually, by an extension of this ring
C∞

c (M), the so-called convolution algebra of the foliation. Completion of such
convolution algebras leads one into C∗-algebras. Important invariants are the cyclic
type (i.e. Hochschild, cyclic, periodic cyclic) homologies and the K-theory of these
convolutions and C∗-algebras.

A second approach, which predates non-commutative geometry, is to con-
struct a quotient “up to homotopy”. Like all such homotopy colimits in algebraic
topology, this construction takes the form of a classifying space. This approach
goes back to Haefliger, who constructed a classifying space BΓq for foliations of
codimension q, as the leaf space of the “universal” foliation [9, 2]. Important in-
variants are the cohomology groups of these classifying spaces, in particular the
universal or characteristic classes coming from the cohomology of the universal
leaf space BΓq.

A third approach, even older, is due to Grothendieck. Not surprisingly, Gro-
thendieck uses the ‘duality’ between the space M and the collection of all its
sheaves, which form a topos Sh(M). The quotient M/F can then be constructed
as a suitable topos “Sh(M/F)”, consisting of sheaves on M which are invariant
along the leaves in a suitable sense. One can then apply the whole machinery
of [17], and study the Grothendieck fundamental group of Sh(M/F), its sheaf
cohomology groups, etc. etc..

Central to all these approaches is the construction [18] of a smooth groupoid
out of the foliated manifold (M,F), called the holonomy groupoid and denoted
Hol(M,F). The three approaches above then become special instances of the gen-
eral procedure of associating to a smooth (or “Lie”) groupoid G a convolution
algebra C∞

c (G), a classifying space BG, or a classifying topos Sh(G). Of these,
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the last one is intuitively closest to a manifold. For example, there are immedi-
ate natural constructions of the differential forms on such a topos, of its tangent
bundle (another topos mapping to Sh(G)), and so on for almost any construction
of differential topology and geometry I can think of. This is partly caused by the
fact that the Lie groupoids arising in this context are all (equivalent to) étale
groupoids. The diagram below provides a schematic summary of the situation. In
this lecture, I will first give more precise definitions and references for the notions
occurring in this diagram and then explain some relations between the three legs.

Foliation (M,F)

��
Lie groupoid G

����������������

�����������������

Convolution algebra
C∞

c (G)
(non-commutative

geometry)

Classifying space
BG or B Emb(G)

(algebraic topology)

Classifying topos
Sh(G)

(topos theory)

1. Foliations

Let M be a manifold of dimension n. A foliation F of M is an integrable subbundle
F ⊆ TM of the tangent bundle. Integrability means that if two vector fields on
M belong to F then so does their Lie bracket. If F is of rank p, the foliation is
said to be of dimension p and of codimension q = n− p. Integrability implies that
through each point x ∈ M there is a unique connected p-dimensional immersed
submanifold Lx which is everywhere tangent to F , called the leaf of F through x.
These leaves form a partition of M . This partition is locally trivial in the sense
that at each point x there is a chart ϕ : R

n → U (where U is a neighborhood of x)
such that for R

n = R
p × R

q the plaques ϕ(Rp × {t}) are exactly the connected
components of the intersections of U with the leaves. (A specific leaf may pass
through U in different plaques.) Here are two easy and well known examples of
foliations.

Kronecker foliation. Reeb foliation.
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The Kronecker foliation K of the torus T = S1 × S1 is the foliation given
by the 1-dimensional subbundle of vectors in R

2 with a fixed irrational slope. The
leaves are immersed copies of the real line which wrap around the torus infinitely
often, each leaf being dense. The Reeb foliation R of the solid torus has one
compact boundary leaf, and its other leaves are planes. If you imagine the solid
torus as obtained from the solid cylinder R×D by identifying (t, x) and (t+ 1, x)
for every point x on the disk D, then the interior of R × D is foliated by planes
which are stacked upon each other as infinitely deep salad bowls, and the Reeb
foliation is the quotient. To get rid of the boundary, one can construct S3 as the
union of two solid tori. Then the union of Reeb foliations is the Reeb foliation of
S3, with one compact leaf.

