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Abstract. The N -body problem is one of the outstanding classical problems
in Mechanics and other sciences. In the Newtonian case few results are known
for the 3-body problem and they are very rare for more than 3 bodies. Simple
solutions, as the so called relative equilibrium solutions, in which all the bodies
rotate around the center of mass keeping the mutual distances constant, are
in themselves a major problem. Recently, the first example of a new class of
solutions has been discovered by A. Chenciner and R. Montgomery. Three
bodies of equal mass move periodically on the plane along the same curve.
This work presents a generalization of this result to the case of N bodies.
Different curves, to be denoted as simple choreographies, have been found by
a combination of different numerical methods. Some of them are given here,
grouped in several families. The proofs of existence of these solutions and the
classification turn out to be a delicate problem for the Newtonian potential,
but an easier one in strong force potentials.

1. Introduction

The classical N -body describes the motion of N punctual masses under the action
of Newton’s gravitation law of attraction. Let zj ∈ Rd, j = 1, . . . , N the positions
of the bodies and mj > 0, j = 1, . . . , N the respective masses. For most of this
work we shall consider the planar problem d = 2. The equations of motion are

z̈j = ΣN
i=1, i �=jmi(zi − zj)r−3

i,j , (1)

where ri,j = |zi − zj |, | | being the Euclidean norm and where the gravitational
constant is taken equal to 1. The system (1) has the trivial integrals of the center of
mass: ΣN

i=1mizi moves on a straight line with constant velocity. It is not restrictive
to assume that the center of mass is kept fixed at the origin and we shall assume
this from now on: ΣN

i=1mizi = 0. Furthermore we have the angular momentum,
c = Σmizi ∧ żi, and the energy, H = K −U, first integrals. No more first integrals
exist in general. Here K and −U denote the kinetic and potential energy

K =
1
2
ΣN

i=1mi|żi|2, U = Σ1≤i<j≤Nmimjr
−1
i,j . (2)

Very few solutions are known for the general N -body problem. Some results
are available for the 3-body, for some restricted problems, where some masses are
infinitesimal, or for some very special subproblem.
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Simple solutions can be obtained from central configurations. A central con-
figuration is defined as a configuration of the N bodies such that z̈j = λzj , j =
1, . . . , N for some λ < 0 independent of j. Then, if the velocities are properly
chosen, that is, if |żj | = γ|zj | with the same γ for all j and the angle between żj

and zj is the same for all the bodies, the motion of the N bodies takes place on
conics, all the conics being similar. In particular every body can move on a circle
around the common center of masses. In these solutions the motion behaves as
if the bodies form a rigid body. These solutions are also denoted as relative equi-
librium solutions, being a fixed point of (1) if we use a rotating frame. They can
also be obtained using a different approach. Let I = ΣN

j=1mj |zj |2 the moment of
inertia of the N bodies around the center of mass. The set of configurations with a
fixed value I > 0 defines a sphere S in R2N−2. We can restrict U to S. Due to the
homogeneous character of I and U we can always assume the value I = 1. Then
the central configurations correspond to the critical points of U |S . The problem
of finding the number of central configurations for a given N and how it depends
on the masses is still an open question. See [7] for general results and [8] for a
numerical study for N = 4 and arbitrary masses.

Now we consider the special case of all equal masses, taking mj = 1, j =
1, . . . , N. The simplest relative equilibrium is the regular N -gon. It is obvious that
all the bodies move then on the same circle with a periodic motion. This suggests
the following question:

Are there other periodic solutions of the N -body problem such that all the bodies
travel along the same path in the plane?

This is the main topic of the present work. It has been prompted by the
recent discovery by A. Chenciner and R. Montgomery [4] of one such solution
for N = 3, the bodies moving on a figure eight curve, and by a similar solution
found by J. Gerver with four bodies [5]. For historical details about these quite
new solutions I refer to [3]. Looking for solutions with N equal mass bodies on
the same curve poses several problems: a) Existence proofs; b) The admissible
geometries of the supporting curves; c) Computation of the solutions; d) Study of
the dynamical properties; e) Generalizations to other potentials.

