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Abstract. This is an introduction to the contributions by the lecturers at
the mini-symposium on symplectic and contact geometry. We present a very
general and brief account of the prehistory of the field and give references to
some seminal papers and important survey works.

Symplectic geometry is the geometry of a closed nondegenerate two-form on
an even-dimensional manifold. Contact geometry is the geometry of a maximally
nondegenerate field of tangent hyperplanes on an odd-dimensional manifold. The
symplectic structure is fundamental for Hamiltonian dynamics, and in this sense
symplectic geometry (and its odd-dimensional counterpart, contact geometry) is
as old as classical mechanics. However, the science the present mini-symposium
is devoted to is usually believed to date from H. Poincaré’s “last geometric theo-
rem” [70] concerning fixed points of area-preserving mappings of an annulus:

Theorem 1. (Poincaré-Birkhoff) An area-preserving diffeomorphism of an annu-
lus S1×[0; 1] possesses at least two fixed points provided that it rotates two boundary
circles in opposite directions.

This theorem proven by G. D. Birkhoff [16] was probably the first statement
describing the properties of symplectic manifolds and symplectomorphisms “in
large”, thereby giving birth to symplectic topology.

In the mid 1960s [2, 3] and later in the 1970s ([4, 5, 6] and [7, Appendix 9]),
V. I. Arnol’d formulated his famous conjecture generalizing Poincaré’s theorem to
higher dimensions. This conjecture reads as follows:

Conjecture 2. (Arnol’d) A flow map A of a (possibly nonautonomous) Hamilton-
ian system of ordinary differential equations on a closed symplectic manifold M
possesses at least as many fixed points as a smooth function on M must have
critical points, both “algebraically” and “geometrically”.

The “algebraic” version of this conjecture means that the number of fixed
points of A counting multiplicities is no less than the sum of the Betti numbers
(over Z) of manifold M . The “geometric” version states that the number of geo-
metrically distinct fixed points of A is no less than the Lyusternik-Schnirel’man
category of manifold M . For instance, a flow map of a Hamiltonian system on
the torus T2n possesses at least 2n+ 1 geometrically distinct fixed points, and at
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least 4n fixed points counting multiplicities. It is worthwhile to emphasize here that
the “correct” higher-dimensional generalization of area-preserving two-dimensional
mappings in this theory is symplectomorphisms rather than volume-preserving dif-
feomorphisms. More precisely, Conjecture 0.2 considers symplectomorphisms that
are flow maps of (possibly nonautonomous) Hamiltonian systems (such symplec-
tomorphisms are said to be homological to the identity).

The Arnol’d conjecture has affected greatly the development of the theory
of symplectic manifolds in the subsequent years. The first noticeable step here
was Ya. M. Èliashberg’s proof [23] of this conjecture for all the two-dimensional
surfaces. Of other important achievements in symplectic geometry and topology
in the 1970s and early 1980s, one should mention A. Weinstein’s results on La-
grangian submanifolds [80] and Èliashberg’s theorem [24] on the so-called rigidity,
or hardness, of symplectomorphisms (discussed previously by him and M. L. Gro-
mov since the late 1960s):

Theorem 3. (Èliashberg-Gromov) The group of symplectomorphisms of a closed
symplectic manifold is C0-closed in the group of all diffeomorphisms.

Theorem 0.3 is often referred to as “the existence theorem of symplectic
topology” [8]. It shows that symplectic geometry is an intrinsically topological
science.

In their milestone paper [19], C. C. Conley and E. Zehnder proved Con-
jecture 0.2 for tori T2n of all the even dimensions with the standard symplectic
structure. They introduced a new technique of constructing a certain action func-
tional on the space of contractible loops on the manifold. This technique can be
regarded as a hyperbolic analogue of the Morse theory for positive functionals.
Work [19], together with Gromov’s celebrated paper [41] on the so-called pseudo-
holomorphic curves (two-dimensional submanifolds that are symplectic analogues
of geodesics) in a symplectic manifold, marked the beginning of the modern period
of symplectic and contact topology, cf. [8]. In particular, Gromov [41] gave a new
proof of the rigidity of symplectomorphisms and proved the following fundamen-
tal nonsqueezing theorem. Let B2n(R) denote the closed ball with center 0 and
radius R in R2n equipped with the standard symplectic structure.

