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Abstract. This paper intends to report on the recent progress in the clas-
sification of contact structures on complex projective and compact Kähler
manifolds. In particular we explain how to apply the geometry of rational
curves and Mori theory to investigate projective contact manifolds whose sec-
ond Betti number is at least 2.

1. Introduction

Given a projective or compact Kähler manifold X, a special subbundle or coher-
ent subsheaf E ⊂ TX in the holomorphic tangent bundle TX often carries signifi-
cant geometric information about the underlying manifold. One important special
property is certainly integrability. Integrable subbundles E, i.e. subbundles closed
under the Lie bracket, define a foliation and one might hope —under additional
assumptions— to find compact leaves and therefore to obtain strong geometric
informations on X. At the moment there are however only a very few results when
the leaves are compact. In sharpe contrast are contact structures, i.e. subbun-
dles of corank 1 which are maximally non-integrable. Contact structures play an
important role in real differantial geometry and attracted rather recently inter-
est in complex geometry via the theory of quaternionic-Kähler manifolds: given
a quaternionic Kähler manifold (M, g) with positive scalar curvature, the twistor
space Z is a Fano manifold (i.e. has a metric with positive Ricci curvature) with
a contact structure and classifying those Fano manifolds means to classify the
quaternionic-Kähler manifolds with positive scalar curvature (Salamon, LeBrun).

Therefore one is very much interested in classifying projective contact man-
ifolds, and apart from the connection with quaternionic Kähler manifolds, the
interest in complex geometry really lies in being “opposite” to foliations.

This article mainly intends to report the recent progress in this topic and to
discuss the main open problems. It is hopefully written in such a way to make it
accessible also to differential geometers.
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2. Complex Contact Structures: Basic Facts, State of the Art and
Conjectures

Given a complex manifold X with sheaf OX of holomorphic functions we shall de-
note TX its tangent bundle, and denote by Ω1

X the sheaf of holomorphic 1-forms,
i.e. the sheaf of holomorphic sections of T ∗

X . Moreover KX = detT ∗
X is the canon-

ical bundle on X and c1(X) = c1(TX) denotes the first Chern class of X. A line
bundle L on a (usually compact) manifold is positive or ample if it carries a metric
of positive curvature. A line bundle L on a projective manifold X is called nef, if
c1(L) ·C = c1(L | C) ≥ 0 for any irreducible compact curve C ⊂ X. If L carries a
metric of semipositive curvature, then L is nef but the converse is false. Finally we
denote by κ(L) the Kodaira dimension of L and let κ(L) = κ(KX) be the Kodaira
dimension of X. So κ(X) = −∞ if no multiple mL = L⊗m has a section; κ(L) = 0,
if some mL has a section but dimH0(X,mL) ≤ 1 for all m and κ(L) = k > 0, if
dimH0(X,mL) grows as mk.

Definition 2.1. A compact complex manifold X of dimension 2n+ 1 together with
a subbundle F ⊂ TX of rank 2n is a contact manifold if the pairing ω : F × F →
TX/F =: L induced by the Lie bracket is everywhere non-degenerate.

An equivalent definition is as follows: we require that KX is divisible by
n + 1 (dimX = 2n + 1); if we write −KX = (n + 1)L, then we must have a
section θ ∈ H0(X,Ω1

X ⊗L) and the non-degeneracy condition can be reformulated
as follows: an elementary calculation shows that θ∧ (dθ)∧k, although computed in
a local trivialisation of L, gives a global section of Ω2k+1

X ⊗Lk. Then θ∧ (dθ)n has
no zeroes. The subbundle F ⊂ TX is now given by F = ker(θ).

Remark 2.2. As already mentioned, the anticanonical bundle is a multiple of the
contact line bundle L: we have −KX = (n+1)L. This already restricts the class of
possible contact manifolds significantly. E.g. a quadric hypersurface in projective
space can never carry a contact structure.

For a detailed discussion of contact manifolds we refer to [12] and [4].

