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Abstract. The goal of this lecture is to present an overview of the modern de-
velopments around the theme of multivariable hypergeometric functions. The
classical Gauss hypergeometric function shows up in the context of differen-
tial geometry, algebraic geometry, representation theory and mathematical
physics. In all cases it is clear that the restriction to the one variable case
is unnatural. Thus from each of these contexts it is desirable to generalize
the classical Gauss function to a class of multivariable hypergeometric func-
tions. The theories that have emerged in the past decades are based on such
considerations.

1. The Classical Gauss Hypergeometric Function

The various interpretations of Gauss’ hypergeometric function have challenged
mathematicians to generalize this function. Multivariable versions of this func-
tion have been proposed already in the 19th century by Appell, Lauricella, and
Horn. Reflecting developments in geometry, representation theory and mathemat-
ical physics, a renewed interest in multivariable hypergeometric functions took
place from the 1980’s. Such generalizations have been initiated by Aomoto [1],
Gelfand and Gelfand [14], and Heckman and Opdam [19], and these theories have
been further developed by numerous authors in recent years.

The best introduction to this story is a recollection of the role of the Gauss
function itself. So let us start by reviewing some of the basic properties of this
classical function. General references for this introductory section are [24, 12], and
[39].

The Gauss hypergeometric series with parameters a, b, c ∈ C and c �∈ Z≤0 is
the following power series in z:

F (a, b, c; z) :=
∞∑

n=0

(a)n(b)n
(c)nn!

zn . (1)

The Pochhammer symbol (a)n is defined by (a)n = a(a + 1) . . . (a + n − 1) for
n ≥ 1, and (a)0 = 1. This series is easily seen to be convergent when |z| < 1.

Gauss proved a number of remarkable facts about this function. He showed
that
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Proposition 1.1. The hypergeometric series F (a, b, c; z) and any two additional hy-
pergeometric series whose 3-tuples of parameters are equal to (a, b, c) modulo Z3,
satisfy a nontrivial linear relation with coefficients in the ring of polynomials in a,
b, c, and z.

A hypergeometric series whose parameters are (a ± 1, b, c), (a, b ± 1, c) or
(a, b, c± 1) is called contiguous to F (a, b, c; z). Gauss worked out the basic cases
of the relations between F (a, b, c; z) and two of its contiguous functions, known
as the contiguity relations of Gauss. Using such relations, he proved the famous
“Gauss summation formula”:

Lemma 1.2. When c �∈ {0,−1,−2, . . .}, and Re(c− a− b) > 0, then

F (a, b, c; 1) =
Γ(c)Γ(c − a− b)
Γ(c− a)Γ(c− b)

.

When we differentiate the series (1) we obtain

d

dz
F (a, b, c; z) =

ab

c
F (a+ 1, b+ 1, c+ 1; z) . (2)

As a special case of proposition 1.1 there exists a linear second order differential
equation with polynomial coefficients for the series (1). By an easy direct compu-
tation one finds:

Proposition 1.3. The Gauss series F (a, b, c; z) satisfies the equation

z(1 − z)f ′′ + (c − (1 + a+ b)z)f ′ − abf = 0 . (3)

This equation is of Fuchsian type on the projective line P1(C), and it has
its singular points at z = 0, 1 and ∞. Locally in a neighborhood of any regular
point z0 ∈ C\{0, 1} the space of holomorphic solutions to (3) will be two dimen-
sional. This shows that we can continue any locally defined holomorphic solution
of (3) holomorphically to any simply connected region in C\{0, 1}. In particular,
the series (1) has such holomorphic continuations. This leads us in a natural way
to consider the monodromy representation of the Gauss hypergeometric function.
Choose a regular base point z0, and consider the associated two dimensional com-
plex vector space Vz0 of solutions to (3). For each element γ ∈ Π1(C\{0, 1}, z0)
consider the operator µ(γ) ∈ End(Vz0) representing the effect in Vz0 of analytic
continuation of a local solution along a closed loop representing γ. This is easily
seen to be a representation

Π1(C\{0, 1}, z0)→ GL(Vz0) . (4)

This representation is very fundamental to the subject. The monodromy represen-
tation has important interpretations in algebraic geometry (Picard-Schwarz map)
and representation theory (quantum Schur-Weyl duality), as we will see later.
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1.1. Behavior at the singular points and monodromy

