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Abstract. In this note we give a survey on recent developments in the reg-
ularity of free boundaries of obstacle type in absence of the obstacle, giving
rise to solutions that may change sign. The focus is on two techniques, the
monotonicity formulas and global versus local analysis.

1. Introduction

For a bounded domain Ω in Rn (n ≥ 2) we assume that there exists a function u
such that locally

(∆u− f)u = 0 in B(x0, r0) \ Ω, x0 ∈ ∂Ω , (1)

where f > 0 is Lipschitz, and the equation is satisfied in the sense of distributions.
Two main questions that comes up immediately are the following:

Q1) How smooth is u across ∂Ω?
Q2) How smooth is ∂Ω in a neighborhood of x0?

The problem described above has its origin in inverse problems of potential
theory, also known as harmonic continuations of potentials from the free space
into the domain of integration. To explain this in more detail let U denote the
Newtonian potential of Ω (bounded set) with constant density (i.e., the convolution
of the fundamental solution with χΩ) and with x0 ∈ ∂Ω. Then suppose (this is
not necessarily the case in general) there exists a harmonic function w in B(x0, r)
(r small) such that w = U in Ωc (the complement of Ω); observe that U is harmonic
in Ωc. This property is referred to as harmonic continuation of potentials.

The reader familiar with elliptic theory can immediately see that Q1) can be
partially answered. Indeed, by elliptic estimate u is C1,α in B(x0, r0/2) for α < 1.
A more elaborated estimate may also be shown using the potential representation.
This yields the estimate

|∇u(x)−∇u(x0)| ≤ C|x− x0| log |x− x0| .
The problem here is to get rid of the log-term.
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In the case of obstacle problem, i.e., when u ≥ 0 one may easily obtain that
u ∈ C1,1(B(x0, r0/2)). This can be done using Harnack’s inequality or simple
estimate based on the so called “Schwarz potential” (the difference between the
paraboloid |x−x0|2/2n and the fundamental solution with source at x0). We refer
to [9] for some details in the latter case. For the application of the Harnack’s
inequality we refer to [2].

Now the “no-sign-assumption” in problem (1) introduces a new and actually
a very peculiar difficulty. To overcome this difficulty the authors in [8] have used
the monotonicity formula developed by [1]. Unfortunately the technique works(ed)
only for the case when f ≡ 1, since then Deu, where De denotes partial deriva-
tive in direction e, will be a harmonic function and consequently (Deu)± will be
subharmonic functions with disjoint support. These are the exact condition in the
monotonicity formula.

2. The Use of the Monotonicity Formula

To discuss the approach of [8] in answering Q1)–Q2) we state the following mono-
tonicity lemma.

Lemma 2.1. (See [1, Lemma 5.1]) Let h1, h2 be two non-negative continuous sub-
solutions of ∆u = 0 in B(x0, R) (R > 0). Assume further that h1h2 = 0 and that
h1(x0) = h2(x0) = 0. Then the following function is monotone in r (0 < r < R)

ϕ(r) =
1
r4

(∫
B(x0,r)

|∇h1|2
|x− x0|n−2

)(∫
B(x0,r)

|∇h2|2
|x− x0|n−2

)
.

Now in the above lemma one replaces hi with (Deu)±. Since, heuristically
ϕ(0, Deu) ≈ Diju(0) one expects to obtain a uniform bound. Let us briefly explain
this, for more detail we refer to [8, Theorem I]. First let us define

Sr = sup
Br

|u(x)| ,

where Br denotes the ball of radius r, centered at the origin. Here we assume that
x0 ∈ ∂Ω is the origin. Since the Laplacian is rotation and translation invariant
we can do the same argument for any point of ∂Ω other than the origin. Next we
expect to have

Sr ≤ Cr2, ∀ r < 1/2 ,

and for some constant C depending on the sup-norm of u and the space dimension
only. Therefore we claim that there exists C such that

Sr/2 ≤ max
(
Sr
4
, Cr2

)
∀ r < 1/2 . (2)

If this is true then we are done using iteration. The idea of introducing (2) (rather
than the more difficult approach in [8]) is due to N. Uraltseva; see [11]). Now we
suppose, towards a contradiction, that (2) fails. Then there exists a sequence {rj}