Examples 2.3. (1) Let X = P2n+1 and take a non-zero form ω ∈ H0(Ω1
X ⊗

O(2)). Then ω has no zeroes and therefore defines a bundle epimorphism
TX → O(2). The kernel now defines a contact structure on P2n+1. In the
theory of vector bundles on projective space, this kernel is known (up to a
twist with a line bundle) as null-correlation bundle, see [17].

(2) Let Y be any complex manifold of dimension n + 1 and let X = P(TY ).
Then X has a contact form as follows.
H0(X,π∗(Ω1

Y ⊗ OX(1))) = H0(Y,Ω1
Y ⊗ TY ) has a canonical element,

namely the identity endomorphism on TY . So letting L = OX(1) we obtain
an element ω ∈ H0(X,Ω1

X ⊗ O(1)) which easily is seen to give a contact
structure.

(3) Let G be a complex simple Lie group with Lie algebra G. Then there is
an unique closed orbit XG for the adjoint action of G on P(G). Now XG
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can be seen to be a Fano contact manifold; for details see [3] and [4]. We
say that the contact structure is induced by a simple Lie group. Of course
projective space can be rediscovered in that way (G = Sp(2n+ 2)).

(4) Let (M, g) be a quaternion-Kähler manifold of positive scalar curvature.
Then its twistor space p : Z → M , a S2-submersion over M , is a Fano
contact manifold (and even Kähler-Einstein). We refer to [19] and [12].

Now a standard conjecture says that these should be the only examples.

Conjecture 2.4. Let X be a compact complex contact Kähler manifold. Then X is
induced by a simple Lie group or X = P(TY ) for some compact manifold Y .

Notice that P(TPn+1) occurs in both lists (G = Sl(n+ 1)), but all other man-
ifolds coming from simple Lie groups have second Betti number b2(X) = 1. There
is a lot of evidence that the conjecture should be true in the projective category
(and then also in the Kähler category), but all the tools used fail in the general
complex setting so that the term “conjecture” might be not very appropriate here.

In particular this conjecture would imply a classification of quaternion-Kähler
manifolds via the twistor construction.

In dimension 3 the conjecture has been proved by Ye [21], whereas in dimen-
sion 5 it is proved by Druel [7] up to possible contact 5-folds with nef canonical
bundles. We next state the general results known so far to support the conjecture.

Proposition 2.5. (Druel [7]) A compact Kähler contact manifold X has Kodaira
dimension κ(X) = −∞, i.e. H0(X,O(mKX)) = 0 for all positive m.

The Kähler assumption is needed to conclude that a holomorphic 1-form on
X is closed.

Proposition 2.6. (Ye [21]) A compact Kähler contact manifold X cannot have nu-
merically trivial canonical bundle.

In fact, such a manifold has κ(X) = 0 by virtue of the decomposition theo-
rem [2].

Very recently, Demailly [6] has generalised these two results and made the
following important contribution.

Proposition 2.7. (Demailly) Let X be a compact Kähler contact manifold. Then
KX is never pseudo-effective, i.e. KX does not carry a (possibly singular) hermit-
ian metric whose curvature current is non-negative.

If X is projective, then KX is pseudo-effective if and only if KX is contained
in the closure of the cone generated by the (classes of the) effective divisors, i.e. of
the irreducible hypersurfaces in X. See theorem 4.1 for a more general version of
proposition 2.7.

We shall distinguish the cases b2(X) = 1 and b2(X) ≥ 2. If b2(X) = 1, then
X, being Kähler, is automatically projective and propositions 2.5/2.6 imply that
X is a Fano manifold, i.e. −KX is ample. In that case X should come from a
simple Lie group according to the conjecture. In fact, one has
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Theorem 2.8. (Beauville [3]) Let X be a Fano contact manifold with b2(X) = 1
and —as usual— with contact line bundle L. Assume that

(a) the rational map defined by the linear system |L| (i.e. by the global sections
of L) is generically finite;

(b) the group G of contact automorphisms is reductive.
Then the Lie algebra G of G is simple and X is of the form XG

(example 2.3(3)).