The theory of foliations is a vast subject, for which there are many good
introductions, e.g. the books by Camacho and Neto, Godbillon, Hector and Hirsch,
Tondeur and others.

2. Lie Groupoids

A groupoid G is a small category all whose arrows are isomorphisms. It thus has
a set G0 of objects x, y, . . . and a set G1 of arrows g, h, . . . . Each arrow has a
source x = s(g) and a target y = t(g), written g : x→ y. Two arrows g and h with
s(g) = t(h) can be composed as gh : s(h)→ t(g). This composition is associative,
has a unit 1x : x→ x at each object x, and has a two-sided inverse g−1 : t(g)→ s(g)
for each arrow g. All the structure is contained in a diagram

G2
m �� G1

i �� G1

s ��

t
�� G0u�� (1)

(s = source, t = target, i = inverse, u = units, m = composition, defined on
G2 = {(g, h) ∈ G1×G1 : s(g) = t(h)}. The groupoid G is said to be smooth or Lie
if G0 and G1 are smooth manifolds, each of the structure maps in (1) is smooth,
and s, t are submersions so that G2 is a smooth manifold as well. The classical
reference for Lie groupoids is [11].

For a Lie groupoid G and a point x ∈ G0, the arrows g : x → x form a Lie
group Gx, called the isotropy group at x. A Lie groupoid G is called a foliation
groupoid if each of its isotropy groups is discrete. All the groupoids arising from
foliations have this property.

There is an obvious notion of smooth functor or homomorphism ϕ : H → G
between Lie groupoids. It consists of two smooth maps (both) denoted ϕ : H0 → G0

and ϕ : H1 → G1, together commuting with all the structure maps in (1). Such a
homomorphism is said to be an essential equivalence if (i), ϕ induces a surjective
submersion (y, g) �→ t(g) from the space H0×G0G1 = {(y, g)|ϕ(y) = s(g)} onto H0;
and (ii), ϕ induces a diffeomorphism h �→ (s(h), ϕ(h), t(h)) from H1 to the pullback
H0×G0 G1×G0 H0. Two Lie groupoids G and G′ are said to be (Morita) equivalent
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if there are essential equivalences G← H → G′ from a third Lie groupoid H. (This
notion is also often formulated in terms of principal bundles.)

A Lie groupoid G is said to be étale (or r-discrete) if all the structure maps
in (1) are local diffeomorphisms (it is enough to require this for s). The relevance
of étale groupoids for foliations is based on the following proposition [6].

Proposition 2.1. A Lie groupoid is a foliation groupoid iff it is equivalent to an
étale groupoid.

If G is an étale groupoid, each arrow g : x→ y in G uniquely determines the
germ of a diffeomorphism g̃ : (G0, x) → (G0, y), namely g̃ = germx(t ◦ σ) where
σ is a section of s : G1 → G0 on a neighbourhood U of x, with σ(x) = g and U
so small that t ◦ σ is a diffeomorphism from U onto its image. This construction
gives in particular a group homomorphism Gx → Diffx(G0). If this homomorphism
is injective for each x ∈ G0 the groupoid G is said to be effective. Effectivity is
preserved under equivalence of groupoids, so we can define a foliation groupoid to
be effective if it is Morita equivalent to an effective étale groupoid.

A groupoid G is called proper if (s, t) : G1 → G0 × G0 is a proper map.
An orbifold groupoid is a proper effective foliation groupoid. This notion is again
invariant under equivalence. It can be shown that a Lie groupoid is an orbifold
groupoid iff it is equivalent to the action groupoid associated to a infinitesimally
free action of a compact Lie group on a manifold (see e.g. [15]).

