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Abstract. The problem of “quantum ergodicity” addresses the limiting distri-
bution of eigenfunctions of classically chaotic systems. I survey recent progress
on this question in the case of quantum maps of the torus. This example leads
to analogues of traditional problems in number theory, such as the classical
conjecture of Gauss and Artin that any (reasonable) integer is a primitive root
for infinitely many primes, and to variants of the notion of Hecke operators.

1. Introduction

One of the few rigorous general results in the field of “Quantum Chaology” is
Quantum Ergodicity [13, 2, 14]. To formulate this notion, recall that if the clas-
sical dynamics of a system are ergodic, then almost all trajectories of a particle
cover the energy shell uniformly, that is to say that the time averages along the
trajectory converge to the phase space average. The intuition afforded by the
“Correspondence Principle” leads one to look for an analogous statement about
the semiclassical limit of expectation values of observables in an energy eigenstate.
As formulated by Schnirelman [13], the corresponding assertion is that when the
classical dynamics is ergodic, for almost all eigenstates the expectation values of
observables converge to the phase-space average.

A key question is: Under suitable assumptions on the system, can one say
anything beyond “almost all”? For instance, when can one assert that all expec-
tation values converge to the phase space average? Such behavior has sometimes
been called quantum unique ergodicity [12].

Below is a survey some of recent attempts to understand question in the
context of quantum maps of the torus. These are an important model for under-
standing the quantization of classically chaotic systems, first studied by Hannay
and Berry [5]. We will devote special attention to linear hyperbolic automorphisms
of the torus T2 —the so called “cat maps”.

Notation. We will use the abbreviations e(z) := e2πiz, eN (z) = e(z/N).
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2. Quantum Mechanics on the Torus

We review the basics of quantum mechanics on the torus T2, viewed as a phase
space [5, 7, 3, 4].

2.1. Quantum states

We start with a description of the Hilbert space of states of such a system. In brief,
Planck’s constant is restricted to be an inverse integer: h = 1/N , and the Hilbert
space of states HN is N -dimensional, in keeping with the intuition that each state
occupies a Planck cell of volume h = 1/N and the constraint that the total phase-
space T2 has volume one. The “state vectors” are distributions on the line which
are periodic in both momentum and position representations: ψ(q + 1) = ψ(q),
[Fhψ](p + 1) = [Fhψ](p), where [Fhψ](p) = h−1/2

∫
ψ(q) e(−pq/h) dq. The space

of such distributions is finite dimensional, of dimension precisely N = 1/h, and
consists of periodic point-masses at the coordinates q = Q/N , Q ∈ Z. We may
then identify HN with the N -dimensional vector space L2(Z/NZ), with the inner
product 〈 · , · 〉 defined by

〈φ, ψ〉 =
1
N

∑
QmodN

φ(Q)ψ(Q) .

2.2. Observables

Classical observables (i.e. functions f ∈ C∞(T2)) give rise to quantum observables,
that is operators OpN (f) on HN . To define these, one starts with the translation
operators

[t1ψ](Q) = ψ(Q+ 1)

and

[t2ψ](Q) = eN (Q)ψ(Q) ,

which may be viewed as the analogues of differentiation and multiplication (re-
spectively) operators. In fact in terms of the usual translation operators on the
line q̂ψ(q) = qψ(q) and p̂ψ(q) = h

2πi
d
dqψ(q), they are given by t1 = e(p̂), t2 = e(q̂).

In this context, Heisenberg’s commutation relations read

ta1t
b
2 = tb2t

a
1eN (ab) ∀a, b ∈ Z .

More generally, mixed translation operators are defined for n = (n1, n2) ∈ Z2

by

TN (n) = eN (
n1n2

2
)tn2

2 tn1
1 .

These are unitary operators on HN , whose action on a wave-function ψ ∈ HN is
given by:

TN (n)ψ(Q) = e
iπn1n2
N e(

n2Q

N
)ψ(Q+ n1) .
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For any smooth function f ∈ C∞(T2), define a quantum observable OpN (f),
called the Weyl quantization of f , by

OpN (f) =
∑
n∈Z2

f̂(n)TN (n)

where f̂(n) are the Fourier coefficients of f .
The observables OpN (f) satisfy: For any orthonormal basis of HN we have

1
N

N∑
j=1

〈OpN (f)ψj , ψj〉 =
∫

T2
f +Of (

1
N

) . (1)

That is, the mean of the expectation values is asymptotic to the classical average
of the the observable f .