The contact automorphisms are the automorphisms of X preserving F ; notice
also that the Lie algebra of G can be identified naturally with H0(X,L). In order
to prove the conjecture, one now has to construct sufficiently many sections in
L, which might be quite hard. In [4] Beauville removed the assumption that G is
reductive but instead had to assume that L is very ample, i.e. the map given by
the global sections of L is an embedding.

We next turn to the case b2(X) ≥ 2. From now on we will assumeX projective
and say only a few words on the Kähler case later. The aim is to rediscover the
projective bundle structure X is expected to have according to the conjecture.
In that case the canonical bundle KX is negative on the projective spaces, in
particular KX is not nef, i.e. KX · C < 0 for some irreducible curve C. Therefore
it is natural to use Mori theory for the investigation of X. We refer to [9, 15] for
basic informations on Mori theory. In general, Mori theory is applicable if KX is
not nef, this being guaranteed by proposition 2.7. Therefore the main result of
[10], discussed at length in section 3, yields.

Theorem 2.9. Let X be a projective contact manifold with KX not nef and b2(X) ≥
2. Then X is of the form X = P(TY ) with a projective manifold Y .

The case “KX nef” is potentially also ruled out by standard conjectures in
minimal model theory.

Abundance Conjecture. Let X be a projective manifold with KX nef. Then mKX

is spanned by global sections for suitable large m. In particular κ(X) ≥ 0.

This conjecture has been proved by Miyaoka [13, 15] and Kawamata [8] in
dimension 3, but it is completely open in higher dimensions. Of course we need
only a “small” part, namely that κ(X) ≥ 0, i.e. some multiple of KX has a section.

Remark 2.10. In the Kähler case we would basically need the corresponding results
on Mori theory to prove the conjecture which do not exist yet. In dimension 3
how there are some results which suffice to settle conjecture 2.4 except for the
mysterious case of “simple threefolds with κ(X) = −∞”. We refer to [18].

It would be nice to have a direct proof of the following conjecture which of
course would be a direct consequence of conjecture 2.4 and which also would rule
out the nef case immediately.

Conjecture 2.11. Let X be a compact complex contact Kähler manifold of dimen-
sion 2n+ 1. Then c1(X)n �= 0.
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Notice that one can not do better: let Y be a 2-dimensional complex torus
and let X be the projectivised tangent bundle: X = P(TY ) (we take hyperplanes
in the fibers!). Then X � P1 × Y and clearly c1(X)2 = 0.

Given a contact manifold X, it is natural to ask how many contact structures
can exist on X. Of course two contact forms define the same contact structure if
and only if they differ only by a scalar. In [10] it is proved

Theorem 2.12. The contact structures on a complex manifold X = P(TY ) are in
natural 1 : 1-correspondence with the space H0(Y,End(Ω1

Y )) of endomorphisms of
Ω1

Y .

If Ω1
Y is simple, i.e. there are no endomorphisms except for multiples of the

identity, then it follows that the contact structure is unique. This is in particular
the case when X is projective and stable with respect to some ample polarisation.
For example the Fano manifold P(TPn+1) has only one contact structure.

Concerning Fano manifolds with b2(X) = 1, LeBrun proved in [12] that
a Fano manifold which admits a Kähler-Einstein metric carries more than one
contact structure if and only ifX is projective space. It is natural to conjecture that
this should be true without the Kähler-Einstein assumption; in fact conjecture 2.4
implies that a Fano contact manifold is Kähler-Einstein, because it is rational-
homogeneous.

It is interesting to notice that the contact sequence never splits in the Kähler
case:

Proposition 2.13. Let X be a compact Kähler contact manifold. Then the contact
sequence 0 → F → TX → L never splits.

Proof. Suppose the contact sequence splits. Consider the (proportional) Chern
classes

c1(L), c1(F ) ∈ H1(X,Ω1
X) = H1(X,L∗) ⊕H1(X,F ∗) .

Then, not surprisingly, actually c1(L) ∈ H1(X,L∗) and c1(F ) ∈ H1(X,F ∗) (see
[5]). Hence the proportionality c1(F ) = nc1(L) yields c1(X) = c1(L) = c1(F ) = 0
which is impossible as we already saw.

