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Abstract. Conformal blocks form a system of vector bundles over the moduli
space of complex curves with marked points. We discuss various aspects of
these bundles. In particular, we present conjectures about the dimensions of
sub-bundles. They imply a Verlinde formula for non-simple connected groups
like PGL(n, C).

We then explain how conformal blocks enter in the construction of con-
formal field theories on surfaces with boundaries. Such surfaces naturally ap-
pear in the conformal field theory description of string propagation in the
background of a D-brane. In this context, the sub-bundle structure of the
conformal blocks controls the structure of symmetry breaking boundary con-
ditions.

1. Introduction

Two-dimensional conformal field theory plays a fundamental role in the theory of
two-dimensional critical systems of classical statistical mechanics, in quasi one-di-
mensional condensed matter physics and in string theory. Moreover, this field of
research has repeatedly contributed substantially to the interaction between math-
ematics and physics. The study of defects in systems of condensed matter physics,
of percolation probabilities, and of (open) string perturbation theory in the back-
ground of certain string solitons, the so-called D-branes, has recently driven the-
oretical physicists to analyze conformal field theories on surfaces that may have
boundaries and / or can be non-orientable.

In the present contribution, we would like to describe some mathematical as-
pects of this recent development and state some conjectures about the sub-bundle
structure of the bundles of conformal blocks. In physics, this structure enters in
the description of symmetry breaking boundary conditions. In the special case of
WZW models our conjectures imply a Verlinde formula for non-simply connected
groups like PGL(n, C).

We are grateful to the organizers of the third European Congress of Mathe-
matics for the invitation to present these results.
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2. Chiral and Full Conformal Field Theory

The investigation of boundary conditions makes it clear that it is indispensable
to distinguish carefully between chiral conformal field theory, CCFT, and full
conformal field theory, CFT. Although a CFT is constructed from a CCFT, both
types of theories are rather different in nature. Mathematicians typically have in
mind chiral conformal field theory, CCFT, when they use the term conformal field
theory; one goal of the present note is to draw their attention to this difference.
In physics, both CCFT and CFT have found applications: CFT in string theory
and the study of two-dimensional critical systems, CCFT in the description of
quantum Hall fluids (for a recent review see [14]).

A CCFT is defined on a closed, compact complex curve X̂; a CFT, in contrast,
is defined on a real two-dimensional manifold X that is endowed with a conformal
structure, i.e. a class of metrics modulo local rescalings. While X̂ is oriented and
has empty boundary, X is allowed to have a boundary and/or to be non-orientable.

To any such X, one finds a complex curve X̂, the double, together with an
anti-conformal involution σ of X̂ such that X is isomorphic to the quotient of X̂
by σ. (When X has empty boundary, X̂ is just the total space of the orientation
bundle of X.) X̂ is not necessarily connected; also, σ does not necessarily act
freely: fixed points of σ correspond to boundary points of X̂.

A double can also be constructed when X has dimension higher than two,
and it will be an oriented conformal manifold. However, only in two dimensions a
conformal structure plus an orientation are equivalent to a holomorphic structure;
in higher dimensions, additional integrability constraints have to be fulfilled. This
simple fact implies that specifically in two dimensions the powerful tools of the
theory of holomorphic functions are at one’s disposal.

We will start with a discussion of chiral conformal field theory, exhibiting in
particular some aspects of the bundles of conformal blocks. For instance, we will
explain conjectures about the sub-bundle structure of these bundles. Full CFT will
be discussed in section 4. The general idea is to relate full CFT on X to chiral
conformal field theory on the double X̂.