3. The Holonomy Groupoid of a Foliation

Let (M,F) be a foliated manifold. The holonomy groupoid H = Hol(M,F) is a
smooth groupoid with H0 = M as space of objects. If x, y ∈ M are two points
on different leaves there are no arrows from x to y in H. If x and y lie on the
same leaf L, an arrow h : x → y in H (i.e. a point h ∈ H1 with s(h) = x and
t(h) = y) is an equivalence class h = [α] of smooth paths α : [0, 1] → L with
α(0) = x and α(1) = y. To explain the equivalence relation, let Tx and Ty be
small q-disks through x and y, transverse to the leaves of the foliation. If x′ ∈ Tx

is a point sufficiently close to x on a leaf L′ , then α can be “copied” inside L′

to give a path α′ near α with endpoint y′ ∈ Ty, say. In this way one obtains the
germ of a diffeomorphism from Tx to Ty, sending x to y and x′ to y′. This germ
is called the holonomy of α and denoted hol(α). By definition, two paths α and
β from x to y in L are equivalent, i.e. define the same arrow x → y in H, iff
hol(α) = hol(β). For example, if α and β are homotopic (inside L and relative
endpoints) then hol(α) = hol(β). Composition and inversion of paths respects the
equivalence relation, so that one obtains a welldefined groupoid H = Hol(M,F),
which can be shown to be smooth [18]. This groupoid is a foliation groupoid,
and the (discrete) isotropy group Hx at x is called the holonomy group of the leaf
through x. If T ⊆M is an embedded q-manifold transverse to the leaves and hitting
each leaf at least once, then the restriction of H to T defines an étale groupoid
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HT = HolT (M,F), equivalent to H. We refer to HT as “the” étale (model for the)
holonomy groupoid of (M,F).

Morally, every étale groupoid G is the holonomy groupoid of a foliation (for a
precise formulation, see [16, p. 21]). Orbifold groupoids are exactly the groupoids
which arise as holonomy groupoids of foliations with compact leaves and finite
holonomy groups [15].

The reader is urged to work out the various étale models for the holonomy
groupoids of the Kronecker and Reeb foliations. He will notice that in the second
case the space H1 is a non-Hausdorff manifold.

The Haefliger groupoid Γq has R
q for its space of objects, while the arrows

x → y are the germs of diffeomorphisms (Rq, x) → (Rq, y). When this space of
arrows is equipped with the sheaf topology, Γq becomes an étale smooth groupoid.
If (M,F) is a foliation of codimension q, there is an essentially unique map of étale
groupoids HolT (M,F)→ Γq (for a suitable choice of T ).

4. The Classifying Space

For a smooth groupoid G, the nerve of G in the simplicial set whose n-simplices
are strings of composable arrows in G,

x0
g1←− x1 ←− · · ·

gn←− xn .

This set is denoted Gn, consistent with the earlier notation for n = 0, 1, 2. The
space Gn is a fibered product G1 ×G0 · · · ×G0 G1, hence has the natural structure
of a smooth manifold. Thus G� is a simplicial manifold. Its geometric realization
is denoted BG and is called the classifying space of G. This construction respects
Morita equivalence. In fact, an essential equivalence H → G induces a weak ho-
motopy equivalence BH → BG.

For a foliated manifold (M,F) with holonomy groupoid H, there is a canon-
ical ‘quotient’ map M → BH, and BH models the space of leaves M/F . One can
also construct maps, canonical up to homotopy, M → BMT → BΓq.

One of the problems with the space BH is that it is usually non-Hausdorff.
There is another model for BH which doesn’t have this defect. This model is based
on a small (discrete) category Emb(G) constructed for any étale groupoid G. (In
this context, G = HT is the étale model for the holonomy groupoid.) The objects of
this new category Emb(G) are the members of a fixed basis of contractible open sets
for the topology on G0. For two such basic opens U and V , each section σ : U → G1

of the source map, with the property that t ◦ σ : U → G0 defines an embedding
into V , defines an arrow σ̂ : U → V in the category Emb(G). Composition is
defined by τ̂ ◦ σ̂ = ρ̂ where ρ(x) = τ(tσ(x))σ(x) (multiplication in G). The nerve
of this category Emb(G) is a simplicial set, whose geometric realization is denoted
B Emb(G).