LeBrun ([12]) already noticed that the contact sequence never splits in case
X is Fano. He also proved that the image of c1(L) under the canonical morphism

H1(X,Ω1
X) → H1(X,F ∗) → H1(X,F ⊗ L∗)

is (up to 2πi) the extension class of the contact sequence (the second map comes
from the isomorphism F ∗ � F ⊗L∗ provided by the non-degenerate map F ×F →
L).

3. The Use of Mori Theory

In this section we explain the methods of the proof of theorem 2.9. So we fix for
this section a projective contact manifold X of dimension 2n+1 with contact line
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bundle L; we also suppose b2(X) ≥ 2. The final goal is to show that X is of the
form X = P(TY ). The main problem is to rediscover a Pn-bundle structure on X:
once we have this, it is not so difficult to show that X is a projectivised tangent
bundle.

Let us suppose first that KX is not nef. By Mori theory we obtain a surjective
holomorphic map

φ : X → Y

to a normal projective variety Y such that b2(X) = b2(Y ) + 1 and such that

−KX · C > 0

for one and hence for all irreducible algebraic curves C contracted by φ. Now
we shall study this map φ and we would like to see that φ defines a Pn-bundle
structure. There are three main steps.

Lemma 3.1. dimY < dimX, i.e. φ is not birational.

Lemma 3.2. The general fiber of φ is Pn.

Lemma 3.3. All fibers of φ are smooth of the same dimension.

The proof of lemma 3.1 is very technical and relies on a detailed study of
rational curves of small degree with respect to L, actually of rational curves C
with L · C = 1. Such curves exist: by Mori’s breaking technique a projective
manifold X of dimension m with KX not nef always carries a rational curve C
with 0 > KX · C ≥ −m − 1. Via −KX = (n + 1)L in our situation, we obtain a
rational curve C with L · C = 1 or L · C = 2. If we cannot find C with L · C = 1,
then one can see that X must be Fano with b2 = 1 (we have large families of
these lines covering X), so we always have “L-lines”. Now one main point is to
study the deformations of such a curve. In this context a main point is to study
the restriction of TX to such lines.

We postpone (some of) the technical details to the sketch of proof of lem-
ma 3.3; instead we present here a simplified version (not using any projectivity
assumption):

Simplified Lemma. Let X be a compact complex manifold, φ : X → Y the blow-up
of a submanifold B in the compact manifold Y . Then X cannot carry a contact
structure.

Proof. Take any non-trivial fiber Xy of φ. Let k = dimXy. Then TX | l is of the
following form

TX | l = O(2) ⊕O(1)⊕k−1 ⊕O⊕n−k−1 ⊕O(−1) .

Here the factor O(2) comes from the tangent bundle Tl of l. In particular c1(X)·l =
k. Now c1(X) is divisible by n+1, hence k = n+1. Thus c1(L) · l = 1. The tangent
map Tl → TX | l composed with the contact map TX |l → L|l yields a map

µ : Tl → L | l .
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But Tl has degree 2, whereas L | l has degree 1, so µ = 0. We conclude that
therefore Tl ⊂ Fl for all l. Since the tangents of the lines in Xy generate the tangent
space of Xy at every point, it follows that TXy ⊂ FXy . Since dimXy = n+ 1, this
contradicts the non-integrability of F .

In some sense, birational Mori contractions are the proper generalisations of
blow-ups in classification theory, so that the simplified lemma at least gives strong
evidence for lemma 3.1.

Next we discuss the proof of lemma 3.2. We claim that the general fiber Xy

must be Pn. First notice that the contact structure defines an isomorphism F ∗ ⊗
L → F which can be extended to a map (with 1-dimensional kernel)

α : T ∗
X ⊗ L → TX .