All these topics are strongly related. In fact existence proofs are only available
for some class of potentials which excludes the Newtonian case. The difficulties
with the Newtonian and other potentials are related to the possible existence
of collisions, i.e., values t∗ of time such that there exist i and j, i �= j such that
limt→t∗− ri,j(t) = 0. This, in turn, is related to the admissible curves and their time
parameterization. The basic method for the proof relies on a variational approach.
This is also useful, but not enough, for the computation. The study of the geo-
metrical and dynamical properties of the solutions we are looking for, requires local
information on orbits which are far away from any curve which could be described
by analytical means. So the numerical approach seems to be the only possible way.

It is instructive to look at the motion of the N bodies along the same path on
the plane by means of an animation. The bodies are seen to dance on a somewhat
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complicated way. This suggests the name choreographies to denote this kind of
motions. To be precise we should name them as simple choreographies, because all
the bodies are on the same curve. One can imagine also multiple choreographies,
the bodies travelling on k > 1 different curves.

In section 2 we give some results about the figure eight choreography for
N = 3. Section 3 is devoted to introduce the required notation about simple
choreographies. The variational approach is presented in section 4. To this end we
generalize the problem to potentials of the form r−a, a > 0, instead of using only
a = 1. The existence proof is sketched for a ≥ 2, the case known as strong force.
Section 5 shows different kinds of choreographies found up to now. The changes
on the behavior of the choreographies as a function of a are displayed in section
6. This illustrates, also, the difficulties to be faced in the proofs for weak forces.
Finally section 7 gives a short description of the numerical methods used.

2. The Figure Eight Solution

The first choreography for N = 3 was found by Lagrange in 1772: the celebrated
equilateral triangular solution. It is only in December 1999 that the next one was
found. The three bodies travel on a figure eight curve (see Fig 1.1). The period
has been fixed equal to 2π for the periodic solution represented here and for all
the solutions in this work. This fixes the size. Other periods are scaled to 2π by
Kepler’s third law �3T−2 = constant, where � is the length scale and T the period.
It is also clear that S1 invariance allows to have the curve symmetrical with respect
the horizontal axis. Denote as Pj the body located at zj . One can take initially the
bodies on a collinear (Eulerian) configuration, as in the figure, with P3 between
P1 (on the left) and P2, with P3 moving upwards. For t = π/6 they are in isosceles
configuration and for t = π/3 they are again in collinear configuration with P2 in
the middle. In a full period the bodies pass twice for each one of the 3 collinear
configurations.

The proof of the existence (see [4]) involves a variational argument. Let
q(t) a parameterization of the solution such that if z1(t) = q(t) then z2(t) =
q(t− 2π/3), z3(t) = q(t− 4π/3). The variational formulation of classical mechan-
ics assures that any classical 2π-periodic solution is an extremal of the action
functional

A =
∫ 2π

0

L(t)dt, L(t) = K(ż1, ż2, ż3)− U(z1, z2, z3), (3)

the integral of the LagrangianL. In fact the figure eight choreography is a minimum
of A. They key point is to show that a minimization of A, inside the desired class
of topologically figure eight curves, do not leads to collisions. Using estimates in
[2] and a test path, the level curve of U |S passing through the collinear points and
travelled with constant speed with a suitable value of I, the exclusion of collisions
is reduced to the evaluation of an integral.
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The eight can be seen also as a chain with two links. Fig. 1 shows also the
next simplest chains (3- and 4-chains) with 4 and 5 bodies. For completeness,
initial data allowing the reader to reproduce the plots are given in Table 1. They
have been rounded to 10−6 and, hence, should be refined for accurate purposes.
Note that for the eight one has to rotate slightly Fig. 1.1 to agree with the initial
conditions. The components of zj are denoted as (xj, yj).
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Figure 1. Chains with 3, 4 and 5 bodies.

N =3 x2 = 0.995492 ẋ3 = 0.695804 ẏ3 = 1.067860 x1=−x2, ż1= ż2

N =4 x1 = 1.382857 ẏ1 = 0.584873 y2 = 0.157030 ẋ2 = 1.871935

x3 = −x1 y4 = −y2 ẏ3 = −ẏ1 ẋ4 = −ẋ2

N =5 x2 = 0.439775 y2 = −0.169717 ẋ2 = 1.822785 ẏ2 = 0.128248

x3 = −1.268608 y3 = −0.267651 ẋ3 = 1.271564 ẏ3 = 0.168645
x4=x3, y4=−y3 ẋ4=−ẋ3, ẏ4= ẏ3 x5=x2, y5=−y2 ẋ5=−ẋ2, ẏ5= ẏ2

Table 1. Initial conditions for Fig. 1. The data not given, and
not following from the center of mass condition, are zero.