Theorem 4.1. [12] For any étale groupoid G the spaces BG and B Emb(G) are
weakly homotopy equivalent.
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For the special case where G = Γq, the category Emb(G) is categorically
equivalent to the (discrete) monoid Mq of smooth embedding of R

q into itself, and
one recovers Segal’s theorem, BΓq � BMq.

We remark that, unlike BG, the classifying space BEmb(G) is a CW-com-
plex, hence within the scope of the usual methods of algebraic topology. It is also
very well suited for the explicit geometric construction of characteristic classes of
foliations [6].

5. The Classifying Topos

Let G be an étale (or foliation) groupoid. A G-sheaf of sets is a sheaf on G0

equipped with a continuous right action by G. When π : S → G0 is the étale space
of the sheaf, the action can be described as a continuous map S ×G0 G1 → S. For
ξ ∈ Sy = π−1(y) and g : x→ y, the result of the action is denoted ξ · g ∈ Sx. The
usual identities ξ · 1y = ξ and (ξ · g) · h = ξ · (gh) are required to hold. With the
obvious notion of action preserving map, these sheaves form a category Sh(G). This
category is a topos [17], called the classifying topos of G, and discussed in [13].
A homomorphism of groupoids G → H induces a topos map Sh(G) → Sh(H).
The construction preserves Morita equivalence. (In fact, Sh(G) and Sh(H) are
equivalent toposes, i.e. are equivalent as categories, if and only if G and H are
Morita equivalent as topological —rather than smooth— groupoids.)

If follows that the category Ab Sh(G) of sheaves of abelian groups has enough
injectives, and one obtains for each sheaf A the sheaf cohomology groups Hn(G,A)
as those of the topos, i.e. Hn(G,A) = Hn(Sh(G), A) for n ≥ 0 by definition. These
cohomology groups are then automatically contravariant in G and invariant under
Morita equivalence, and satisfy all the usual general properties of [17] (Leray spec-
tral sequence, Čech spectral sequence, hypercover description, relation of H1(G,A)
to the fundamental group of Sh(G), etc. etc.).

This approach is compatible with the classifying space, as follows.

Theorem 5.1. Any abelian G-sheaf A induces in a natural way a sheaf Ã on the
classifying space BG, and one has a canonical isomorphism

Hn(G,A) ∼→ Hn(BG, Ã) , n ≥ 0 .

This isomorphism was conjectured by Haefliger and proved in [14].
There is also a dual homology theory for étale groupoids, introduced and

studied in [7]. For an abelian G-sheaf A, we construct homology groups

Hn(G,A), n ≥ −dim(G) ,

again invariant under Morita equivalence of groupoids and having good general
properties. In particular, there is a Verdier type duality between the cohomology
just described and this homology.

It seems difficult to give a description of this homology theory in terms of
the classifying space BG, although in some special cases this is possible.
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6. The Convolution Algebra and Cyclic Homology

For an algebra A, one can define the Hochschild, cyclic and periodic cyclic ho-
mology groups, denoted HHn(A), HCn(A) (n ∈ N) and HPν(A) (ν = 0, 1). The
definition is based on iterated tensor products A⊗· · ·⊗A. In the special case where
A = C∞

c (M) is the ring of smooth compactly supported functions on a manifold,
a wellknown result of Connes’ [5], which played a central role in the development
of cyclic homology, provides the following relation to the De Rham cohomology,

HHn(C∞
c (M)) = Ωn

c (M) , HPν(M) = Hν
c (M) . (2)

Here Ωn
c (M) is the vector space of compactly supported n-forms on M , and Hν

c (M)
is the product of the even (ν = 0) or odd (ν = 1) compactly supported De Rham
cohomology groups.