We then consider the composition

β : φ∗T ∗
Y ⊗ L | Xy → T ∗

X ⊗ L → TX | Xy ,

where the first arrow is given by the differential of φ. Observe that clearly β �= 0
and that φ∗T ∗

Y ⊗ L | Xy = L⊕m | Yy, which is ample (having in mind that φ is a
Mori contractions so that −KX is positive on the fibers of φ, hence L is positive on
the fibers of L). Composing β with TXy

→ NXy/X (where N denotes the normal
bundle) we obtain a map γ : L⊕m | Xy → NXy . Since NXy is trivial, γ = 0. Hence
we obtain an injective map LXy → TXy . But a remarkable theorem of Wahl [20]
says that then Xy must be projective space. By divisibility reasons, Xy � Pn. The
theorem of Wahl, in a slightly weaker version due to Mori and Sumihiro [16], says
that a projective manifold admitting a vector field which vanishes on an ample
divisor, must be projective space.

The proof of lemma 3.3 is again rather technical. The main point is to prove
that all fibers of φ have the same dimension n, then one can apply a result of
Fujita to see that φ is a Pn-bundle, then again it is not so difficult to conclude
X = P(TY ). We decribe one important proposition (= (2.9) in [10]). We consider
the space Hom(P1, X)) of holomorphic maps f : P1 → X. Geometrically any (non-
constant) map f determines an irreducible rational curve in X. Now consider a
component V of Hom(P1, X). We says that V is unsplit if the curves from V cannot
be deformed into a sum of rational curves (possibly with multiplicities). Now if V
is unsplit and if deg f∗(L) = 1, for one (hence for all) f ∈ V , then the curves from
V fill up X (up to closure) and the curves from V passing through a fixed point
form a subvariety of dimension n in X2n+1. This is based on a careful analysis of
the differential of the map

F : P1 × Hom(P1, X) → X, F (x, f) = f(x) .

By Mori theory V always exist and so one can apply these considerations: they
yield immediately that ϕ cannot be birational (lemma 3.1); equidimensionality
requires further considerations.
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4. The “Nef” Case

Demailly’s contribution to the classification of contact Kähler manifolds (proposi-
tion 2.7) is a special case of his more general

Theorem 4.1. Let X be a compact Kähler manifold carrying a pseudo-effective line
bundle L. Let η ∈ H0(X,Ωp

X ⊗ L∗) be a non-zero L∗-valued holomorphic p-form
for some 1 ≤ p ≤ dimX. Let S ⊂ TX be the coherent subsheaf of vector fields v
such that the contraction iv(η) vanishes. Then S is integrable.

The proof uses of course the theory of currents together with some (“singu-
lar”) integration by parts. Specialising to p = 1, S defines a meromorphic foliation
of codimension 1, i.e. η ∧ dη = 0. In the contact situation this is applied to S = F
to show that L∗ and hence KX cannot be pseudo-effective.

The partial results in [10] to exclude projective contact manifolds with KX

nef lead to some interesting questions on nef subsheaves in Ω1
X . In principle one is

interested in the problem how positive a subsheaf in Ω1
X can be. We shall restrict

ourselves to rank 1 subsheaves E . Then Bogomolov has shown that κ(E) ≤ dimX−
1. We will now make the following assumptions.

(*) Xn is a projective manifold, E ⊂ Ω1
X locally free of rank 1, E is nef and there

exists a positive rational number α such that αE = KX (as Q-divisors).

Proposition 4.2. Assuming (*), we have c1(X)2 = K2
X = 0.

Proof. We choose general hyperplane sections H1, . . . , Hn−1 to obtain a smooth
surface S = H1 ∩ . . . ∩Hn−1. Then consider the restricted sequence

0 → ES → Ω1
X | S → QS → 0 .

Via the map Ω1
X | S → Ω1

S , we obtain a map ϕ : E | S → Ω1
S . This map is non-zero,

hence injective; in fact, otherwise we would have a map E | S → N∗
S which has

to vanish since E | S is nef and the normal bundle NS is a direct sum of ample
line bundles (actually one can see that the general choice of S already enforces
ϕ �= 0). Now the already mentioned theorem of Bogomolov yields κ(E | S) ≤ 1.
On the other hand, the nefness of E | S implies that c1(E | S) ≥ 0. If however
c1(E | S)2 > 0, then the Riemann-Roch theorem gives κ(E | S) = 2; so we must
have c1(E | S)2 = 0. Since E | S is proportional to KX | S, we obtain

