
The Dynamics of Algebraic Zd-Actions

Klaus Schmidt

Abstract. An algebraic Zd-action is a Zd-action by automorphisms of a com-
pact abelian group. By Pontryagin duality, there is a one-to-one correspon-
dence between algebraic Zd-actions and modules over the ring Rd of Laurent
polynomials with integer coefficients in d commuting variables.

This correspondence establishes a close connection between algebraic
and arithmetical properties of Rd-modules and dynamical properties of alge-
braic Zd-actions, which is the subject of this article.

1. Algebraic Zd-Actions and Their Dual Modules

An algebraic Zd-action is an action α : n �→ αn of Zd, d ≥ 1, by continuous
automorphisms of a compact abelian group X with Borel field BX and normal-
ized Haar measure λX . Two algebraic Zd-actions α and β on compact abelian
groups X and Y are algebraically conjugate if there exists a continuous group
isomorphism φ : X −→ Y with

φ · αn = βn · φ (1)

for every n ∈ Zd. If the map φ in (1) is a homeomorphism then α and β are
topologically conjugate. Finally we call α and β measurably conjugate if there exists
a measure space isomorphism φ : (X,BX , λX) → (Y,BY , λY ) satisfying (1) λX -a.e.
for every n ∈ Zd.

In [4] and [13], Pontryagin duality was shown to imply a one-to-one correspon-
dence between algebraic Zd-actions (up to algebraic conjugacy) and modules over
the ring of Laurent polynomials Rd = Z[u±1

1 , . . . , u±1
d ] with integral coefficients in

the commuting variables u1, . . . , ud (up to module isomorphism).
In order to explain this correspondence we write a typical element f ∈ Rd as

f =
∑

m∈Zd

cf (m)um (2)

with um = um1
1 · · ·umd

d and cf (m) ∈ Z for every m = (m1, . . . ,md) ∈ Zd, where
cf (m) = 0 for all but finitely many m. If α is an algebraic Zd-action on a compact
abelian group X, then the additively-written dual group M = X̂ is a module over
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the ring Rd with operation

f · a =
∑

m∈Zd

cf (m)α̂m(a) (3)

for f ∈ Rd and a ∈M , where α̂m is the automorphism of M = X̂ dual to αm. In
particular,

um · a = α̂m(a) (4)

for m ∈ Zd and a ∈ M . Conversely, any Rd-module M determines an algebraic
Zd-action αM on the compact abelian group XM = M̂ with αm

M dual to multipli-
cation by um on M for every m ∈ Zd (cf. (4)). Note that XM is metrizable if and
only if its dual module M is countable.

Examples 1.1. (1) Let M = Rd. Since Rd is isomorphic to the direct
sum

∑
Zd Z of copies of Z, indexed by Zd, the dual group X = R̂d is

isomorphic to the Cartesian product TZ
d

of copies of T = R/Z. We write
a typical element x ∈ TZ

d

as x = (xn) with xn ∈ T for every n ∈ Zd

and choose the following identification of XRd
= R̂d and TZ

d

: for every
x ∈ TZ

d

and f ∈ Rd,

〈x, f〉 = e2πi
∑

n∈Zd cf (n)xn , (5)

where f is given by (2). Under this identification the Zd-action αRd
on

XRd
= TZ

d

becomes the shift-action

(αm
Rd
x)n = xm+n . (6)

(2) Let I ⊂ Rd be an ideal and M = Rd/I. Since M is a quotient of the
additive group Rd by an α̂Rd

-invariant subgroup (i.e. by a submodule),
the dual group XM = M̂ is the closed αRd

-invariant subgroup

XRd/I = {x ∈ XRd
= TZ

d

: 〈x, f〉 = 1 for every f ∈ I}

=
{
x ∈ TZ

d

:
∑
n∈Zd

cf (n)xm+n = 0 (mod 1)
for every f ∈ I and m ∈ Zd

}
,

(7)

and αRd/I is the restriction of the shift-action αRd
in (6) to the shift-

invariant subgroup XRd/I ⊂ TZ
d

.
Conversely, let X ⊂ TZ

d

= R̂d be a closed subgroup, and let

X⊥ = {f ∈ Rd : 〈x, f〉 = 1 for every x ∈ X}

be the annihilator of X in R̂d. Then X is shift-invariant if and only if
X⊥ is an ideal in Rd.
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The correspondence between algebraic Zd-actions α = αM and Rd-mod-
ules M yields a correspondence (or ‘dictionary’) between dynamical properties of
αM and algebraic properties of the module M (cf. [16]). It turns out that some
of the principal dynamical properties of αM can be expressed entirely in terms of
the prime ideals associated with the module M , where a prime ideal p ⊂ Rd is
associated with M if

p = {f ∈ Rd : f · a = 0M}
for some a ∈ M . The set of all prime ideals associated with M is denoted by
asc(M); if M is Noetherian, then asc(M) is finite.