3. Chiral Conformal Field Theory

3.1. Conformal vertex operator algebras

The definition of a chiral conformal field theory starts with a conformal vertex
operator algebra (VOA) (HΩ, vΩ, Y, vvir). Here HΩ is a complex vector space, vΩ

and vvir are vectors in HΩ, and

Y : HΩ → End(HΩ)[[z, z−1]] (1)

is a map into the space of Laurent series in a formal variable z with values in
End(HΩ), called a field-state correspondence. One imposes a weakened version of
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commutativity, called locality : for each pair of vectors v, w∈HΩ, there is an integer
N=N(v, w) such that

(z − w)NY (v, z)Y (w, b) = (z − w)NY (w, b)Y (v, z) (2)

in the sense of formal power series. For precise definitions and an introduction to
VOAs, see e.g. [24].

One way to think of the field-state correspondence is as a family of products
on the vector space HΩ that depend on the formal variable z:

v ?z w = Y (v, z)w . (3)

It is remarkable that “commutativity” (2) implies a kind of associativity: one has

a ?z (b ?w c) = (a ?z−w b) ?w c . (4)

for all a, b, c∈HΩ. The vector Ω is called the vacuum vector. Under field-state cor-
respondence, it is mapped to the identity map, Y (Ω, z) = id. The Virasoro vector
vvir has the property that the modes Ln in the expansion of the corresponding
field, the stress energy tensor,

Y (vvir, z) =
∑
n∈Z

Ln z−n−2 (5)

span an infinite-dimensional Lie algebra that is isomorphic to the Virasoro algebra.
At first sight a VOA might seem a rather ad hoc kind of algebraic structure.

We would like to stress, however, that it is a very natural concept indeed. Apart
from their motivation from physics (for a review see [24]), VOAs can be naturally
characterized in a category theoretic framework as singular commutative rings in
certain categories [6]. Examples of VOAs can be constructed from various infi-
nite-dimensional Lie algebras like the Heisenberg algebra, the Virasoro algebra or
untwisted affine Lie algebras; the latter case gives rise to the so-called WZW mod-
els. Moreover, the chiral de Rham complex [25] allows to associate to any complex
variety a VOA as an invariant.

For every algebraic structure, it is natural to investigate its representation
theory. Thus denote by I the set of equivalence classes of irreducible representa-
tions of a given VOA, and Hµ a representative for µ∈I. Elements of I will also be
called labels. Any irreducible representation carries in particular a representation
of the Virasoro algebra. Usually, one requires that L0 acts by semi-simple oper-
ators.1 The axioms of a VOA then imply that the spectrum of L0 is integrally
spaced and bounded from below. The lowest eigenvalue of L0 in Hµ is called the
conformal weight ∆µ.

A special representation is given by the vector spaceHΩ of the VOA itself; it is
called the vacuum representation, and the corresponding label in I will be denoted
by Ω. A VOA is called rational iff the set I is finite and every representation is
completely reducible. The representation theory of VOAs is a model dependent

1This requirement is weakened in so-called logarithmic conformal field theories.
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problem that can be quite intricate; see e.g. [17, 27] for the so-called coset conformal
field theories.

3.2. Conformal blocks

VOAs formalize aspects of the ‘observables’ of chiral two-dimensional field theories.
As a consequence, the algebraic structure of a VOA fits together very well with
certain two-dimensional geometries —more precisely, since the theory is chiral,
with the geometry of complex curves. To see how this works out, we fix a complex
curve X̂=X̂g of genus g, and m distinct smooth points ~z=(z1, . . . , zm) on X̂, the
insertion points. A VOA should be thought of as being associated to a (formal)
punctured disc with coordinate z; to the data X̂, ~z one can associate a global
version of the VOA.2 In the case of X̂=CP 1 with three marked points, this global
version also leads to the coproduct for the VOA that was defined in [12].

When we fix additional data, labels ~λ=λ1, λ2, . . . , λm and local coordinates
ξ1, ξ2, . . . , ξm for each insertion point, this global algebra acts on the algebraic dual

(Hλ1 ⊗C · · · ⊗C Hλm
)∗ , (6)

of the tensor product of the modules Hλi . The vector space V~λ(X̂g) of conformal
blocks is by definition the invariant subspace under this action. We call a complex
curve with the additional data we just described an extended curve.