Theorem 4. (Gromov) There is no symplectic embedding B2n(R) ↪→ B2(r)×R2n−2

for R > r.

This theorem shows that the symplectic invariants (called symplectic capac-
ities) are essentially two-dimensional.

By now, symplectic/contact geometry/topology and the related aspects of
Hamiltonian dynamics have turned into a vast and flourishing branch of mathemat-
ics which can definitely not be surveyed during 4.5 hours of the mini-symposium.
The contributions collected here should therefore be thought of as just a certain
“snapshot” of several active studies and interesting results in the field. Instead of
trying to trace the development of the theory of symplectic and contact manifolds
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since 1985 or reviewing the state of the art, we will present here a brief account of
each of the topics selected for the mini-symposium to give them a unity.

Two lectures are devoted to the Arnol’d conjecture discussed above. In the
late 1980s, A. Floer published a series of very important papers (of which we cite
here only three, [30, 31, 32]) where he, apart from other achievements, combined
the variational approach by Conley and Zehnder [19] with Gromov’s elliptic meth-
ods [41] and defined what has become known as the Floer (co)homology theory.
This enabled him to prove Conjecture 0.2 for the so-called positive, or mono-
tone, symplectic manifolds [32]. Afterwards, Floer’s landmark result was gener-
alized by H. Hofer and D. A. Salamon [45] and by K. Ono [69] to semi-positive,
or weakly monotone, manifolds (in particular, to all the symplectic manifolds of
dimensions ≤ 6), and by G. C. Lu [58, 59], to products of weakly monotone mani-
folds (and Calabi-Yau manifolds). Finally, a further extension of Floer’s ideas and
the theory of the so-called Gromov-Witten invariants have led K. Fukaya-K. Ono,
H. Hofer-D. A. Salamon, J. Li-G. Liu-G. Tian, Y. B. Ruan, and B. Siebert to a
proof of the Arnol’d conjecture for every closed symplectic manifold (for the case
where all the fixed points are nondegenerate), we would confine ourselves with four
references [34, 35, 56, 57]. The lecture by Salamon surveys this stream of studies
in symplectic topology.

A quite different approach to the Arnol’d conjecture was proposed by B. For-
tune [33] who proved it for projective spaces CPn with the standard symplectic
structure [7, Appendix 3]. This proof was based on the fact that CPn is the reduced
symplectic manifold of Cn+1 under the Hopf S1-action and any Hamiltonian system
on CPn is the Marsden-Weinstein reduction of an appropriate Hamiltonian system
on Cn+1. L. A. Ibort and C. Mart́ınez Ontalba [49] showed that Fortune’s method
is in fact universal: the fixed point problem for a symplectomorphism (homological
to the identity) of every closed symplectic manifold can be translated into a critical
point problem with symmetry on loops in the space R2N (for suitable N) endowed
with the standard symplectic structure. All these questions are treated in Ibort’s
talk.

The lecture by P. Biran considers the interesting problem of symplectic pack-
ing : given a closed symplectic manifold M of dimension 2n, what is the supre-
mum νk(M) of volumes that can be filled by symplectic embeddings of k equal
disjoint balls B2n(R) into M? This question was first addressed by Gromov [41] as
an extension of the nonsqueezing phenomenon: whereas volume-preserving packing
is obvious, there do exist obstructions to symplectic packing, and the latter turns
out to be highly nontrivial already for the case n = 2 [14, 15, 60]. However, for
every closed symplectic 4-manifold M with the symplectic structure representing
a rational cohomology class, there exists an integer N such that for k ≥ N , this
manifold has a full packing: νk(M) = Volume(M) [15].