2.3. Dynamics

To introduce dynamics, we consider a smooth, area-preserving (symplectic) map A
of the torus. Iterating A we get a discrete dynamical system. For instance, if
A ∈ SL(2,Z) is a linear automorphism then the system is well-known to be chaotic
if A is hyperbolic, that is | trA| > 2 (such a map is called a “cat map” in the physics
literature). Another example is the “Kronecker map”,

τα : x 7→ x+ α mod 1, α = (α1, α2) . (2)

If 1, α1, α2 are linearly independent over the rationals then this map is uniquely
ergodic, i.e. the only τα-invariant probability measure on the torus is Lebesgue
measure.

Definition 2.1. A quantization of A is a sequence of unitary maps UN : HN → HN
such that

U∗N OpN (f)UN −OpN (f ◦A)→ 0, N →∞ . (3)

The operator UN is called the quantum propagator, whose iterates give the
evolution of the quantum system, and we require the quantum evolution to be
asymptotic to the classical evolution as N →∞ (this is an analogue of “Egorov’s
theorem”). In this case we say that the map A is “quantizable”. The eigenfunctions
of UN play the rôle of energy eigenstates.

In the example of the linear map A, if we further assume A =
(
a b
c d

)
with

ab ≡ cd ≡ 0 mod 2, then on can construct a unitary operator UN (A) which
satisfies an exact version of Egorov’s theorem:

UN (A)∗OpN (f)UN (A) = OpN (f ◦A) . (4)

A quantization of the Kronecker map τα (2) satisfying (3) was constructed
in joint work with Jens Marklof (see [10] for the closely related case of a skew
translation), by first doing so for rational α, in which case we have an exact Egorov
theorem (4), and then for the general case by approximating α by rationals.
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3. Quantum Ergodicity

For quantum maps, the form that quantum ergodicity assumes is the following:

Theorem 3.1. ([1, 15, 16]) Let A be a quantizable area-preserving map of the torus.
Assume A is ergodic. Then for any orthonormal basis ψj of HN consisting of
eigenfunctions of UN (A), there is a subset J(N) ⊂ {1, 2, . . . , N}, with #J(N)

N → 1,
so that for j ∈ J(N) we have:

〈OpN (f)ψj , ψj〉 →
∫

T2
f, as N →∞

for all observables f ∈ C∞(T2).

Theorem 3.1 is a consequence, using positivity and a standard diagonalization
argument, of the following estimate for the variance due to Zelditch [15] (see the
Appendix for the proof):

Theorem 3.2. ([15]) Let A be a quantizable area-preserving, ergodic map of the
torus. For any orthonormal basis ψj, j = 1, . . . , N of of HN consisting of eigen-
functions of UN (A), we have

1
N

N∑
j=1

∣∣∣∣〈OpN (f)ψj , ψj〉 −
∫

T2
f

∣∣∣∣2 → 0

for all observables f ∈ C∞(T2).

A key problem is:

Problem 3.3. Is it true that all eigenfunctions become equidistributed as N →∞?

For the Kronecker map τα, Jens Marklof and I gave an affirmative answer
(see [10] for skew translations):

Theorem 3.4. If 1, α1, α2 linearly independent over the rationals, then for all eigen-
functions ψ of UN (τα),

〈OpN (f)ψ,ψ〉 →
∫

T2
f, N →∞ .

This is a consequence of the quantization procedure for the map coupled with
the fact that for such α, the map is classically uniquely ergodic.

In the most interesting case of hyperbolic maps (e.g. “cat maps”), a basic
problem is the existence of several invariant measures.

4. Beyond Quantum Ergodicity for Cat Maps

I will now describe some recent attempts, joint with Pär Kurlberg, to improve on
quantum ergodicity (theorem 3.1) for cat maps.
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4.1. Hecke operators [8]
It transpires that there is a commutative group of unitary operators on the state-
space HN which commute with the quantized map and therefore act on its eigen-
spaces. We call these “Hecke operators”, in analogy with the setting of the modular
surface.