Figure 1 provides a small illustration of this correspondence; all the relevant
results can be found in [16]. In the third column we assume that the Rd-mod-
ule M = X̂ defining α is of the form Rd/p, where p ⊂ Rd is a prime ideal, and
describe the algebraic condition on p equivalent to the dynamical condition on
α = αRd/p appearing in the second column. In the fourth column we consider a
countable Rd-module M and state the algebraic property of M corresponding to
the property of α = αM in the second column.

Property of α α = αRd/p α = αM

(1) α is expansive VC(p) ∩ S
d = ∅ M is Noetherian and αRd/p is

expansive for every p ∈ asc(M)

(2) αn is ergodic for

some n ∈ Z
d

ukn − 1 /∈⊂ p for every k ≥ 1 αn
Rd/p

is ergodic for every

p ∈ asc(M)

(3) α is ergodic {ukn − 1 : n ∈ Z
d} 
⊂ p for every

k ≥ 1
αRd/p is ergodic for every

p ∈ asc(M)

(4) α is mixing un − 1 /∈ p for every non-zero

n ∈ Z
d

αRd/p is mixing for every

p ∈ asc(M)

(5) α is mixing of every
order

Either p is equal to pRd for
some rational prime p, or
p ∩ Z = {0} and αRd/p is mixing

For every p ∈ asc(M), αRd/p is

mixing of every order

(6) h(α) > 0 p is principal and αRd/p is

mixing

h(αRd/p) > 0 for at least one

p ∈ asc(M)

(7) h(α) < ∞ p 
= {0} If M is Noetherian: p 
= {0} for
every p ∈ asc(M)

(8) α has completely
positive entropy (or
is Bernoulli)

h(αRd/p) > 0 h(αRd/p) > 0 for every

p ∈ asc(M)

Figure 1: A Pocket Dictionary

The notation in figure 1 is as follows. In (1),

VC(p) = {c ∈ (C � {0})d : f(c) = 0 for every f ∈ p}
is the variety of p, and S = {c ∈ C : |c| = 1}. From (2)–(4) it is clear that α is
ergodic if and only if αn is ergodic for some n ∈ Zd, and that α is mixing if and
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only if αn is ergodic for every nonzero n ∈ Zd. In (5), α is mixing of order r ≥ 2 if

lim
n1,...,nr∈Z

d

‖ni−nj‖→∞ for 1≤i<j≤d

λX

( r⋂
i=1

α−niBi

)
=

r∏
i=1

λX(Bi)

for all Borel sets Bi ⊂ X, i = 1, . . . , r. In (6)–(8), h(α) stands for the topological
entropy of α (which coincides with the metric entropy hλX

(α)). In [8] and [16]
there is an explicit entropy formula for algebraic Zd-actions. In the special case
where α = αRd/p for some prime ideal p ⊂ Rd this formula reduces to

h(α) =

{
| log M(f)| if p = (f) = fRd is principal ,
0 otherwise ,

where

M(f) =

{
exp

(∫
Sd log |f(s)| ds

)
if f = 0 ,

0 if f = 0 ,

is the Mahler measure of the polynomial f . Here ds denotes integration with
respect to the normalized Haar measure on the multiplicative subgroup Sd ⊂ Cd.

For background, details and proofs of these and further results we refer to
[16] and the original articles cited there. The remainder of this note is devoted
to two particular problems: the higher order mixing behaviour and the conjugacy
problem for algebraic Zd-actions.

2. Higher Order Mixing Properties of Algebraic Zd-Actions

In this section we describe the connection between higher order mixing properties
of algebraic Zd-actions and certain diophantine results on additive relations in
fields due to Mahler ([9]), Masser ([10, 5]) and Schlickewei, W. Schmidt and van
der Poorten ([1, 17]). In the discussion below we shall use the following elementary
consequence of Pontryagin duality:

Lemma 2.1. Let α be an algebraic Zd-action on a compact abelian group X with
dual module M . Then X is connected if and only if no prime ideal p ∈ asc(M)
contains a nonzero constant, and X is zero-dimensional if and only if every p ∈
asc(M) contains a nonzero constant.