This solution has many remarkable properties. Beyond obvious symmetries,
• It seems that it is unique, letting aside rotations. This is not proved in [4].
I am based on an extensive numerical search with zero angular momentum
and ż1 = ż2.

• The eight lives on c = 0, the zero angular momentum level. When c �= 0 it
is possible to use a rotating frame (with frequency ω) and to look for figure
eight periodic solutions in this frame. This has been done by M. Hénon
[6]. The loops become asymmetrical, but the general pattern is similar.
These rotating solutions give rise to 2D tori if ω /∈ Q, while they give new
satellite choreographies if ω ∈ Q.

• The orbit is linearly stable. It can be seen as a fixed point of a Poincaré
map. The eigenvalues of the differential of that map are λ = exp(±2πiνj),
with ν1 = 0.00842272, ν2 = 0.29809253. This comes as a surprise, be-
cause of the contrast with systems with two degrees of freedom, for which
periodic orbits minimizing the action are unstable. Quoting Birkhoff ([1]
p. 130) “Doubtless analogous results hold for any number of degrees of
freedom, and can be obtained by means of classical methods in the calculus
of variations.”
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• To obtain non linear information a representation of the Poincaré map to
high order is needed. Some methods are proposed in [9], by using higher
order variationals. A different approach is given in section 7. In particular
this allows to obtain the Normal Form around the periodic solution. The
torsion matrix is indefinite and KAM theorem is applied to show the
existence of invariant tori. Hence, most of the points close to the eight on
c = 0 are stable. Furthermore, from the variation of the actions follows the
existence of other classes of satellite choreographies, associated to periodic
points, with suitable period, of the Poincaré map around the fixed point.

• It is possible to continuate the periodic solution to other nearby masses,
each moving then in a slightly different “eight”. But stability is only pre-
served for relative variations of the order of 10−5.

• Keeping equal masses we can explore different potentials of the form

U(z1, . . . , zN) = Σ1≤i<j≤Nf(ri,j), f(r) = r−a, a > 0. (4)

The eight can be continuated to all a > 0 and even to the limit case
f(r) = log r and beyond. However it is found to be linearly stable only in
a short range around a = 1.

3. Choreographies

We pass to N > 3. We look for 2π-periodic functions q : S1 
→ R2 such that if

zj(t) = q(t− (j − 1)2π/N), j = 1, . . . , N, (5)

we find a solution to (1). Z/NZ acts on the set of bodies and in S1 by shifting to
the next body (or to the next vertex of an N -gon). This can be used for theoretical
and computational purposes. Note that q(t) satisfies a differential equation with
delays multiple of 2π/N. This remark do not seems to reduce the difficulty.

A collision occurs if there exists a double point q(t1) = q(t2) with t2− t1 mul-
tiple of 2π/N . We consider the class of collision-free functions. It has to be taken
analytical (the potentials being analytical if r �= 0), despite for the variational ap-
proach it is enough to consider the Sobolev space H1(S1,R2) (or H1 for shortness)
of functions with square integrable first derivative. Let ∆ ⊂ H1 be the functions
associated to collisions. We would like to see that in each connected component of
H1 \∆ there is a solution minimizing the action. Unfortunately this seems not to
be true for the Newtonian potential.

To begin with we give in Fig. 2 most of the choreographies known till present
for 5 bodies, beyond the regular pentagon and the 4-chain of Fig. 1.3. They are
numbered by increasing value of the action. The pentagon has an action less than
all other choreographies and the 4-chain is located between cases 4 and 5 of Fig. 2.
All of them have some symmetry.