We can compute the monodromy representation of the hypergeometric function
explicitly. This is based on the summation lemma 1.2. We need to study the
behavior of the solutions of (3) near the singular points. By substitution into the
hypergeometric equation (3) we find that apart from

w0,1(z) = F (a, b, c; z) , (5)

also the expression

w0,2(z) = z1−cF (1− c+ b, 1− c+ a, 2− c; z) (6)

gives us a solution of (3), locally defined in sectors of a punctured disk centered
at z = 0. Treating the other singular points similarly, we obtain

w1,1(z) = z−aF (a, a− c+ 1, a+ b− c+ 1; 1− z−1) ,

w1,2(z) = z−b(1− z−1)c−a−bF (c− a, 1− a, c− a− b + 1; 1− z−1) (7)

at z = 1, and

w∞,1(z) = z−a(1− z−1)−aF (a, c− b, a− b+ 1; (1− z)−1) ,

w∞,2(z) = z−b(1− z−1)−bF (b, c− a, b− a+ 1; (1− z)−1) (8)

at z = ∞. This gives us a basis of local solutions in the vicinity of each of the
singular points, at least when we assume that the parameters a, b and c do not
differ by integers. Each of these 6 solutions can be expressed in 4 ways in terms
of hypergeometric series (1), and together these constitute Kummer’s 24 solutions
of the hypergeometric differential equation. When the numbers a, b and c have
integer differences, logarithmic terms are usually necessary to describe the local
solutions at some of the singular points. This is an important phenomenon called
resonance. We shall ignore this phenomenon for sake of simplicity.

When we want to understand the monodromy in terms of the local basis w0,1,
w0,2, it is sufficient to find the relations with the other local bases (7) and (8) on
a common domain. So let us write

w0,1 = c1w1,1 + c2w1,2 . (9)

Since, when Re(c−a−b) > 0, we have w1,2(1) = 0, we obtain from the summation
formula (2) that

c1 =
Γ(c)Γ(c − a− b)
Γ(c− a)Γ(c− b)

. (10)

By application of the Kummer transformation rules one can similarly deduce that

c2 =
Γ(c)Γ(a + b− c)

Γ(a)Γ(b)
. (11)

We can similarly deal with the transition to the basis (8).
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All this shows us how the Kummer transformations together with the Gauss
summation formula make it possible to obtain explicitly the matrices of the mon-
odromy representation. It is a very special feature of the hypergeometric equation.

1.2. The Euler integral

There is another, more geometric way of thinking about the monodromy repre-
sentation. It is based on the representation of local solutions by means of integrals
over twisted cycles. The basic form of such a representation is the Euler integral:

Theorem 1.4. When Re(c) > Re(a) > 0, and |z| < 1, then

F (a, b, c; z) =
Γ(c)

Γ(a)Γ(c − a)

∫ 1

0

ta−1(1− t)c−a−1(1− tz)−bdt .

A proof of this theorem can be given by using the binomial expansion of
(1− tz)−b, and applying the Euler beta-integral formula.

The Euler integral gives rise to a new understanding of what we saw in the
previous subsection. Let us first of all remark that we can replace the integration
domain [0, 1] by any closed cycle C in C\{0, 1, 1

z}, provided that the integrand
ta−1(1− t)c−a−1(1− tz)−b (12)

is univalued on C. Such a cycle is called a twisted cycle for the coefficient system
defined by (12). A famous example of a twisted cycle is the Pochhammer contour
(see figure 1) around the points 0 and 1.

� �0 1

✲

✲

❄❄ ✻✻

Figure 1. The Pochhammer contour

This has the advantage that we can remove the condition Re(c) > Re(a) > 0.
Moreover, we obtain a linear map from the space of homology classes of twisted
cycles in Yz = C\{0, 1, 1

z}, to the space Vz of germs of local solutions at z:

Htwist
1 (Yz)→ Vz

C →
∫

C

ta−1(1− t)c−a−1(1− tz)−bdt .
(13)

For generic parameters, Htwist
1 (Yz) is two dimensional and this map is an isomor-

phism.
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Put X = C\{0, 1} and Y = C2\{t = 0, t = 1, zt = 1}, and consider the
projection π : Y → X, π(z, t) = z on the first coordinate.

Y � (z, t)
π
� �
X � z

(14)

This projection is a fibration with fiber π−1(z) = Yz. We define a vector bun-
dle Htwist

1 (Y/X) over X whose fiber at z is the twisted homology groupHtwist
1 (Yz).

An element Cz0 ∈ Htwist
1 (Yz0 ) naturally defines a twisted cycle in every fiber

Htwist
1 (Yz) if z is sufficiently close to z0. Such local sections of Htwist

1 (Y/X) are
called flat, and this natural notion of flat local sections defines an integrable con-
nection on the bundle Htwist

1 (Y/X). This is the Gauss Manin connection of the
fibration π (with respect to the twisting by the local coefficient system). The “flat
continuation” of elements of Htwist

1 (Yz0) defines a monodromy representation of
Π1(X, z0) in GL(Htwist

1 (Yz0)).
In short, for generic parameters the isomorphism (13) interprets the mon-

odromy action on the local solution space of the hypergeometric differential equa-
tion as the monodromy of the (twisted) Gauss-Manin connection of the fibra-
tion (14).