Let p ⊂ Rd be a prime ideal, and let α = αRd/p be the algebraic Zd-action
with dual module M = Rd/p = X̂. If α is not mixing, then there exist Borel sets
B1, B2 ⊂ X and a sequence (nk, k ≥ 1) in Zd with limk→∞ nk = ∞ and

lim
k→∞

λX(B1 ∩ α−nkB2) = c

for some c = λX(B1)λX(B2). Fourier expansion implies that the latter condition
is equivalent to the existence of nonzero elements a1, a2 ∈M such that

a1 + unk · a2 = 0
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for infinitely many k ≥ 1. In particular,

(um − 1) · a2 = 0 (8)

for some nonzero m ∈ Zd (cf. figure 1(4)). A very similar argument shows that α
is not mixing of order r ≥ 2 if and only if there exist elements a1, . . . , ar in M ,
not all equal to zero, and a sequence ((n(1)

k , . . . ,n(r)
k ), k ≥ 1) in (Zd)r such that

limk→∞ ‖n(i)
k − n(j)

k ‖ = ∞ for all i, j with 1 ≤ i < j ≤ r, and with

un
(1)
k · a1 + · · · + un

(r)
k · ar = 0 (9)

for every k ≥ 1.
Below we shall see that higher order mixing of an algebraic Zd-action α

on a compact abelian group X can break down in a particularly regular way
(cf. examples 2.7 and 2.10). We call a nonempty finite subset S ⊂ Zd mixing
under α if

lim
k→∞

λX

( ⋂
n∈S

α−knBn

)
=

∏
n∈S

λX(Bn) (10)

for all Borel sets Bn ⊂ X, n ∈ S, and nonmixing otherwise. If α is r-mixing, then
every set S ⊂ Zd with cardinality |S| = r is obviously mixing. The validity of the
reverse implication for algebraic Zd-actions is an open problem (cf. problem 2.11
and conjecture 2.12).

As in (10) one sees that a nonempty finite set S ⊂ Zd is nonmixing if and
only if there exist elements an ∈M , n ∈ S, not all equal to zero, such that∑

n∈S

ukn · an = 0 (11)

for infinitely many k ≥ 1.
The higher order mixing behaviour of an algebraic Zd-action α with dual

module M is again completely determined by that of the actions αRd/p with p ∈
asc(M).

Theorem 2.2. Let α be an algebraic Zd-action on a compact abelian group X with
dual module M = X̂.

(1) For every r ≥ 2, the following conditions are equivalent:
(a) α is r-mixing,
(b) αRd/p is r-mixing for every p ∈ asc(M).

(2) For every nonempty finite set S ⊂ Zd, the following conditions are equiv-
alent:
(a) S is α-mixing,
(b) S is αRd/p-mixing for every p ∈ asc(M).

In order to exhibit the connection between mixing properties and additive
relations in fields we begin with a theorem by Mahler.
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Theorem 2.3. ([9]) Let K be a field of characteristic 0, r ≥ 2, and let x1, . . . , xr

be nonzero elements of K. If we can find nonzero elements c1, . . . , cr such that the
equation

r∑
i=1

cix
k
i = 0

has infinitely many solutions k ≥ 0, then there exist integers s ≥ 1 and i, j with
1 ≤ i < j ≤ r such that xs

i = xs
j .

We denote by K the field of fractions of the integral domain Rd/p, choose a
finite set S = {n1, . . . ,nr} ⊂ Zd with r ≥ 2, and set xi = uni for i = 1, . . . , r. In
view of figure 1(4)–(5), lemma 2.1, (8), (11) and theorem 2.2, theorem 2.3 implies
(and is, in fact, equivalent to) the following statement:

Theorem 2.4. ([14]) Let α be a mixing algebraic Zd-action on a compact connected
abelian group X. Then every nonempty finite subset S ⊂ Zd is mixing.

If an algebraic Zd-action α is not mixing of every order, then there exists a
smallest integer r ≥ 2 such that α is not r-mixing. As a consequence of lemma 2.1
and (9) one obtains the equivalence of the theorems 2.5 and 2.6 below.