Most of them can be seen as linear chains having loops of different size, with
some of the loops eventually folded. Number 1 consists of a large loop and a small
one. In the small loop there are either 1 or 2 bodies for all t.
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Figure 2. Choreographies found for 5 bodies. The dots denote
initial conditions.
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case action momentum energy min ri,j (t) max λL

circle 58.308755 -6.186751 -3.093376 1.307660 0.939150
1 68.851604 -3.454467 -3.652691 0.364076 0.999344

2 71.331244 0.000000 -3.784240 0.690443 1.225034
3 75.184575 2.462827 -3.988666 0.213061 1.573730

4 77.158798 0.879793 -4.093401 0.423223 1.323903
4-chain 80.366525 0.000000 -4.263577 0.339434 1.727383

5 85.474715 2.631679 -4.534574 0.326152 1.639335
6 86.051192 -0.664730 -4.565158 0.399373 1.819673

7 88.439746 -2.562017 -4.691874 0.389835 1.757461
8 89.255582 -0.333911 -4.735156 0.236213 2.544799

9 90.108332 0.646869 -4.780395 0.381350 2.362498
10 93.864859 -1.839421 -4.979685 0.212068 2.189505

11 96.798960 -0.207731 -5.135344 0.280668 2.196531
12 102.751489 -0.484014 -5.451136 0.207233 3.381876

13 103.201740 0.000000 -5.475022 0.246947 3.001603
14 105.954031 -1.753301 -5.621036 0.266926 2.272570

15 108.787904 2.243734 -5.771378 0.073286 2.730382
16 109.636187 0.000000 -5.816380 0.355173 2.417178

17 109.882868 -4.476957 -5.829467 0.447649 2.628803
18 119.318405 2.002793 -6.330038 0.311516 3.177711

Table 2. Numerical data for 5-body choreographies. min ri,j(t)
is taken over all i �= j, t ∈ S1. λL means Lyapunov exponent.

Definition 3.1. Given a double point being the image of t1 and t2 by q, the images
of the two arcs going from t1 to t2 in S1 are denoted as loops associated to the
point. Assume 0 ≤ t1 < t2 < 2π. The lengths of these loops are � = (t2−t1)N/(2π)
and the complement �c = N − �. This extends in a simple way to multiple points.

A key role is played by the integer lengths [�] and [�c], where [ ] denotes the
integer part. As for a collision-free function [�] + [�c] = N − 1, we usually refer to
the minimum between [�] and [�c] as the integer length associated to the point. It
is clear that if we deform q without passing through collisions, the integer length
cannot change. But small loops of length less than 1 (integer length zero) can be
created/destroyed without problem. Also two nearby double points on q(S1) can
collapse by deformation of q to the some point, if this one has � /∈ N, and the
points can disappear. In a similar way new loops can be created.

Going back to number 1 in Fig. 2, the integer length associated to the double
point is 1. One can ask for a similar choreography having the small loop inside
the larger one. For instance, number 7 has two small loops (inside and outside the
circle), both with [�] = 1. A discussion on the existence of loops of [�] = 1 inside
a large loop will be given in section 6. Beyond topological constraints there are
also the dynamical ones. Take, for instance, number 15 in Fig. 2. There is a small
region near the center with two double points very close. For both of them one
has [�] = 1. They could be removed by deformation. But then the passage near
collision, which is essential to change strongly the motion of the two bodies which
have an encounter, would give a completely different path.
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4. Variational Methods

A standard way to prove the existence of periodic orbits is the use of a variational
approach. In this way we can obtain the

Theorem 4.1. Consider problem (1) for a strong force potential as defined in (4)
for a ≥ 2 and zj(t) related to q as given by (5). Then in every class of choreogra-
phies, i.e., in a component of H1\∆, there is a solution minimizing A =

∫ 2π

0 L(t)dt,
L as in (3) and K(ż1, . . . , żN), U(z1, . . . , zN) given in (2).

Proof. We sketch the key point: why collisions are avoided. We start at some point
in the interior of a class of choreographies. It is enough to show that approaching
∆ the action becomes unbounded. Let us consider a weak force, that is, with
a < 2. Let ri,j be the distance going to zero. Then, a local computation close to
the collision gives that, the dominant term of the contribution of this collision to
the action when ri,j goes from r to 0 is

Abinary collision =
√
8 r(2−a)/2/(2− a). (6)

When a tends to 2 it becomes unbounded. This is a fortiori true for a ≥ 2. Hence
one should remain always at the interior of the choreography class. �

For a detailed proof see [3].
At this point is also interesting to stress that the problem can be formulated

as a variational condition on q, instead of considering the intermediate passage
though the z variables: q → z → A. This leads to a variational problem with
delays, a class of problems which seems not widely known.