To understand their origin, one needs to note that it is possible to define
UN (A) so that it only depends on the remainder of A mod 2N and satisfies (4).
One thus gets a projective representation A 7→ UN (A) of the subgroup of “quan-
tizable” elements in the finite modular group SL(2,Z/2NZ). It turns out that
it can be made into an ordinary representation if we further restrict to the sub-
group Γ(4, 2N) given by g = I mod 4 for N even, g = I mod 2 for N odd. Thus
for A,B ∈ Γ(4, 2N) we have UN (AB) = UN (A)UN (B). Consequently, if AB = BA
mod 2N then their propagators commute. This is the basic principle that we use
to form the Hecke operators (see [6] for another application of this idea).

Remark 4.1. The congruence AB = BA mod 2N is much less restrictive than the
equation AB = BA. The latter has as its solutions in SL(2,Z) essentially only ±
powers of A (at least for A “primitive”).

4.2. Equidistribution of Hecke eigenfunctions

Since the Hecke operators commute with UN (A), they act on its eigenspaces, and
since they commute with each other there is a basis of HN consisting of joint
eigenfunctions of UN (A) and the Hecke operators, whose elements we call Hecke
eigenfunctions. We show

Theorem 4.2. ([8]) Let A ∈ SL(2,Z) be hyperbolic, A = I mod 4, and f ∈
C∞(T2) a smooth observable. Then for all normalized Hecke eigenfunctions φ ∈
HN of UN (A), the expectation values 〈OpN (f)φ, φ〉 converge to the phase-space
average of f as N →∞. Moreover, for all ε > 0 we have

〈OpN (f)φ, φ〉 =
∫

T2
f(x)dx+Of,ε(N−1/4+ε), as N →∞ .

The exponent of 1/4 in our theorem is certainly not optimal, and more likely
the correct exponent is 1/2. What we in fact show is that if φi, i = 1, . . . , N is an
orthonormal basis of HN consisting of Hecke eigenfunctions then

N∑
i=1

∣∣∣∣〈OpN (f)φi, φi〉 −
∫

T2
f(x)dx

∣∣∣∣4 ¿ N−1+ε (5)

(compare theorem 3.2). We deduce theorem 4.2 from (5) by taking an orthonormal
basis with φ1 = φ and omitting all but one term on the LHS. If all terms on the
LHS of (5) are of roughly the same size then we would expect this to give the
exponent 1/2.

Remark 4.3. The Hecke eigenspaces have small dimension (at most O(log logN)),
while the eigenspaces of UN (A) may have large dimension. In fact, the mean de-
generacy is N/ ord(A,N) where ord(A,N) the order (or period) of A modulo N ,
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that is the least integer k ≥ 1 for which Ak = I mod N . It can be shown that the
mean degeneracy can be as large as N/ logN for arbitrarily large N .

4.3. Arbitrary eigenfunctions

Since not all eigenfunctions of UN (A) are Hecke eigenfunctions, we have not com-
pletely solved problem 3.3 —whether all eigenfunctions become equidistributed,
that is if we have quantum unique ergodicity. In [9], we show equidistribution of
all eigenfunctions of UN (A) for almost all integers N :

Theorem 4.4. Let A ∈ SL(2,Z) be hyperbolic. There is a set of integers N ∗ of
density one so that all eigenfunctions of UN (A) are equidistributed, as N → ∞,
N ∈ N ∗.

Previously, the only result giving an infinite set of N for which all eigenfunc-
tions of UN (A) become equidistributed is by Degli-Esposti, Graffi and Isola [4],
which conditional on the Generalized Riemann Hypothesis give an infinite set of
primes.

A key step in the proof of theorem 4.4 is an estimate for the fourth power
moment of the expectation values, involving the order of A modulo N :

Theorem 4.5. ([9]) There is a sequence of integers of density one so that for all
observables f ∈ C∞(T2) and any orthonormal basis {ψj}Nj=1 of HN consisting of
eigenfunctions of UN (A) we have:

N∑
j=1

|〈OpN (f)ψj , ψj〉 −
∫

T2
f |4 ¿ N(logN)14

ord(A,N)2
.

Thus for any subsequence of integers N such that

ord(A,N)
N1/2(logN)7

→∞ (6)

(and satisfying an additional “genericity” assumption) we find that for all eigen-
functions of UN (A), 〈OpN (f)ψ,ψ〉 →

∫
T2 f as N →∞.