When the parameters a, b and c are rational, we have a projection of the space
of 1-cycles of the Riemann surface Zz of (12) to the space of twisted 1-cycles in
the fiber Yz. Variation of z in the base space X should be thought of as a variation
of moduli of the surface Z. The hypergeometric functions are now interpreted as
period integrals, considered as functions of the moduli of Z. This point of view
gives rise to modular interpretations of X (or certain local compactifications of it)
via the Schwarz map S. This is the multivalued map on X defined by taking the
projective ratio

S(z) := (φ1(z) : φ2(z)) (15)

of two linearly independent solutions of the hypergeometric differential equation.
Its branches are related to each other by the action of the projective monodromy
group Γ+. The S-image of the upper half plane X+ ⊂ X is a circular triangle T
called the Schwarz triangle. The vertices of T are the S-images of 0, 1, and ∞,
and by (5), (7) and (8) its angles are

(1− c)π, (c− a− b)π, and (a− b)π (16)

respectively. In order to avoid degeneracies we now assume that (a, b, c) is such
that contiguous parameters give equivalent monodromy representations (this is
true when a, b �≡ 0, c modulo Z). Applying contiguity relations repeatedly we can
reduce T so that its angles are nonnegative, and that the sum of two angles is at
most π. This ensures that the Schwarz map is a bijection from X+ to T .

By Schwarz’ reflection principle, Γ+ is realized explicitly as the normal sub-
group of index two of holomorphic maps in the group Γ generated by the inversions
in the edges of the Schwarz triangle T . By proper choice of the basis φ1, φ2 in (15),
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T can be realized as a geodesic triangle in one of the three standard geometries.
If the angle sum σ of T exceeds π, we can realize T as a geodesic triangle in
D+ := P1(C) (spherical case). When σ < π, we can realize T as a geodesic trian-
gle in the upper half plane D− := H (hyperbolic case). Finally, when σ = π, we
can realize T as a Euclidean triangle in D0 := C.

We call T elementary when its angles are of the form π
n with n ∈ {2, 3, . . .}.

By elementary geometry in the natural geometric domain Dε (ε = ±, 0) of T , the
group Γ+ is a discrete subgroup of the group of isometries Aut(Dε) if and only
if T is finitely tesselated by copies of an elementary Schwarz triangle. When T
is elementary, then its closure in its geometric domain Dε will be a fundamental
domain for the action of Γ on Dε.

When T is elementary, we can therefore find a holomorphic inverse J of S
that extends to Dε by adding the points of finite branching order. The map J is
automorphic for Γ+ and realizes an isomorphism

J : Γ+\Dε ∼−→ X̃ (17)

where X̃ is obtained from X by adding the points corresponding to the points of
finite branching order.

In the simplest case we consider a = b = 1
2 and c = 1. All angles of T are

0 now. In this case the Euler integral solutions of the hypergeometric differential
equation are in fact the classical elliptic integrals. We find that Zz is a double cover
of P1(C) branched in 0, 1, ∞ and 1

z
, and this is an elliptic curve (with marked

point of order two). The projective monodromy group is

Γ(2) =
{
g ∈ PSL(2,Z)

∣∣∣∣g ≡
(
1 0
0 1

)
modulo 2

}
. (18)

In this case, the inverse J is the lambda invariant that maps the quotient Γ(2)\H+

isomorphically to X = C\{0, 1}. It is an isomorphism between two natural models
of the moduli space of elliptic curves with marked points of order two.

We should think of the base spaceX = C\{0, 1} as the space of configurations
of four points in P1(C), i.e. the space of positions of four distinct points on the
projective line, up to the simultaneous action of projective transformations on
these points. In this way it is natural to generalize the above interpretation of the
Euler integral to more general configuration spaces of geometric objects. This is a
fruitful point of view for generalizing hypergeometric functions, which has led to
applications in algebraic geometry.

Configuration spaces are also natural to consider in mathematical physics,
of course, and the hypergeometric functions in mathematical physics arise in this
way also as functions of configurations. I shall return to these matters later.