5. Different Kinds of Choreographies

A selection of choreographies with different shapes is displayed in Fig. 3. They
illustrate the many possibilities which appear. A quite simple family are the chains.
We have seen before the cases of 3, 4 and 5 bodies. Fig. 1, Fig. 2 cases 1 to
4 and Fig. 3 cases 1 to 7 are linear direct chains (ldc), with Z2 symmetry and
without folding the loops. They can be considered as bounding a concatenation of
k topological discs. Each piece of the chain between two consecutive double points
will be denoted as a bubble. The double points have a linear order, say, from left
to right, and we can consider the lengths of the loops associated to them such
that 0 ≡ [�0] < [�1] < . . . [�k−1] < [�k] ≡ N − 1, where we take the length or
the complementary length to obtain an increasing sequence. A rotation by π gives
an equivalent chain. The first 5 plots in Fig. 3 have N = 11, and show only a
few of the possible cases for this N. One can ask for the rate of increase of the
number, γ(N), of ldc as a function of N. We include also the N -gon as a ldc.
The consecutive differences {bj := [�j] − [�j−1], j = 1, . . . , k, 1 ≤ k ≤ m} give a
partition of m = N − 1. The value bj measures the jth bubble. Let D(m) be the
total number of partitions, where, e.g., b1 = 1, b2 = 2 is seen as different from
b1 = 2, b2 = 1. For instance D(1) = 1, D(2) = 2, D(3) = 4.
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Figure 3. A sample of different choreographies.
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Given b1, . . . , bk, a partition of m, then b1, . . . , bk, 1 and b1, . . . , bk+1 are
partitions of m+1, all of them different. We obtain in this way all the partitions of
m+1. Hence, D(m)=2m−1. Let Ds(m) be the symmetrical partitions: b1=bk, b2=
bk−1, . . . with bk/2=bk/2+1 if k even, b(k+1)/2 arbitrary if k odd. If m is even then
Ds(m)=D(m/2)=2m/2−1, while form odd Ds(m)=1+D(1)+. . .+D((m−1)/2)=
2(m−1)/2. As γ(N) = 1

2 (D(N − 1)−Ds(N − 1)) +Ds(N − 1), we have proved
Proposition 5.1. For N ≥ 3 one has γ(N) = 2N−3 + 2[(N−3)/2].

Other choreographies contain inner loops (like 9 and 10 in Fig. 3); have
bifurcated chains, 8; look like flowers (11 to 14), or like a flower inside a circle, 15.
More exotic are cases 17 and 18, with N = 7 and N = 6, respectively, which do
not have any symmetry. Cases 13 and 14 are similar, but in 14 there are very small
loops, where a passage near collision takes place. Note that one such solution, but
with the loops inside, has not been found.

All the choreographies found, except the eight, are unstable.

6. Changing the Potential

An interesting question is to study the behavior of a given choreography, a periodic
solution of the N -body problem when changing a in (4). Consider first a four body
problem with a small loop, of length [�] = 1, inside a larger loop. We know that
it exists for strong force, but it seems not to exist for the Newtonian potential.
Fig. 4.3 displays the evolution with a when potentials in r−a are studied. Looking
at the inner loop a decrease in a produces, first, a decrease in the size of the loop.
The first 4 curves (in the sense of decreasing the size of the inner loop) correspond
to a = 2, 1.4, 1.1 and 1.03445. Near that value a saddle-node (s-n) bifurcation is
produced and the family can be continuated, but for increasing values of a. Next
curves correspond to a = 1.1, 1.2, 1.4 and 1.5373. Close to this last value a new s-n
appears and the family continues with a decreasing. Later on, it seems to approach
a binary collision. Note the cusp for a�1.2, developed to a very small extra loop
for a = 1.4 and that for a = 1.5373 gives almost a small loop travelled twice.

Hence, it seems that this solution is unable to reach a = 1.
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Figure 4. Several families for different potentials.