The Impact of Monotonicity Formulas in Regularity of Free Boundaries 3

(and if we want to have a uniformity for a class of solutions, also a sequence of
solutions uj to (1), but here for simplicity we do this for just one function) such
that (2) fails. More exactly we have

Srj/2 ≥ max
(
Srj
4
, jr2

j

)
, j = 1, 2, . . . (3)

Now the reader may verify that (3) along with the properties of u implies that

uj(x) =
u(rjx)
Srj

is uniformly bounded on B1 and

|∆uj | ≤
4
j
.

Consequently a subsequence of {uj} converges uniformly to a harmonic function u0

in the unit ball and that u0(0) = |∇u0|(0) = 0. Moreover, from (3), it follows that

max
B1/2

|u0| = 1 . (4)

Next we use the monotonicity formula to obtain that

ϕ(1, Deuj) =

(
r2
j

Srj

)4

ϕ(rj , Deu) ≤ C ′
(
r2
j

Srj

)4

→ 0 ,

by (3).
In particular this implies that

ϕ(1, Deu0) = 0 ,

and consequently either of (Deu0)± is to be zero. In particular Deu0 is a har-
monic function that does not change sign. Since also |∇u0(0)| = 0 we must have
Deu0(0) = 0 for all directions e and hence u0 is constant. The constant is zero
since u0(0) = 0. This contradicts (4) and therefore (2) must be true. Now from the
estimate in (2) one can further show that u is C1,1 using classical elliptic regularity.

One thing that we have not been careful with is the convergence in W 2,2

in the monotonicity formula as rj → 0. However, the proof of this with all the
details is given in [8, Theorem I]. For the general Lipschitz right hand sides the
above monotonicity formula is out of use. However, newly developed monotonicity
formulas by L. Caffarelli, D. Jerison, and C. Kenig [7] will still help us to obtain
the C1,1 estimate for solutions of (1). Here we formulate their result.

Lemma 2.2. (See [7]) Recall the assumptions in lemma 2.1, and replace the sub-
harmonicity assumption by the boundedness of the Laplacian of hi, i.e., assume
|∆hi| ≤ 1. Suppose moreover |hi(x)| ≤ C|x|ε for some ε > 0. Then, for 0 < r1 ≤
r2 ≤ R0,

ϕ(r1) ≤ (1 + rε2)ϕ(r2) + Crε2 .
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The question that raises itself is: What is the best result in this direction?.
Can we relax the Lipschitz condition on f and still obtain such a result. It is known
that the regularity of f can be relaxed but has to be compensated somehow, e.g.,
it is known that if the complement of Ω is thick enough (in the sense of capacitary
density) near the origin then we still obtain a quadratic growth for the function u;
see [10]. Of course not a C1,1 estimate, as it is obvious. However, this is enough to
blow up solutions and work with global solutions, a notion that is almost inevitable
in the context of regularity of free boundaries. Let us explain this in more detail.

A global solution to problem (1) is a solution u of

(∆u− 1)u = 0 in Rn \ Ω ,

with the extra assumption that

|u(x)| ≤ (|x|+ 1)2 .

In other words a solution in the entire space. In [8, Theorem II] the authors
prove that global solutions are either quadratic polynomials or non-negative convex
functions. In particular if the complement of the set Ω has non-empty interior then
global solutions are convex, and consequently Rn \ Ω is convex.

Now this classification is the core of the analysis of the regularity of free
boundaries. Indeed, if one assumes an a priori thickness condition on the comple-
ment of Ω near a free boundary point x0 then a blow up of u at x0 will result in a
global convex solution u0, with x0 on the free boundary ∂Ω(u0). Here we choose
to explain the technique for just one function and not a whole class of functions.
The technique for a class is very much similar but becomes more technical. We
avoid this here.

The best way is to think of Ω to have a truncated cone outside it with vertex
at x0. Then one immediately verifies that the same property is inherited by the
blow-ups of u, whatever the sequence of blow-up be. The reader should notice that
there might well be examples such that blow up w.r.t. two different sequences {rj}
and {tj} are different functions. One of the main difficulties in the theory is to
prove that this is not the case, provided the free boundary does not develop cusp
singularities.