One variable generalizations like the functions pFq and q-deformations like the
basic hypergeometric series are certainly important, but we shall restrict ourselves
to discussing multivariable generalizations in this overview.
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2. Generalizations of Euler’s Hypergeometric Integral

The first generalization of hypergeometric functions that comes to mind when we
consider the Euler integral is the Lauricella FD function. Let X(n) denote the
space of n ≥ 4 distinct, marked points x1, . . . , xn in P1(C), modulo the action
of PGL(2,C). The space X(4) is nothing but the base space X = C\{0, 1} we
considered in the previous section, since we can send the first three points to 0, 1
and ∞ by a uniquely determined fractional linear map, leaving the fourth point
as a free variable in X.

Let µ be an n tuple of complex numbers with
∑

µi = 2. Let wµ denote the
multivalued (1, 0)-form

wµ =
n∏

i=1

(t− xi)−µidt (19)

on Yx := P1(C)−{x1, . . . , xn}. For any twisted cycle C in Yx with respect to this
form, we define the the following hypergeometric integral

IC (x) :=
∫

C

wµ . (20)

These integrals are solutions of the Lauricella hypergeometric equations of “ty-
pe D” when we fix xn−2 = 0, xn−1 = 1, and xn = ∞ and think of the IC(x) as
functions of the remaining n−3 variables. It is known that this is an n−2 dimen-
sional space V (µ) of multivalued functions onX(n). Choose a base point b ∈ X(n).
The map C → IC (x) defines an isomorphism Htwist

1 (Yb) and the space V (µ)(U)
where x ∈ U and U is a suitable neighborhood of b.

The analog of the Schwarz map in this context was studied by Picard (n =
5) [35], Terada [37], Deligne and Mostow [8, 9] and others. It was shown that when
µi ∈ (0, 1), the space of twisted cycles Htwist

1 (Yx) carries an hermitian intersection
form M of signature (1, n − 3), invariant for monodromy. Hence, for a suitable
choice of basis Ci of Htwist

1 (Yb), the image of the Picard-Schwarz map

PS : X(n) → Pn−3(C) (21)
x → (IC1 (x) : · · · : ICn−2 (x)) (22)

is inside the set B = {z = (z1 : · · · : zn−2)|M(z, z) > 0}. The space B is isomorphic
to the unit ball in Cn−3.

The main theorem of [8] asserts that the projective monodromy group Γ(µ) ⊂
PU(1, n−3) is discrete if there exist mi,j ∈ N∪∞ such that 1−µi −µj = 1

mi,j
or

2
mi,j

when µi = µj . Moreover, the image of PS is dense in B, and PS−1 extends
holomorphically to B and gives an isomorphism

PS−1 : Γ(µ)\B → Σ\X̃(n) (23)

where Σ is the group of permutations of points xi with equal weights µi, and X̃(n)
is some quasi projective local compactification of X(n).
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This is a delightful generalization of the theory of the Schwarz map. At the
same time it is clear that it is not the end of the story! Other generalizations
of the hypergeometric function can be obtained easily by considering hypergeo-
metric integrals associated with configuration spaces of hyperplanes in Pn(C).
For example, Yoshida obtained the modular interpretation of the configuration
space X(3, 6) of 6 lines in P2(C) in his book [39]. Other work in this direction
was done by Couwenberg [7], working with the root system type hypergeometric
functions that will be discussed in section 3. Many open problems remain in this
direction.

2.1. The Gelfand-Kapranov-Zelevinskii-hypergeometric function

This hypergeometric function (sometimes called A-hypergeometric function) was
introduced in [15]. It is in fact a very general class of hypergeometric functions
that resembles the case of Lauricella functions. The classical generalizations of the
Gauss hypergeometric function like pFq, the Lauricella type functions, and Horn’s
hypergeometric functions all occur as special cases of the GKZ-systems.

The GKZ-hypergeometric functions are defined by means of a deceptively
simple system of differential equations. Let A ⊂ Zn be a finite generating subset
of Zn. Assume that A lies inside a rational hyperplane. In other words, there exists
a linear function h : Zn → Z such that h(A) = 1. Let L ⊂ ZA denote the lattice
of relations in A, thus

L := {(aω) ∈ ZA|
∑
ω∈A

aωω = 0} . (24)

For a ∈ L, define a constant coefficient partial differential operator �a on CA by

�a :=
∏

aω>0

(
∂

∂xω

)aω

−
∏

aω<0

(
∂

∂xω

)aω

. (25)

Note that �a is homogeneous, since
∑

aω = 0 for every a ∈ L (apply h to the
relation defined by a).