Theorem 2.5. ([1, 17]) Let K be a field of characteristic 0 and G a finitely generated
multiplicative subgroup of K× = K � {0}. If r ≥ 2 and (c1, . . . , cr) ∈ (K×)r, then
the equation

r∑
i=1

cixi = 0 (12)

has only finitely many solutions (x1, . . . , xr) ∈ Gr such that no sub-sum of (12)
vanishes.

Theorem 2.6. ([15]) Let α be a mixing algebraic Zd-action on a compact connected
abelian group X. Then α is mixing of every order.

The ‘absolute’ version of the S-unit theorem in [1] contains a bound on the
number of solutions of (12) without vanishing subsums which is expressed purely
in terms of the integer r and the rank of the group G (in our setting: the order of
mixing and the rank of the group Zd). This bound could be used, for example, to
obtain quite remarkable uniform statements on the speed of multiple mixing for
all irreducible and mixing algebraic Zd-actions (cf. definition 3.1).

For algebraic Zd-actions on disconnected groups the situation is considerably
more complicated due to the possible presence of nonmixing sets (cf. (10)).

Example 2.7. ([7]) Let p = (2, 1+u1+u2) = 2R2+(1+u1+u2)R2,M = R2/p, and
let α = αM be the algebraic Z2-action on X = XM = M̂ defined in example 1.1(2).
Then α is mixing by figure 1(4), but not three-mixing.

Indeed, (1 + u1 + u2)2
n · a = 0 for every n ≥ 0 and a ∈ M . For a =

1 + (2, 1 +u1 +u2) ∈M our identification of M with X̂ in example 1.1(2) implies



The Dynamics of Algebraic Zd-Actions 7

that x(0,0) + x(2n,0) + x(0,2n) = 0 (mod 1) for every x ∈ X and n ≥ 0. For B =
{x ∈ X : x(0,0) = 0} it follows that

B ∩ α−(2n,0)(B) ∩ α−(0,2n)(B) = B ∩ α−(2n,0)(B) ,

and hence that

λX(B ∩ α−(2n,0)(B) ∩ α−(0,2n)(B)) = λX(B ∩ α−(2n,0)(B)) = 1/4

for every n ≥ 0. If α were three-mixing, we would have that

lim
n→∞

λX(B ∩ α−(2n,0)(B) ∩ α−(0,2n)(B)) = λX(B)3 = 1/8 .

By comparing this with (10) we see that the set S = {(0, 0), (1, 0), (0, 1)} ⊂ Z2 is
nonmixing.

A mixing algebraic Zd-action α on a disconnected compact abelian group X
has nonmixing sets if and only if it is not Bernoulli (cf. figure 1(8), [5] and [16,
Section 27]). In particular, if α is an ergodic algebraic Zd-action on a compact zero-
dimensional abelian group X with zero entropy, then α has nonmixing sets. The
description of the nonmixing sets of such an action α is facilitated by a Theorem
of Masser ([5, 10]), which should be seen as an analogue of theorem 2.3 in positive
characteristic.

Theorem 2.8. Let K be an algebraically closed field of characteristic p > 0, r ≥ 2,
and let (x1, . . . , xr) ∈ (K×)r. The following conditions are equivalent:

(1) There exists an element (c1, . . . , cr) ∈ (K×)r such that
r∑

i=1

cix
k
i = 0

for infinitely many k ≥ 0;
(2) There exists a rational number s > 0 such that the set {xs

1, . . . , x
s
r}

is linearly dependent over the algebraic closure F̄p ⊂ K of the prime
field Fp = Z/pZ.

Corollary 2.9. Let p ⊂ Rd be a prime ideal containing a rational prime p > 1, and
let α = αRd/p be the algebraic Zd-action on X = XRd/p defined in example 1.1(2).
We denote by K = Q(R2/p) ⊃ R2/p the quotient field of Rd/p, write K̄ for its
algebraic closure, and set xn = un + p ∈ Rd/p ⊂ K ⊂ K̄ for every n ∈ Zd. If
S ⊂ Zd is a nonempty finite set, then the following conditions are equivalent:

(1) S is not α-mixing;
(2) There exists a rational number s > 0 such that the set {xs

1, . . . , x
s
r} ⊂ K̄

is linearly dependent over F̄p ⊂ K.

Examples 2.10. ([5])
(1) In the notation of examples 2.7 and 1.1(2) we set f = 1 + u1 + u2 +

u2
1 + u1u2 + u2

2 ∈ R2 and put p = (2, f) ⊂ R2, M = R2/p, α = αM
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and X = XM = M̂ . We claim that the set S = {(0, 0), (1, 0), (0, 1)} is
nonmixing.