It is important to note that for this result, the algebraic tensor product A⊗B
is replaced by a completed topological tensor product (the inductive one) A⊗̂B
having the property that C∞

c (M)⊗̂C∞
c (N) = C∞

c (M ×N) for two manifolds M
and N .

Connes’ result extends to generalized manifolds such as leaf spaces of fo-
liations. More specifically, let G be an étale groupoid. The convolution algebra
C∞

c (G) is the algebra of compactly supported smooth functions a, b, . . . on G1,
with “convolution” product

(a ∗ b)(g) =
∑

g=hk

a(h)b(k) ,

exactly as for the group ring. (The sum here makes sense, because it ranges over
a space which is discrete because G is étale and finite because of compact sup-
ports.) Using the inductive topological tensor product ⊗̂, one can then define the
“cyclic type” homology groups HH∗(C∞

c (G)), HC∗(C∞
c (G)) and HP∗(C∞

c (G)).
The construction of the convolution algebra C∞

c (G) is not functorial in G, and
the invariance under Morita equivalence of these cyclic type homology groups is
established in a rather indirect way, be relating them to the homology groups
mentioned above, as follows.

For an étale groupoid G, the ‘loop groupoid’ Λ(G) has as its objects the
arrows g : x → x′ in G with x = x′. Arrows g → h in Λ(G), from (g : x → x)
to (h : y → y), are arrows α : x → y in G with hα = αg. This groupoid Λ(G) is
again an étale groupoid. This construction is functorial in G, and preserves Morita
equivalence. There is also an evident retraction π : Λ(G)→ G.

Let An be the pullback along the diagonal G0 → Gn+1
0 of the sheaf of smooth

functions on Gn+1
0 . The stalk of An at x is the ring C∞

x (G0)⊗̂ · · · ⊗̂C∞
x (G0) and

consists of germs of functions f(x0, . . . , xn). The usual Hochschild boundary of
the complex A0

b← A1 ← · · · can be twisted by loops to give a complex π∗(A0)
b←

π∗(A1)← · · · on Λ(G), and one has the following comparison,

HH∗(C∞
c (G)) = H∗(Λ(G), π∗(A)) , (3)
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expressing the Hochschild homology of the convolution algebra in terms of the
(hyper-)homology of the étale groupoid Λ(G). An immediate consequence is that
HH(C∞

c (G)) is invariant under Morita equivalence of étale groupoids. (The invari-
ance of HC and HP follows by the usual SBI-argument.) If G is a manifold, i.e.
G0 = G1 = M , then Λ(G) = G = M also, and one recovers Connes’ isomorphism
(2) from (3). If G = Γ is a discrete group, Λ(Γ) is Morita equivalent to the sum
over all conjugacy classes of centralizer subgroups,

Λ(Γ) ∼=
∑

(γ)

Zγ ,

and one recovers the wellknown description of the Hochschild homology of the
group ring ([3, 10]). IfG = M�Γ is the action groupoid associated to the action of a
discrete group Γ on a manifoldM , then Λ(G) is Morita equivalent to

⊕
(γ) M

γ
�Zγ ,

giving a familiar decomposition of HH∗(C∞
c (M � Γ)).

There are isomorphisms similar to (3) for the cyclic and periodic cyclic ho-
mology groups of étale groupoids, all relating these groups to the homology of étale
groupoids (or categories) like Λ(G). For precise formulations and computations I
refer to [1, 8, 7]. Here as an illustration, I just single out the special case where G
is an étale groupoid with finite isotropy groups (e.g. an orbifold groupoid). In this
case, one has a natural isomorphism

HPν(C∞
c (G)) =

∏

k

H2k+ν(Λ(G),R), (ν = 0, 1) ,

extending Connes’ isomorphism (2) to such groupoids.
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