Also define, for every i = 1, . . . , n,

Zi =
∑
ω∈A

ωixω

(
∂

∂xω

)
. (26)

When (γ1 , . . . , γn) ∈ Cn is given, we define the following system of differential
equations for functions on CA:

Definition 2.1. (GKZ-system of equations)

(1) �af = 0 ∀a ∈ L, (2) Zif = γif ∀i = 1, . . . , n . (27)

It is known that the system is holonomic, i.e. the system has finite dimen-
sional local solutions spaces. It was shown in [15] that the dimension of the local
solution space at a regular point is at least equal to the volume of the convex
hull of A inside the rational hyperplane containing A, with equality in the non-
resonant case. However, an exact general formula for the dimension doesn’t seem
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to be known [17]. The monodromy representation is also not known in general.
Gelfand, Kapranov and Zelevinskii [16, 17] have shown that in the non-resonant
case the solutions of the system can be represented by generalized Euler inte-
grals. The GKZ-hypergeometric function contains the hypergeometric functions
on Grassmannians which were defined previously by Gelfand and Gelfand [14].
Also the hypergeometric integrals studied by Aomoto [1] are of GKZ-type. It was
shown by Batyrev [2] that the period integrals of Calabi-Yau hypersurfaces satisfy
a system of GKZ-hypergeomtric equations.

3. Analogs of Spherical Functions on Symmetric Spaces

In this section we shall discuss a different kind of multivariable hypergeometric
function, the hypergeometric function associated to root systems. This theory is
based on other aspects of the Gauss hypergeometric function, namely its role in
the representation theory of groups like SL(2,R).

It is well known that Bessel functions of the half integer order n/2 show up
as the radial eigenfunctions of the Laplace operator ∆ of the Euclidean space Rn.
This has a generalization to hypergeometric functions, and this provides the basis
of a theory of multivariable hypergeometric functions that is natural in relation to
representation theory of reductive algebraic groups. The hypergeometric functions
of this kind are called “hypergeometric functions associated to root systems” [19,
18, 20, 33], and are closely related to what is called “Macdonald-Cherednik theory”
nowadays.

Let us review the basic construction of these functions. A Riemannian sym-
metric space X is a Riemannian manifold such that at every point p of X, the
local geodesic inversion ip : exp(tv) → exp(−tv) extends to a global isometry ofX.
With this assumption it follows simply that X is complete, and that the group G
of isometries of X acts transitively on X. We choose a base point x0 in X, and
denote by K the stabilizer group of x0 in G. The Lie group G acts transitively
on X, and K is a compact subgroup of G which is pointwise fixed for the involu-
tion g → ix0gix0 of G.

The Euclidean spaces Rn are the simplest examples of such spaces. These
are examples of flat symmetric spaces, by which we mean that the sectional cur-
vature of these spaces is 0. Any simply connected Riemannian symmetric space is
a product of factors with constant sectional curvature.

Let us assume from now on that X has sectional curvature −1. The local
structure of X can be described by introducing “polar coordinates”. Let A be a
maximal flat totally geodesic submanifold through x0. Then A � Rr for some
positive integer r. This dimension r is called the rank of X. It turns out that the
group

W :=
{k ∈ K | k stabilizes A}

{k ∈ K | k fixes A pointwise} (28)
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is a finite crystallographic reflection group acting on A. All K orbits intersect A,
and this intersection is an orbit of W . The local structure of X is determined
completely by the behavior of the function δ(x) := Vol(Kx) on A. This function
takes the form (see [21])

δ(x) =
∏
α∈R

| sinhα(x)| 12mα (29)

for a certain finite set of linear functions R on A, and certain non-negative integer
labels mα for the elements of R. Clearly δ has to be W invariant, implying that
set R isW -stable and the labels areW -invariant. In fact, the orthogonal reflections
in the hyperplanes Hα := {x | α(x) = 0} (α ∈ R) generate the reflection group W .
Hence the local structure of X is determined by R and the labels mα. We call R
the root system of X, and the mα are called the root multiplicities.

The analogs of the Laplace operator on Rn are the G invariant differential
operators on X. The algebra of such operators is denoted by D(X). In the case Rn

this is the operator algebra generated by the Laplace operator ∆. Although D(X)
is in general no longer generated by a single operator, its structure is amazingly
simple (cf. [21]):

Theorem 3.1. D(X) is a polynomial algebra of rank r over C.