On the other side, consider also N = 4 as displayed in Fig. 4.1. Looking at
the small loop in the upper part, the values a=2, 1.4, 1.1 and 1 have been used.
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Decreasing a the size of that loop decreases. The family can be continuated by
decreasing a again as shown in Fig. 4.2, but for a � 0.98267 it has a s-n and the
continuation requires an increase of a. The values shown are a = 1, 0.98267, 1 and
1.05. In particular there are two very close solutions for a = 1 and the solution for
a = 1.05 is extremely close to a collision.

Therefore, any proof of existence or non-existence of a particular kind of
solution, should be able to distinguish between very close values of a with different
properties.

All the solutions displayed in Fig. 4 are minima of the action, but continuation
has produced saddles for N = 5 (see [3]). An interesting question is to study what
happens to a path giving a local minimum when we travel it several times. In
particular we can consider a regular N -gon. The simplest example I have found
appears forN = 7 travelled twice. Hence we consider the same path with period 4π
instead of 2π. For a = 1 (the Newtonian case) it is no longer a local minimum. But
a nearby orbit (Fig. 3.10), with two slightly different loops, is a local minimum.
This subsists for a large range of values of a which contains [1, 2] and values beyond
a = 2. However, decreasing a there is again a s-n bifurcation close to a = −0.3046
and the continuation of the family requires to increase a.

All these difficulties are related to passage close to collisions. Assume that
ri,j becomes small. Then it is better to study the relative motion, that is, the
behavior of ri,j(t) (or r(t) for short) and the contribution of that passage to the
action. For simplicity we assume that all the other bodies are at finite distance.
Going to a collision r(t) = αtβ × (1+o(1)), where β = 2/(2+a), α depending also
on a, and the contribution to the action, going from r = r∗ to r = 0 is given in (6).
In the Newtonian case, after passing close to a collision the two bodies (moving
near a degenerate ellipse) essentially “bounce”. This can be seen, using blow up,
as a change by 2π in the argument of r(t). For a general 0 < a < 2 the variation
of the argument is 1/(2− a) revolutions. This shows why for a = 2 − 1/n, n ∈ N

the collision can be regularized by bouncing and for a = 2− 2/(2n+ 1)n ∈ N by
“crossing” through the collision. In the limit the bodies give an integer or half-
integer number of revolutions around the common center of mass. Approaching
a = 2 the number of revolutions increases. The cases a ≥ 2 behave as a “black
hole” concerning collisions.

A local analysis of a passage close to collision shows the following:
Assume we have to connect two points P1 and P2 with |P1| = |P2| small by

means of a solution ri,j(t) of the two-body problem with potential r−a, a ∈ (0, 2).
Let δ be the variation (in revolutions) of the argument of ri,j(t) from one point to
the other. Let Aδ be the minimum of the action along this path when we consider
all values of the energy. We can also connect these points going from P1 to collision
and then to P2 by ejection, matching two solutions of the problem. Then the action
takes the value Ac = 2Abinary collision as given in (6) with r = |P1| in this formula.

Proposition 6.1. Ac < Aδ if and only if δ > 1/(2− a).
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That is, the passage through collision is cheaper in terms of action only for
large variations of the argument of r. Furthermore, if δ < 1/(2 − a) the value Aδ

is achieved for h = 0.
This seems to explain why a small loop inside a large one cannot exists for the

Newtonian potential, as shown in Fig. 4.3. The shape of the curve forces a variation
of the argument larger than admissible without collisions. Of course, a complete
prove requires estimates on the effect of all other bodies. It also suggest the

Conjecture 6.2. All linear direct chains exists for a = 1.

There are some special chains. For N odd we can look for a symmetric eight
shape curve having initially one body at the the origin. An example is Fig. 3.8
with N = 19. Another special case is a chain with �j = j, j = 1, . . . , N − 2. In
both examples it seems that the curves tend (after suitable scalings) to some limit.

7. Numerical Methods

We are faced to several problems: approximation of a choreography, refinement,
continuation with varying exponent a and also the computation of good approxi-
mations of the Poincaré map around a periodic solution. In fact last topic has been
applied only to the eight with N = 3. The tools for continuation are standard. I
refer to [9] for the description, applications and analysis of the bifurcations.