Next having a convex global solution one needs to prove that these solutions
have locally C1 (actually analytic) boundary. This is done more easily, since con-
vexity of the complement implies Lipschitz regularity of ∂Ω. One may also easily
see that the boundary is C1 by just blowing up u at a boundary point x0. Now a
blow up at a boundary point will give a homogeneous solution. Indeed we have

ϕ(s,Deu0) = lim
r→0

ϕ(s,Deur) = lim
r→0

ϕ(sr,Deu) = Ce , (5)

for all s > 0.
The problem in (5) is that we cannot use a different sequence of functions uj

since then the limit Ce is not necessarily unique, and the problem becomes very
involved in the case we consider a whole class of functions.
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Now, going back to our simple situation of just one function, we have that
global solutions with non-void Rn \ Ω are convex, and locally the free boundary
is C1. Now we use this idea for local solutions, by scaling the function u with urj
and assume that

Brj \ Ω(u) is thick enough . (6)

Now urj is a solution in B1/rj (almost a global solution, or which is known as
approximate global solution) and by (6)

B1 \ Ω(urj ) is thick enough ; (7)

the thickness property introduced by L. Caffarelli [4] is stable under scaling. Now
(7), in conjunction with the classification of global solutions, imply that ∂Ω(urj )
near the origin is almost C1 (or flat). Now from here one wants to go further to
prove that the boundary is actually C1. One way of doing this, and this is the most
simple technique developed by L. Caffarelli, is to apply the maximum principle to
the function wej = CrjDeu − u in Ω(u) ∩ Brj to show that, for some e and small
rj , this function is non-negative in Brj , provided urj is close enough to a global
solution with ∂Ω(urj ) flat enough in the unit ball; see [5] and [8] for the simple
proof.

Once it is shown that wej is nonnegative, we can integrate by parts to obtain
u ≥ 0 in Brj/4. Actually one can show that wej ≥ 0 for a whole set of vectors e,
i.e., in Brj

wej ≥ 0 ∀ e ∈ Kj := {ν : ν · e0 ≥
1
j
} ,

where e0 depends on u. From here one obtains the Lipschitz regularity of the free
boundary without much efforts. The next step is to show that the Lipschitz norm
gets better, if we choose smaller balls. One shows that for each j > 0 there exists
rj such that wej ≥ 0 in Brj for all e ∈ Kj . This gives the C1-regularity of ∂Ω.

Finally, to illuminate the importance of the monotonicity formula, we give an
application of it in classification of global solutions, see [8, Theorem II]. Cf. also [11,
Theorem B]. So let us assume u is a global solution, i.e., a solution to (1) in entire
Rn. To give a simplified example, suppose also that there exists a sequence Rj →∞
such that

vol(BRj \ Ω)
vol(BRj )

≥ ε0 > 0, ∀ j .

The latter means that the set Rn \ Ω has positive upper Lebesgue density at the
infinity point. Now define the blow-up sequence uRj and apply the monotonicity
formula as in (5), to obtain

ϕ(s,Deu0) = lim
j→0

ϕ(s,DeuRj ) = lim
j→0

ϕ(sRj , Deu) = Ce , (8)

for all s > 0. Now according to the monotonicity formula (actually a stronger
version of it; see [6]) ϕ(s,Deu0) is either identically zero or strictly increasing, or
the sets {(Deu)± > 0} ∩ B(0, s) are half spherical caps up to zero are. Now the
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latter case is not possible due to condition (8), and therefore the only possibility
is that ϕ(s,Deu0) ≡ 0. Now this in turn implies that ϕ(r,Deu) ≤ ϕ(∞, Deu) =
ϕ(1, Deu0) = Ce = 0. We thus arrive at the fact that at least one of the func-
tions (Deu)± is identically zero. Hence Deu > 0 (say). The strict inequality is due
to the maximum principle, since Deu is harmonic (we look at the case f ≡ 1 for
global solutions). From here it is not hard to show that u is one dimensional and
consequently u = (max(x1, 0))2/2 in some rotated system.
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