In order to verify this we define {xn : n ∈ Z2} ⊂ K = Q(R2/p) as
in corollary 2.9 and choose ω ∈ F̄2 ⊂ K̄ with 1 + ω + ω2 = 0. Since

f = (1 + ωu1 + ω2u2)(1 + ω2u1 + ωu2) ,

we obtain that x(0,0) + ωx(1,0) + ω2x(0,1) = 0, so that S is nonmixing by
corollary 2.9.

Since the element ω′ = 1+u1
u1+u2

+p ∈ K satisfies that 1+ω′+ω′2 = 0,
we can recover (11) from the fact that

(u1 + u2) + (1 + u2)u3k
1 + (1 + u1)u3k

2 ∈ p

for every k ≥ 0.
(2) Let g = 1 + u1 + u2 + u2

1 + u1u2 + u2
2 + u3

1 + u2
1u2 + u1u

2
2 + u3

2 and
q = (2, g) ⊂ R2, M = R2/q, α = αM and X = XM = M̂ . We claim that
the set S = {(0, 0), (1, 0), (0, 1)} is again nonmixing.

In example (1) above we used the fact that f is irreducible over F2,
but not over F̄2. Here the polynomial g is irreducible over F̄2; however,
the polynomial g(u3

1, u
3
2) turns out to be divisible by 1 + u1 + u2, which

can be translated into the statement that the set {x1/3
(0,0), x

1/3
(1,0), x

1/3
(0,1)} is

linearly dependent over F̄2.

The main open question concerning higher order mixing is the following:

Problem 2.11. Let α be an algebraic Zd-action on a compact abelian group X, and
let r ≥ 2. If every subset S ⊂ Zd of cardinality r is mixing, is α r-mixing?

A positive answer to problem 2.11 would be equivalent to the following ana-
logue of theorem 2.5 in characteristic p > 0:

Conjecture 2.12. Let K be an algebraically closed field of characteristic p > 0, G ⊂
K× = K � {0} a finitely generated multiplicative group, r ≥ 2, and (c1, . . . , cr) ∈
(K×)r. Let us call a solution (x1, . . . , xr) ∈ Gr of the equation

r∑
i=1

cixi = 0 (13)

regular if there exists a rational number s > 0 such that {xs
1, . . . , x

s
r} is linearly

dependent over F̄p ⊂ K, and irregular otherwise.
Then the equation (13) has only finitely many irregular solutions.

3. Conjugacy of Algebraic Zd-Actions

Every algebraic Zd-action α with completely positive entropy is measurably con-
jugate to a Bernoulli shift (cf. figure 1(8)). Since entropy is a complete invariant
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for measurable conjugacy of Bernoulli shifts by [11], α is measurably conjugate to
the Zd-action

αA : n �→ αAn

for every A ∈ GL(d,Z), since the entropies of all these actions coincide. In general,
however, α and αA are not topologically conjugate.

Every algebraic Zd-action α with positive entropy has Bernoulli factors by [8]
and [12], and two such actions may again be measurably conjugate without being
algebraically or topologically conjugate. For zero entropy actions, however, there
is some evidence for a very strong form of isomorphism rigidity. Let us begin with
a special case.

Definition 3.1. An algebraic Zd-action α on a compact abelian group X is irre-
ducible if every closed, α-invariant subgroup Y � X is finite.

Irreducibility is an extremely strong hypothesis: if α is mixing it implies that
αn is Bernoulli with finite entropy for every nonzero n ∈ Zd. If β is a second
irreducible and mixing algebraic Zd-action on a compact abelian group Y such
that h(αn) = h(βn) for every n ∈ Zd, then αn is measurably conjugate to βn

for every n ∈ Zd. However, if d > 1, then the actions α and β are generally
nonconjugate.

Theorem 3.2. ([2, 6]) Let d > 1, and let α and β be irreducible and mixing algebraic
Zd-actions on compact abelian groups X and Y , respectively. If φ : X −→ Y is a
measurable conjugacy of α and β, then φ is λX -a.e. equal to an affine map (a
map φ : X −→ Y affine if it is of the form φ(x) = ψ(x) + y for every x ∈ X,
where ψ : X −→ Y is a continuous group isomorphism and y ∈ Y ). In particular,
measurable conjugacy implies algebraic conjugacy.