The analogs on X of the Bessel function of half integer order are the ele-
mentary spherical functions on X. An elementary spherical function φ on X (with
origin x0) is an eigenfunction of the algebra D(X) which is moreover K-invariant.
In other words, there is an algebra homomorphism λ : D(X) → C such that

∆φ = λ(∆)φ ∀∆ ∈ D(X) . (30)

Such a function depends on the “radial” variables x ∈ A � Rn only. As in the case
of spherical waves onRn, we derive the differential equations for φ(x) by separation
of the radial and rotational variables. This reduces the equations (30) to a system of
W -invariant equations on A � Rn. The simplest equation of this type is the second
order equation that is derived from the Laplace-Beltrami operator ∆LB ∈ D(X)
of X. Its radial part L = L(R,mα) has the following form on A:

L(R,mα)φ = ∆Aφ+
∑
α∈R

mα
cosh(α)
sinh(α)

α(∇Aφ) , (31)

where ∆A is the Laplace operator of the Euclidean space A, and ∇Aφ denotes
the gradient vector of φ in A. When the rank r of X equals 1, the eigenfunction
equations (30) reduce to the eigenfunction equation for L. In this case, the root
system R has the form R = {±β,±2β}. When we use z = − sinh2(α(x)) as
a new coordinate, we obtain the hypergeometric differential equation (3) whose
parameters a, b and c can be expressed in terms of mβ , m2β , and the eigenvalue λ.
In order to obtain the full three parameter family of hypergeometric functions we
have to abandon the rank one symmetric spaces altogether, and allow arbitrary
complex values for the labels mβ and m2β. The situation is similar to the case
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spherical waves on Rn: only Bessel functions of half integer order allow such a
geometric interpretation.

How can we imitate this step in higher rank situations? The operator L is a
certain W -invariant deformation of ∆A, which has the remarkable property that
it defines a completely integrable system. That is to say, the algebra of W -invariant
differential operators commuting with L contains a polynomial algebra of rank r
(the radial parts of the operators ∆ ∈ D(X)).

The crucial step towards the theory of hypergeometric function for root sys-
tems is the insight that this property of complete integrability is not lost when
we choose arbitrary complex coefficients mα in (31) instead of the positive integer
labels dictated by the local structure of X (see [20, 34] and the references therein):

Theorem 3.2. In the algebra of linear partial differential operators with polynomial
coefficients in the unknowns mα, the commutant algebra of the operator L given
by (31) is isomorphic to a polynomial algebra D(R,mα) of rank r.

This theorem is not merely an interpolation from the classical cases bases
of the theory of Riemannian symmetric spaces X. In general, for a given root
system R, “nature” has only given us finitely many symmetric spaces X with a
root system of type R. Theorem 3.2 is therefore rather surprising, and points at
something new. We will explore this in the next subsection.

Anyway, it is now clear how we should define the hypergeometric functions
associated to a root system:

Theorem 3.3. Let m = (mα) be a set of complex root labels. Given a character λ
of the algebra D(R,mα), the system of hypergeometric differential equations is
defined on the complexification AC by

∆φ = λ(∆)φ ∀∆ ∈ D(R,mα) . (32)

The system is invariant for W and for the lattice of translations T on which all
the roots take values in 2πi.

The system is regular at the regular points of the action of the affine reflection
group W � T , and locally its solution space has dimension |W | at regular points.
There is a unique holomorphic solution FR(λ,mα; x) defined in a neighborhood
of the origin in AC, normalized in the origin by FR(λ,mα; 0) = 1. It is called the
hypergeometric function associated with R.

This function has very elegant properties. Its monodromy representation has
been determined, at least for generic parameters. The fundamental group is of the
regular orbit space of W � T acting on AC is the affine braid group associated
with W . The monodromy representations factors through an affine Hecke algebra
quotient of the group algebra of the braid group [19].

Considering its origin, it is not surprising that the root system hypergeome-
tric function can be used as the kernel of a deformation of the Fourier transform,
generalizing the harmonic analysis of zonal spherical functions [33, 5]. This har-
monic analysis contains a lot of combinatorial information about root systems,
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already in the polynomial case (corresponding to zonal polynomials on the com-
pact form of X). We return to this issue in the next subsection. The spectral
analysis using these functions is also related to the dynamics of the integrable
models of “Calogero-Moser” type in mathematical physics.

There is no Euler type integral representation known in general, except for
W = Sn. This has to be considered as a missing link. It makes it more difficult to
give geometric meaning to the monodromy representation.

3.1. The Cherednik-Macdonald theory

Complete integrability of a system of differential operators is a rare and delicate
property. The integrability of the Laplace-Beltrami operator L of X as in the pre-
vious subsection is indeed very special, as it reflects the geometry of X. The fact
that the deformations of L in (30) do not destroy the the integrability is therefore
remarkable, and it indicates that there should exist a more fundamental structure
than the symmetric space X itself. On the algebraic level this structure is well
understood. It is Ivan Cherednik’s double affine Hecke algebra [4]. It simultane-
ously captures the so-called spherical convolution algebras of the p-adic symmetric
spaces X(Qp) and the algebras of G invariant differential operators D(X) (with
X a real form of the symmetric space) as in the previous subsection.