4.4. Controlling the order of A modulo N

Theorem 4.5 reduces the problem of quantum ergodicity to that of finding se-
quences of integers satisfying (6), a problem closely related to the classical Gauss-
Artin problem of showing that any integer, other than ±1 or a perfect square, is
a primitive root modulo infinitely many primes; see [11] for a survey. We show

Theorem 4.6. Let A ∈ SL(2,Z) be hyperbolic. Then there exist δ > 0 and a density
one subset S of the integers such that for all N ∈ S we have

ord(A,N)À N1/2 exp((logN)δ) .

Combining theorem 4.6 with theorem 4.5 gives theorem 4.4.
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Remark 4.7. We note that condition (6) fails infinitely often. In fact one can
show that there are arbitrarily large integers so that ord(A,N) is smaller than
const. N/ logN .

Appendix A. Proof of Quantum Ergodicity

We review the proof of Quantum Ergodicity (theorem 3.1) as given in [15], that
is we show that given f ∈ C∞(T2), for any orthonormal basis ψj , j = 1, . . . , N of
of HN consisting of eigenfunctions of UN (A), we have

1
N

N∑
j=1

∣∣∣∣〈OpN (f)ψj , ψj〉 −
∫

T2
f

∣∣∣∣2 → 0 . (7)

We do this to emphasize the difference between it and our results (theorems 4.2,
(5), 4.4 and 4.5), which while far stronger than what is given by (7), requires
methods that are special to the arithmetic structure of the cat map. In contrast,
the argument below uses nothing more than Egorov’s theorem and the ergodicity
of the map. Without loss of generality, we will in the sequel assume that

∫
T2 f = 0.

We first recall some basic properties of the quantized observables OpN (f):
1. The adjoint is given by

OpN (f)∗ = OpN (f̄) . (8)

2. The composition of operators satisfies:

OpN (f) OpN (g) = OpN (fg) +Of,g(
1
N

) (9)

for f, g ∈ C∞(T2).
We fix T ≥ 1. By Egorov’s theorem (3), as N →∞ we have

1
T

T∑
j=1

(UN (A)t)∗OpN (f)UN (A)t ∼ 1
T

T∑
t=1

OpN (f ◦At) = OpN (fT )

where fT := 1
T

∑T
t=1 f ◦ At is the ergodic average of f . Moreover, if ψj is an

eigenfunction: UN (A)ψj = eiλjψj , then

〈OpN (f)ψj , ψj〉 = 〈OpN (f)UN (A)ψj , UN (A)ψj〉
= 〈UN (A)∗OpN (f)UN (A)ψj , ψj〉
∼ 〈OpN (f ◦A)ψj , ψj〉 .

Consequently, if ψj is an eigenfunction then for all T ≥ 0,

〈OpN (f)ψj , ψj〉 = 〈OpN (fT )ψj , ψj〉 .
Now we look at the sum (recall

∫
f = 0)

S2(f,N) :=
1
N

N∑
j=1

|〈OpN (f)ψj , ψj〉|2 .
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We will show that limN→∞ S2(f,N) = 0.
By Egorov (3), we have S2(f,N) ∼ S2(fT , N) as N →∞, for all T ≥ 1. By

Cauchy-Schwartz, we have

|〈OpN (fT )ψj , ψj〉|2 ≤ ‖OpN (fT )ψj‖2‖ψj‖2 = 〈OpN (fT )∗OpN (fT )ψj , ψj〉 .
Moreover, by (8), (9),

OpN (fT )∗OpN (fT ) = OpN (|fT |2) +Of,T (
1
N

)

and so

S2(f,N) . 1
N

N∑
j=1

〈OpN (|fT |2)ψj , ψj〉+Of,T (
1
N

) .

By (1) we thus find that for fixed T ≥ 1,

lim supS2(f,N) ≤
∫

T2
|fT |2 .

So far we have used nothing about the cat map except Egorov’s theorem.
Now we use the fact that it is ergodic, in particular the mean ergodic theorem
holds: For F ∈ L2(T2), the ergodic averages FT converge to

∫
T2 F in L2. Thus we

have
∫
T2 |fT |2 → 0 as T →∞. Therefore given ε > 0, we can find T = T (f, ε) for

which
∫
T2 |fT |2 < ε and consequently

lim supS2(f,N) < ε

which shows that S2(f,N)→ 0 as required.
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