7.1. Implementing the variational method

The function q can be approximated by a function q̂, either a trigonometrical
polynomial, the values at a set of equiespaced points or some other method. Let
us denote as P ∈ RM the finite set of parameters needed for the approximation.
Then the action A as in (3) is approximated by a discretized map Â : RM → R,
where the integral is computed by a numerical quadrature formula. Due to the
action of Z/NZ (which must be preserved by the discretization), it is enough to
do the integrals from 0 to 2π/N . Taking into account that collision-free solutions
are analytical, the trapezoid rule is highly convenient.

Then we proceed to minimize Â using a combination of variants of the gra-
dient method. The method has several

• Advantages: It is quite robust, and one can start from very rough ap-
proximations, like a few harmonics or a hand drawn curve. It is easy to
program, to use any potential, etc. Furthermore the gradient can be ob-
tained from the set P without need of numerical differentiation. It allows
for checks, looking for the invariance of the energy and for the value of the
residual acceleration: the difference between the acceleration of the masses
computed from q̂ and using (1).

• Inconveniences: Except in quite simple cases M has to be selected large,
specially if there are passages not too far from collision. Typical values
of M range in [103, 104]. Furthermore Â is a very flat function, with lots
of extrema. The number of iterations to achieve a good approximation is
also in [103, 104]. This slows down the process.
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The method detects clearly passages close to saddle points of Â. This can
be used in the future to try to locate these solutions. An alternative approach is
to implement numerically the mountain pass lemma, by following an arc between
two local minima under the gradient flow.

The variational technique do not provides direct information on the stability
properties of the periodic solutions.

7.2. Refinement of the solutions

Having some starting point, either provided by the variational method or from
a solution for a nearby value of the exponent a, we can try to use a Newton
method. Consider the values of zj, j = 1, . . . , N. The time 2π/N flow transports
body j to body j − 1, where the indices have to be considered in Z/NZ. This
can be converted immediately to the search of a solution of the equation G(Z) :=
Φ(2π/N, Z) − S(Z) = 0, where Z denotes all the zj and żj , Φ is the flow of (1)
and S is the shift of indices.

To solve G(Z) = 0 by Newton’s method one requires DZG(Z). This is ob-
tained by simultaneous integration of the system of ODE given by (1) and the
first variational equations. This can be cumbersome if N is large. For instance,
N = 100 leads, essentially, to a system of dimension 160, 000. The use of parallel
computers allows a dramatic reduction in the computing time, because the first
variational equations can be integrated by blocks.

One of the problems is that many solutions are quite unstable for N large
and suffer from passages close to collision. Also the bassin of convergence of the
method can be small due to the existence of many nearby solutions. This can
be solved by looking not for the value of Z at time t = 0 but also at some
intermediate values 0 = t0 < t1 < . . . < tk−1 < tk = 2π/N. Let Zm the value at
tm. Then, instead of the equation G = 0, one has more equations, by requiring
Φ(tm+1; tm, Zm) − Zm+1 = 0. This is the well known parallel shooting method
(see, e.g., [10]). The system has increased size, but the equations do not require
additional effort and are better conditioned.

As a last comment, there is some freedom in the choice of initial time and
the system is invariant by rotation. As presented here the method will fail because
any solution has a related 6D family of solutions. So DZG(Z) will be singular.
This difficulty is skipped by selecting that, at t = 0, some of the bodies is on the
x axis with ẋ = 0 and by using the center of mass reduction.

This method allows for very accurate solutions, can be implemented with
arithmetics of large number of digits, in case of need, and, as the variational
equations are solved simultaneously, allows to obtain the stability properties as a
byproduct.

7.3. Computing the Poincaré map around a periodic solution

I want only comment that a routine providing an accurate computation of the
Poincaré map (using the suitable arithmetics and a high order Taylor recurrent
integration scheme) allows to obtain the coefficients of the polynomial expansion of
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the Poincaré map around the fixed point. It is enough to compute the coefficients
by numerical differentiation, using the suitable number of points for the higher
order derivatives. This procedure is also highly parallelizable. It is essential to
select the optimal step size for the differentiation, which depends on the order.
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