In contrast to these three talks, the lecture by V. M. Zakalyukin is devoted
to the local problem of generalized caustics. Let M be a symplectic manifold
of dimension 2n, and let functions fi : M → R, 1 ≤ i ≤ m, be independent and
pairwise in involution (m ≤ n). Their common level sets f = c ∈ Rm are coisotropic
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(2n −m)-dimensional submanifolds of M . Given a Lagrangian submanifold L ↪→
M , the set of values c for which L is not transversal to the fiber f = c is called a
coisotropic caustic. The singularities of “conventional” caustics (m = n) are well-
studied [9], and the talk treats the case m < n. The singularities of caustics for
m < n were first examined in [81].

The next two lectures pertain to contact topology. H. Geiges’ talk consid-
ers various constructions of contact manifolds, cf. [36]. A progress in constructing
symplectic manifolds is exemplified by R. E. Gompf’s method [40]. The lecture by
Yu. V. Chekanov deals with Legendrian knots and their invariants. Here the prob-
lem is to determine when two topologically isotopic Legendrian knots in a contact
3-space are isotopic through contactomorphisms. For instance, two topologically
trivial Legendrian knots can be transformed to each other by contact isotopies if
and only if their Thurston-Bennequin invariants and Maslov numbers coincide re-
spectively [27]. For an analogous problem for Lagrangian (two-dimensional) knots
in symplectic 4-manifolds see, e.g., [25].

Finally, two lectures are devoted to the “core” Hamiltonian dynamics, to be
more precise, to periodic and quasi-periodic motions in autonomous Hamiltonian
systems. In the talk by V. L. Ginzburg, the speaker describes his constructions of
smooth Hamilton functions H : R2n → R such that the Hamiltonian flow afforded
by H on the compact energy hypersurface H = 1 has no periodic trajectories
(the symplectic structure on R2n is assumed to be standard), see [37, 38, 39].
Such Hamiltonian systems provide counterexamples to the so-called Hamiltonian
Seifert conjecture. Finally, À. Jorba’s lecture studies the complicated “exponen-
tial” structure of the set of invariant tori (carrying quasi-periodic motions) near
a given one in an analytic autonomous Hamiltonian flow, the relevant reference
being [50]. This topic is within the framework of the KAM (Kolmogorov-Arnol’d-
Moser) theory concerning quasi-periodic motions in generic dynamical systems.

For the basic ideas of the KAM theory, see [7, Appendix 8]; volume [17]
presents a modern survey. Here we would like only to remark that whereas the
KAM theory is always local with respect to the action variables, its global char-
acter with respect to the angle variables is best pronounced while considering
coisotropic invariant tori of dimensions greater than the number n of degrees of
freedom (see a bibliography and discussion in [17]). Indeed, an invariant torus of
a Hamiltonian flow or symplectic diffeomorphism is automatically isotropic pro-
vided that this torus carries a quasi-periodic motion and the symplectic structure
on the phase space is exact [17, 42]. Thus, coisotropic invariant KAM tori of
dimensions > n can occur for non-exact symplectic structures only (in particu-
lar, they are impossible in the local theory, e.g., near equilibrium/fixed points of
Hamiltonian systems).

An interplay between a) Gromov’s theory of pseudoholomorphic curves and
Floer’s homology theory and b) examining periodic orbits of Hamiltonian vector
fields within energy surfaces is exemplified by paper [46], see also Hofer’s plenary
lecture [47] at the 23rd International Congress of Mathematicians.
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As was already emphasized, the present mini-symposium covers unavoidably
only a small fraction of modern symplectic and contact geometry and topology.
Of the significant missed achievements, we would mention here only C. H. Taubes’
results on a precise relation between the Seiberg-Witten invariants and the Gromov
invariants for closed symplectic 4-manifolds [73, 74, 75, 76, 77, 78] (see also [20])
and S. K. Donaldson’s works on symplectic Lefschetz pencils [21, 22] (see also [11]).

Of survey monographs on the field, one should first of all mention influential
books [43, 62] as well as advanced textbooks [1, 12]. Monographs [26, 61] are
devoted to special topics. Important contributions can be found in collections
[10, 13, 18, 28, 29, 44, 48, 51, 55, 71, 72, 79]. Finally, we would like specifically to
draw the reader’s attention to the stimulating reviews of the field by F. Lalonde [52,
53, 54] and D. McDuff [63, 64, 65, 66, 67, 68].
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