For the vertex operator algebra of the WZW model based on an untwisted
affine Lie algebra g = ḡ(1) at level k∈Z≥0, the vector spaces V~λ(X̂g) also appear
naturally in algebraic geometry. The space VΩ(X̂g), e.g., can be identified with the
space of holomorphic sections in the k-th power of a line bundle L over the moduli
space of holomorphic G-connections over X̂, where G is the simple, connected and
simply connected complex Lie group with Lie algebra ḡ.

One can show that the vector spaces V~λ(X̂g) with fixed ~λ and g fit together
into a vector bundle V~λ,g over the moduli space Mg,m of complex curves of genus
g with m marked points. There is no reason why this vector bundle V~λ,g should be
irreducible. Later, we will describe some sub-bundles which enter in the description
of symmetry breaking boundary conditions.

The Virasoro element vvir can also be used to endow this bundle with a pro-
jectively flat connection, the Knizhnik-Zamolodchikov connection. As a result, the
dimension of the vector space V~λ(X̂g) depends only on the genus g and on ~λ. The
Knizhnik-Zamolodchikov connection implies a projective action of the fundamental
group of Mg,m, the mapping class group, on V~λ(X̂g). In the particular case of g=1
and with one insertion of the vacuum Ω, we obtain a projective representation of
the modular group PSL(2, Z) on a complex vector space of dimension |I|. In a
natural basis, the generator T : τ 7→ τ+1 of PSL(2, Z) is represented by a unitary
diagonal matrix Tλ,µ, and S : τ 7→−1/τ by a unitary symmetric matrix Sλ,µ.

2This algebra has been named chiral algebra in [4]; unfortunately this does not agree with

terminology in physics, where a chiral algebra is a VOA.
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Up to this point, the structures we discussed are mathematically essentially
under control (see e.g. [13]). There is, however, one further crucial aspect of con-
formal blocks, known as factorization. The curve X̂ is allowed to have ordinary
double points. Blowing up such a point p yields a new curve X̂ ′ with a projec-
tion to X̂ under which p has two pre-images p′±. By factorization one means the
existence of a canonical isomorphism

V~λ(X̂) ∼=
⊕
µ∈I

V~λ∪{µ,µ+}(X̂
′) (7)

between the blocks on X̂ and X̂ ′. This structure tightly links the system of bundles
V~λ,g over the moduli spacesMg,m for different values of g and m. One consequence
is that one can express the rank of V~λ,g for all values of m and g in terms of the
matrix S that we encountered in the description of the action of the modular
group. This results in the famous Verlinde formula, which reads

rankV~λ,g =
∑
µ∈I

m∏
i=1

Sλi,µ

SΩ,µ
|SΩ,µ|2−2g . (8)

The matrix S can be computed explicitly for concrete models; in the case of
WZW models, S is given by the Kac-Peterson formula. The combination of the
Kac-Peterson formula for S with the general Verlinde formula (8) then gives the
Verlinde formula in the sense of algebraic geometry [1, 8].

3.3. Sub-bundles

We now discuss sub-bundles of the bundles V~λ,g. To this end, we introduce the
fusion rules Nλ1λ2λ3 , which are dimensions of the three-point blocks at genus 0:

Nλ1,λ2,λ3 = rankVλ1,λ2,λ3 . (9)

It turns out that Nλ1,λ2,Ω describes a permutation of order two on I which we
denote by µ7→µ+. Consider the free Z-module R = Z|I| with a basis {Φµ} labelled
by µ∈I. The definition

Φµ1? Φµ2 =
∑
µ3∈I

Nµ1,µ2,µ+
3

Φµ3 (10)

turns R into a ring, the fusion ring. Factorization and Knizhnik-Zamolodchikov
connection imply that this ring is commutative, associative and semi-simple. Notice
that by construction a fusion ring comes with a distinguished basis labelled by I.