Let us briefly look at this interesting object when the rank of X equals 1.
We follow the nice presentation from [31]. As before, we put R = {±β,±2β}. The
double affine Hecke algebra H has generators T0, T1, T

∨
1 and T∨

0 over the field K
of rational functions in 5 indeterminates ti, t

∨
i (i = 0, 1) and q, with relations:

(Ti − ti)(Ti + t−1
i ) = 0 ,

(T∨
i − t∨i )(T

∨
i + t∨i

−1) = 0 ,
T0T1T

∨
1 T∨

0 = q .

The subalgebra K〈T0 , T1〉 of H generated by T0 and T1 is an ordinary affine Hecke
algebra, which has a one dimensional representation ρ defined by

ρ(T0) = q0, ρ(T1) = q1 . (33)

The induced module IndHK〈T0,T1〉(ρ) is naturally isomorphic to the Laurent poly-
nomial ring K[X,X−1], where X = T1T

∨
1 . This defines a faithful representation π

of H, as operator algebra on K[X,X−1].
For example, the operator π(T1) is a “Lusztig operator”

π(T1) = t1s1 + (a1 + a∨1 X
−1)

1
1 −X−2

(1− s1) (34)

where s1 is the involutive automorphism of K[X,X−1] defined by s1(Xn) = X−n,
ai = ti − t−1

i and a∨i = t∨i − t∨i
−1. Similarly we have

π(T0) = t0s0 + (a0 + q−1a∨0 X)
1

1 − q−2X2
(1− s0) , (35)
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where s0(Xn) = q2nX−n. These formulas can be checked by some disciplined
direct computations. The analog of the radial part of the Laplace-Beltrami oper-
ator L(R,mβ) of (31) is now given by the operator

Λ(R, ti, t
∨
i , q) := (π(Y )− 1)(1− π(Y −1)) (36)

on K[X,X−1], where Y = T1T0. The relation with the previous subsection is
achieved by a limiting procedure q → 1, after the specializations t0 = t∨0 = q−mβ/2,
t1 = q−m2β , and finally t∨1 = 1. When we formally write X = eβ , we find by direct
computation that the relation with the operator (31) is given by

L(R,mα) = limq→1
Λ(R, ti, t

∨
i , q)

q − q−1
. (37)

Let us return to the general rank case now. Intelligible sources for this ma-
terial are [29] and [23]. The double affine Hecke algebra H can be defined without
too much difficulty. It consists of two dual affine Hecke algebras, whose finite di-
mensional Hecke-subalgebras are identified. As in the rank 1 case, this algebra has
a faithful representation in a Laurent polynomial algebra K[X±1

1 . . . , X±r
r ], and it

contains a rank r polynomial subalgebra

L = K[Λ1(R, ti, t
∨
i , q), . . . ,Λr(R, ti, t

∨
i , q)] , (38)

the “q-analog” of the algebra D(R,mα) of theorem 3.2.
The elementary spherical functions on the compact real form Xcomp of a Rie-

mannian symmetric space X, are the so-called zonal polynomials. In the rank one
case these are the well known Jacobi-polynomials. A far reaching generalization of
the zonal spherical polynomial is the Macdonald-Koornwinder polynomial [29, 27].
These are by definition the W -invariant polynomial eigenfunctions of the alge-
bra L, suitably normalized. In the one variable case, these are the polynomials of
the q-Askey-Wilson scheme. The original zonal polynomials are obtained by the
limit transition as described above. Hall-Littlewood polynomials, in their role of
the elementary spherical functions on a p-adic symmetric space X(Qp), arise as
the limit for q → 0 when we put tα = 1

p .
The Macdonald polynomials have many interpretations in algebraic combina-

torics, in mathematical physics and in representation theory. The polynomials have
been instrumental in the solution of various conjectures on the combinatorial prop-
erties of reflection groups [32, 4]. Macdonald’s “constant term conjectures” [28]
are the most prominent among these. Figure 2 (also due to Macdonald) gives an
overview of their representation theoretic significance. In addition, one knows in
the case of the reflection groupW = Sn, the symmetric group on n letters, that the
polynomials are also the elementary spherical functions of the compact quantum
group Uq(n).