If the irreducible actions α and β in theorem 3.2 are of the form α = αRd/p

and β = αRd/q for some prime ideals p, q ⊂ Rd, then measurable conjugacy implies
that p = q. This allows the construction of algebraic Zd-actions with very similar
properties which are nevertheless measurably nonconjugate.

Example 3.3. Consider the algebraic Z2-actions α, α′, α′′ on X = T3 generated
by the matrices

A =
(

0 1 0
0 0 1

−1 8 2

)
and B =

(
2 1 0
0 2 1

−1 8 4

)
,

A′ =
(−1 2 0

−1 1 1
−6 9 2

)
and B′ =

(
1 2 0

−1 3 1
−6 9 4

)
,

A′′ =
( −3 4 0

−3 3 1
−10 11 2

)
and B′′ =

( −1 4 0
−3 5 1
−10 11 4

)
,

respectively. In [2] it was shown that these actions are not measurably conjugate,
although it appears difficult to distinguish them with the usual invariants of mea-
surable conjugacy.
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Example 3.4. (Nonconjugacy of Z2-actions with positive entropy) Let

f1 = 1 + u1 + u2
1 + u1u2 + u2

2 ,

f2 = 1 + u2
1 + u2 + u1u2 + u2

2 ,

f3 = 1 + u1 + u2
1 + u2 + u2

2 ,

f4 = 1 + u1 + u2
1 + u2 + u1u2 + u2

2 ,

in R2, put pi = (2, fi) ⊂ R2, Ji = (4, fi) ⊂ R2, Mi = R2/Ji, and define the
algebraic Z2-actions αi = αR2/Ji

on Xi = XR2/Ji
as in example 1.1(2). Then

h(αR2/q) = log 2 and h(αR2/pi
) = 0, and [8, Theorem 6.5] implies that the Pinsker

algebra π(αi) of αi is the sigma-algebra BXi/Yi
of Yi-invariant Borel sets in Xi,

where Yi = N⊥
i and

Ni = {a ∈Mi : pi · a = 0} = 2Mi
∼= R2/pi .

In other words, the Z2-action βi induced by αi on the Pinsker algebra π(αi) is
measurably conjugate to αR2/pi

.
Since any measurable conjugacy of αi and αj would map π(αi) to π(αj) and

induce a conjugacy of βi and βj, theorem 3.2 implies that αi and αj are measurably
nonconjugate for 1 ≤ i < j ≤ 4.

The basic idea of the proof of theorem 3.2 in [2] and [5] was suggested by
Thouvenot: if φ : X −→ Y is a measurable conjugacy of α and β, then there
exists a unique probability measure ν on the graph Γ(φ) = {(x, φ(x)) : x ∈ X} ⊂
X × Y which projects to λX and λY , respectively, and which is invariant under
the product-action α × β : n �→ αn × βn of Zd on X × Y . Since α × β, acting on
(X × Y, ν), is measurably conjugate both to α and to β, the measure ν is mixing
and has positive entropy under αn × βn for every nonzero n ∈ Zd. The proof of
theorem 3.2 consists of showing that ν is a translate of the Haar measure of some
closed (α×β)-invariant subgroup of X×Y (this obviously implies that φ is affine).
If X and Y are connected, the relevant property of ν follows from [3], and if X
and Y are zero-dimensional, the nonmixing sets of ν provide the necessary tool in
[6].

Since there are considerable difficulties in extending either of these techniques
to general algebraic Zd-actions with zero entropy, the following conjecture may
seem a little premature, but I would still like to risk stating it:

Conjecture 3.5. Let d > 1, and let α and β be mixing algebraic Zd-actions on
compact abelian groups X and Y , respectively. If h(α) = 0, and if φ : X −→ Y is
a measurable conjugacy of α and β, then φ is λX -a.e. equal to an affine map. In
particular, measurable conjugacy implies algebraic conjugacy.
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Berlin-Boston, 1995.

[17] A. J. van der Poorten and H. P. Schlickewei, Additive relations in fields, J. Austral.
Math. Soc. Ser. A 51 (1991), 154–170.

Mathematics Institute,
University of Vienna,
Strudlhofgasse 4,
A-1090 Vienna, Austria
E-mail address: klaus.schmidt@univie.ac.at

Erwin Schrödinger Institute for Mathematical Physics,
Boltzmanngasse 9,
A-1090 Vienna, Austria