Invertible elements of R that are elements of the distinguished basis are
called simple currents. In the WZW case, simple currents correspond (with one
exception, appearing for E8 at level 2), to elements of the center of the Lie group
G [15]. The group G of simple currents acts on R, and also on I. This action
is in general not free, and to each element µ∈I we associate its stabilizer Sµ :=
{ΦJ∈G |ΦJ?Φµ=Φµ}. Given an m-tuple of labels ~λ, consider the subgroup S1

~λ
of Sλ1× · · ·×Sλm

that consists of those elements (J1, J2, . . . , Jm) whose product
equals the unit element of the fusion ring,

∏
i Ji = Ω.
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Henceforth we will for simplicity assume that H2(G, C ∗)=0; for results in
more general situations see [18, 20]. One expects that then the group S1

~λ
acts by

bundle automorphisms on V~λ,g; for WZW models and g=0, see [20]. The invariant
subspaces under this action form sub-bundles; once an action of S1

~λ
is fixed, they

are characterized by their eigenvalues, i.e. by a character of S1
~λ
.

A conjecture for the ranks of these sub-bundles was presented in [18, 20]. It
is actually more convenient to give the Fourier transforms of these ranks which
can be interpreted as traces of the action of S1

~λ
on the conformal blocks. For the

trace of (J1, J2, . . . , Jm)∈S1
~λ

we obtain

TrV~λ,g
ΘJ1,...,Jm

=
∑
µ∈I

m∏
i=1

SJi

λi,µ

SΩ,µ
|SΩ,µ|2−2g . (11)

Here SJ is the matrix that describes the transformation under the modular group
of the one-point blocks on an elliptic curve with insertion J . In particular, for
J=Ω, SJ equals the ordinary matrix S and we recover the Verlinde formula (8)
for Θ=id.

In the case of WZW models, there is a conjecture [18] for the explicit form
of the matrix SJ : it is given by the S-matrix of Kac-Peterson form for another
Lie algebra, the so-called orbit Lie algebra [17, 16] associated to the data (g, J).3

With this conjecture, formula (11) is as concrete as the Verlinde formula and can be
implemented in a computer program, see http://www.nikhef.nl/~t58/kac.html.
In the case of WZW models, these sub-bundles also enter in a Verlinde formula, in
the sense of algebraic geometry, for non-simple connected groups like PGL(n, C),
see [2].

4. Full Conformal Field Theory

Having discussed some structures of CCFT, our next goal is to construct full CFT
on a real two-dimensional manifold X with conformal structure, using CCFT on
the double X̂ of X. To this end, we have to prescribe some data for each insertion
point, which can lie either in the interior of X or on the boundary. For each
point on the boundary of X, we choose a label and a local coordinate ξ such that
the lift to the double X̂ gives a local holomorphic coordinate. We also choose an
orientation for each component of the boundary.

For each point in the interior of X, a so-called bulk point, we choose a local
coordinate such that on the double we obtain local holomorphic coordinates around
the two pre-images. Notice that possible choices of such coordinates come in two

3Orbit Lie algebras also enter in the study of moduli spaces of flat connections with non-simple

connected structure group on elliptic curves [26], and in the related problem of determining

almost commuting elements in Lie groups [7].
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disjoint sets which are related by a complex conjugation of the coordinate. We call
them a local orientation of the coordinate.

To specify the labels of the bulk fields, we need to fix one more datum:
an automorphism ω̇ of the fusion ring that preserves conformal weight modulo
integers, Tω̇λ=Tλ. The labels for bulk fields are now defined as equivalence classes
of triples (λ, or′, or), where λ is a label of the chiral CCFT, or′ is a local orientation
of the coordinate, and or is a local orientation of X around the insertion point. The
triples (λ, or′, or) and (ω̇λ,−or′,−or) with opposite orientations are identified. We
call a surface with this structure a labelled surface (cf. [11], where the notion was
introduced in the category of topological manifolds for the case when ω̇ is the
conjugation).