K2
X ·H1 · . . . ·Hn−2 = 0

for any choice of ample line bundles Hi. Now some standard considerations (see
[10]) show that actually K2

X = 0.
As a consequence, it is easily shown that if κ(X) ≥ 0, then either KX ≡ 0

or α ≥ 1. The abundance conjecture predicts that κ(X) ≥ 0 should always hold
since KX is nef. Assuming κ(X) ≥ 0, we are reduced to study two cases: KX ≡ 0
and α ≥ 1. If KX �≡ 0, then K2

X = 0 predicts that we should have κ(X) = 1. If
this is really true, then we have
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Theorem 4.3. Suppose (*) and κ(X) = 1. Then KX is semi-ample, i.e. some mKX

is spanned. Let f : X → C be the Iitaka fibration and let B denote the divisor part
of the zeroes of f∗(Ω1

C) → Ω1
X . Then there exists an effective divisor D such that

E = f∗(Ω1
C) ⊗OX(B −D) .

Turning to the case that κ(X) = 0, one of course expects that KX ≡ 0, and
therefore the decomposition theorem [2] says that there exists a finite étale cover
f : X̃ → X such that X̃ = A × Y with A abelian and Y simply connected and
that f∗(E) = OX̃ .

There is the following well-known “conjecture K” of Ueno

Conjecture 4.4. Let X be a projective manifold with κ(X) = 0. Then the Albanese
map is birational to an étale fiber bundle over its Albanese torus which is trivialised
by an étale base change.

Then we have [11]

Theorem 4.5. In the situation of (*) suppose that κ(X) = 0. If conjecture 4.4
holds, then KX ≡ 0, and therefore there exists a finite étale cover f : X̃ → X such
that X̃ = A× Y with A abelian and Y simply connected and that f∗(E) = OX̃ .

Since Conjecture K is known to be true for q(X) ≥ 2, we conclude that if in
(*) we have κ(X) = 0 and if dimX ≤ 4, then KX ≡ 0.

As a conclusion, nef rank 1 subsheaves E ⊂ Ω1
X which are proportional to

KX will give some very precise geometric information on X. If we introduce

F = (Ω1
X/E)∗ ⊂ TX ,

then in case κ(X) = 1, the leaves of F are just the fibers of the Iitaka fi-
bration f : X → C, and in case κ(X) = 0, possibly after finite étale cover,
F = pr∗(TY , ) in the notation of theorem 4.5, i.e. the leaves of F are the fibers of
the projection X → A.
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10 T. Peternell

[6] J. P. Demailly, Frobenius integrability of certain holomorphic p-forms, Preprint
(2000).

[7] S. Druel, Contact structures on 5-dimensional manifolds, C. R. Acad. Sci. Paris, 327
(1998), 365–368.

[8] Y. Kawamata, Abundance theorem for minimal threefolds, Inv. Math., 108 (1992),
229–246.

[9] Y. Kawamata, K. Matsuda and K. Matsuki, Introduction to the minimal model prob-
lem, Adv. Stud. Pure Mat., 10 (1987), 283–360.

[10] S. Kebekus, T. Peternell, A. J. Sommese and J. Wisniewski, Projective contact man-
ifolds, to appear in Inv. Math. (2000).

[11] S. Kebekus, T. Peternell, A. J. Sommese and J. Wisniewski, Nef subsheaves in the
cotangent bundle, Preprint (2000).

[12] J. LeBrun, Fano manifolds, contact structures and quaternionic geometry, Int. Journ.
Math., 6 (1995), 419–437.

[13] Y. Miyaoka, On the Kodaira dimension of minimal threefolds, Math. Ann., 281
(1988), 325–332.

[14] Y. Miyaoka, Abundance conjecture for 3-folds - case ν = 1, Comp. Math., 68 (1988),
203–220.

[15] Y. Miyaoka and T. Peternell, Geometry of higher dimensional algebraic varieties,
DMV Seminar, vol. 26. Birkhäuser 1997.
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