Much of the theory of Macdonald polynomials is related to the spectral anal-
ysis of the double affine Hecke algebra that generalizes the spherical harmonic
analysis related to the compact real form of the symmetric space X.
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Figure 2. Macdonald polynomials and symmetric spaces

It is a major open problem to find the spectral theory of the operator alge-
bra L introduced in (38) that generalizes the spherical Harish-Chandra transform
on real non-compact symmetric spaces and Macdonald’s p-adic spherical trans-
form. It has been achieved in the differential limit for q tends to 1 [33, 5], and for
the rank 1 double affine Hecke algebra in [25]. In general one does not know how
to construct the non-polynomial eigenfunctions at present.

4. Integrable Models and Hypergeometric Functions

We saw that the differential equations for the hypergeometric function associated
to a root system is a completely integrable system. This system is also known in
mathematical physics as the trigonometric Calogero-Moser system. When W =
Sn, the symmetric group on n letters, this system describes the dynamics of a
quantum mechanical system of n particles moving on the real line under the influ-
ence of a pair potential that is proportional to the inverse square of the hyperbolic
sine of the distance of the particles. The generalization to the algebra of difference
equations L of (38) has the interpretation of making the quantum system relativis-
tic. ForW = Sn such a relativistic model was found explicitly by Ruijsenaars [36],
and this was extended to general classical root systems by Van Diejen [10]. The
spectral problem for Cherednik’s operator realization of affine Hecke algebras, dis-
cussed in the previous subsection, is of course very important for the dynamics of
these related integrable models from mathematical physics.
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4.1. The Knizhnik-Zamolodchikov equations

There is another interpretation of hypergeometric functions, in mathematical phy-
sics, via the so called Knizhnik-Zamolodchikov equations of conformal field the-
ory [38, 13]. These equations are the differential equations for the n-point correla-
tion functions ψ(z1, . . . , zn) of conformal field theory for a Kac-Moody algebra ĝ.
The points z1, . . . , zn are distinct points on the complex line C, and the correlation
function takes values in an n-fold tensor product V1 ⊗ · · · ⊗ Vn of representations
of the finite dimensional simple Lie algebra g. The equations have the form

(k + h∨)
dψ

dzi
=




n∑
j=1
j 
=i

Ωi,j

zi − zj


ψ (∀i = 1, . . . , n) , (39)

where Ω is the symmetric “Casimir tensor” Ω =
∑

xi ⊗ xi ∈ g ⊗ g corresponding
to the invariant scalar product on g, and Ωi,j denotes the action of Ω on the i-th
and j-th slot of the n-fold tensor ψ. The number h∨ is the dual Coxeter number
of ĝ, and the complex number k is called the central charge.

These KZ-equations have been studied intensively by mathematicians be-
cause of their interesting relation with quantum groups. The system of differential
equations is integrable and is invariant for the g action on ψ. Hence it defines a
monodromy representation of the fundamental group Bn of the regular orbit space
of Sn acting on Cn. This monodromy representation has values in the space of
g-intertwiners between tensor products of g-modules. This defines the structure of
a braided tensor category on the tensor category of g-modules. For generic values
of k, this is the representation category of the quantum universal enveloping al-
gebra Uq(g), where q = exp( πi

k+h∨ ) (Drinfeld-Kohno theorem) [11, 26, 22]. When
g = gln this is the quantum group version of the classical Schur-Weyl duality.

It is fully justified to view the KZ-equations as generalized hypergeometric
equations. In simple examples the equations reduce to (3) and the solutions of
(39) allow integral representations that are generalizations of Euler’s integral rep-
resentation 1.4. This gives a beautiful geometric interpretation of the monodromy
representation of the KZ-equation, analogous to the isomorphism (13). I refer the
reader to the books [38] and [13] for a detailed exposition of this point of view.

The Knizhnik-Zamolodchikov equations have a number of variations and gen-
eralizations (allowing more complicated coefficient functions and discretization for
example). For these complicated matters the reader is referred to [13].

In the case of trigonometric coefficient functions, we have the following rela-
tion to the Macdonald-Cherendnik theory. Take g = gln and let ψ take it values
in the zero-weight space of V ⊗n, where V is the defining representation of g. The
resulting system of equations can be shown to be equivalent to 3.3 when W = Sn.
Cherednik has introduced the root system analogs of these (very special) Knizhnik-
Zamolodchikov equations [3]. He found an explicit system of first order differential
equations, and these equations were shown to be equivalent to (32) in [30].
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The representation theoretic meaning via the quantum Schur-Weyl dual-
ity and the geometric interpretation of the monodromy representation give the
KZ-equation a very rich structure in the case of W = Sn. Much of this is missing
in the theory for general root systems. It is an open problem to find an interpre-
tation of the monodromy representation as period integrals in the general root
system case. However, some progress has been made by Couwenberg and Heck-
man [7] on the study of a Schwarz map for hypergeometric functions for root
systems.
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