Some thought shows that these data precisely allow to give the double, with
the pre-images of the insertion points, the structure of an extended curve, so that
we can define conformal blocks. While the moduli space MX of a labelled surface
cannot be embedded into the moduli space MX̂ of its double as an extended
curve, an embedding of the corresponding Teichmüller spaces T does exist. This
is sufficient to give us conformal blocks as vector bundles V~λ,g over MX . The

involution σ on X̂ induces an involution σ∗ on TX̂ . The subgroup of the mapping
class group of X̂ that commutes with σ∗ is called relative modular group [5]. (In
the case of a closed and oriented surface, X̂ has two connected components of
opposite orientation each of which is isomorphic to X. The relative modular group
is then isomorphic to the mapping class group of X.)

The central problem in the construction of a CFT from a CCFT is to specify,
for all choices of ~λ and all genera g, correlation functions of the CFT as sections
in V~λ,g. For fixed labels ~λ and fixed g, these sections depend on the positions of
the insertion points and on the moduli of the conformal structure. We impose
the locality requirement: these sections have to be genuine functions (rather than
multivalued sections) of these parameters. This includes in particular invariance
under the relative modular group. Moreover, we require compatibility with factor-
ization (for a formulation of the latter requirement in the category of topological
manifolds, see [11]).

Due to factorization, the calculation of any correlation function can be re-
duced to four basic cases: the sphere with three points, the disc with three bound-
ary points, the disc with one boundary point and one interior point, and the real
projective plane with one point. Except for the last case, they involve three marked
points on each connected component of the double.

Constraints on these particular correlators follow by considering situations
where four marked points appear on each connected component of X̂. In particular,
from the consideration of four points on the boundary of the disc one can deduce
that the correlator of three boundary fields is proportional to the so-called fusing
matrix [3, 9]. We stress that this is a model independent statement. Indeed, the
construction of a CFT from a CCFT can be formulated in a completely model
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independent way; see [10, 11], where a general prescription for the correlators has
been given for the case when ω̇ is charge conjugation.

Similarly, one can consider two bulk fields on a disc to derive constraints on
the correlator of one bulk field and one boundary field on a disc with boundary
condition a. To be more explicit, introduce a basis {e(α)

λ,µ,ν} for the space Vλ,µ,ν of
three-point blocks on the sphere; we are looking for a linear combination

Nλ,ω̇λ,µ∑
α=1

αRa
λ,ω̇λ,µ e

(α)
λ,ω̇λ,µ (12)

that is compatible with factorization. It turns out that, with suitable normaliza-
tions, the factorization constraints imply that

Ra
λ1,ω̇λ1,ΩRa

λ2,ω̇λ2,Ω =
∑
λ3

Ñ λ3
λ1,λ2

Ra
λ3,ω̇λ3,Ω . (13)

This equation shows that the reflection coefficients Ra
λ,ω̇λ,Ω form one-dimensional

representations of a certain algebra, called the classifying algebra [19]. The problem
of classifying boundary conditions is therefore reduced to the representation theory
of the classifying algebra.

It turns out that, in the case when ω̇ is charge conjugation, the structure
constants Ñ λ3

λ1,λ2
are just the fusion rules, i.e. the dimensions of the spaces of

three-point blocks. This result has been generalized both to more general choices of
the fusion rule automorphism ω̇ [19] and to the case when the boundary conditions
break some of the symmetries of the theory [21, 22, 23]. The structure constants
of the classifying algebra can be expressed in terms of the modular transformation
matrices SJ that appear in (11) and of characters of simple current groups [22,
23]. The resulting expressions can be shown to coincide with traces of the form
(11) for appropriate twisted intertwiner maps on the spaces of three-point blocks.
Via this relationship, the sub-bundle structure of the bundles of conformal blocks
controls boundary conditions in these more general cases, in particular boundary
conditions that break some of the bulk symmetries. Solitonic solutions in field and
string theory typically do not respect all symmetries, and D-brane solutions are
no exception to this. The sub-bundle structure of conformal blocks is therefore an
essential ingredient for the CFT approach to D-brane physics.
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