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Abstract. We discuss several examples of function field towers F0 ⊆ F1 ⊆
F2 ⊆ . . . over a finite field Fl, for which the limit (number of rational places
of Fn)/(genus of Fn) is positive.

1. Introduction

We consider algebraic function fields (of one variable) F/Fl whose constant field
is the finite field Fl of cardinality l. By g(F ) (resp. N(F )) we denote the genus
(resp. the number of rational places, i.e. places of degree one) of F/Fl. A tower of
function fields over Fl is a sequence

F = (F0, F1, F2, . . . )

of function fields Fi/Fl with the following properties:

i) F0 ⊆ F1 ⊆ F2 ⊆ . . .
ii) For each n ≥ 0, the extension Fn+1/Fn is separable of degree [Fn+1 :

Fn] > 1.
iii) g(Fj) ≥ 2, for some j ≥ 0.

It is easily seen that g(Fn) → ∞ for n → ∞, and that the limit

λ(F) := lim
n→∞

N(Fn)/g(Fn)

exists [5]. The Drinfeld-Vladut bound [1] gives an upper bound for λ(F),

λ(F) ≤
√

l − 1.

A tower F is said to be asymptotically good if λ(F) > 0; it is asymptotically
optimal if it attains the Drinfeld-Vladut bound λ(F) =

√
l − 1. These notions are

motivated by applications to coding theory: asymptotically good towers of function
fields yield asymptotically good sequences of (algebraic geometric) codes over Fl,
see [9, 10].

In general, it is hard to find asymptotically good towers of function fields. A
famous result of Ihara [7] and Tsfasman, Vladut and Zink states that certain (re-
ductions of) modular towers are asymptotically optimal, for l = q2 being a square.
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As a consequence, there exist sequences of codes having excellent error-correcting
properties: they improve the so-called Gilbert-Varshamov bound [10].

Another approach how to construct asymptotically good towers is the method
of class field towers which was introduced by Serre [8]. Class field towers are, how-
ever, not explicit, and modular towers require deep results from algebraic geometry.

It is therefore desirable to give a more elementary construction of asymp-
totically good towers of function fields. In the following I will present some joint
results with A. Garćıa.

2. The Method

We begin with some simple observations on the asymptotic behaviour of a tower
of function fields.

Proposition 2.1. A tower F = (F0, F1, F2, . . . ) of function fields Fi/Fl is asymp-
totically good if and only if there exists constants c1, c2 > 0 such that

g(Fn) ≤ c1 · [Fn : F0], and (A)

N(Fn) ≥ c2 · [Fn : F0] (B)

hold for all n ≥ 0.

Proof. Obviously conditions (A) and (B) imply that F is asymptotically good.
Conversely we assume now that F is asymptotically good. For n ≥ j ≥ 0, the
Hurwitz genus formula yields a relation between the genera g(Fn) and g(Fj)

g(Fn) − 1 = [Fn : Fj ] · (g(Fj) − 1) +
1
2

deg(Diff(Fn/Fj))

≥ [Fn : Fj ] · (g(Fj) − 1),

where Diff(Fn/Fj) denotes the different divisor of Fn/Fj . On the other hand, we
have the trivial estimate

N(Fn) ≤ [Fn : F0] · N(F0).

Conditions (A) and (B) follow easily from these two inequalities. �
The simplest way to ensure condition (B) is a follows:

Lemma 2.2. Suppose that S is a non-empty set of rational places of F0 such that
any P ∈ S splits completely in all extensions Fn/F0. Then

N(Fn) ≥ #(S) · [Fn : F0].

Condition (A) is more delicate: we need to know the behaviour of the de-
gree deg(Diff(Fn/F0)) of the different divisor of Fn/F0. The following notion is
useful: A place P of F0 is said to be unramified in F if P is unramified in all
extensions Fn/F0; otherwise P is called ramified in F . The set

V (F) = {P | P is a place of F0 which is ramified in F}
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is called the ramification locus of F . For a place P of F0 and a place Qn of Fn

lying above P , let d(Qn | P ) be the different exponent of Qn over P , and let

dn(P ) :=
∑

Qn|P
d(Qn | P ) · deg Qn.

Then we have

deg(Diff(Fn/F0)) =
∑

P∈V (F)

dn(P ).

Lemma 2.3. Assume that the ramification locus V (F) is finite, and that there exists
a constant c3 ≥ 0 such that

dn(P ) ≤ c3 · [Fn : F0] (A1)

for all P ∈ V (F) and all n ≥ 0. Then condition (A) holds.

Proof. This follows immediately from the Hurwitz genus formula. �

From here on we will consider towers F = (F0, F1, F2, . . . ) over Fl of the
following specific form: There are two rational functions f(Z), h(Z) ∈ Fl(Z) of the
same degree

deg f(Z) = deg h(Z) = m,

such that Fn = Fl(x0, x1, . . . , xn) with

h(xn+1) = f(xn) and [Fn+1 : Fn] = m (∗)
for all n ≥ 0 (as usual, the degree of a rational function f(Z) = f0(Z)/f1(Z)
with relatively prime polynomials f0(Z), f1(Z) ∈ Fl[Z] is defined as deg f(Z) =
max{deg f0(Z),deg f1(Z)}). Note that F0 = Fl(x0) is a rational function field, and
[Fn : F0] = mn for all n ≥ 0.

We need a criterion whether the ramification locus of this tower is finite.
Since ramification does not change in constant field extensions, we may replace Fl

by its algebraic closure F̄ and the fields Fn by F̄n := Fn · F̄, and we consider the
tower F̄ = (F̄0, F̄1, F̄2, . . . ) of function fields over F̄. For γ ∈ F̄ ∪ {∞} we denote
by “xi = γ” the unique place of the rational function field F̄(xi) which is a zero of
xi − γ (resp. the pole of xi if γ = ∞). Let

R0 := {γ ∈ F̄ ∪ {∞} | x0 = γ ramifies in F̄1/F̄0}.
This is a finite set since F̄1/F̄0 is separable.

Lemma 2.4. Notations as above. Assume in addition that R ⊆ F̄∪ {∞} is a finite
set which contains R0 and has the following property:

γ ∈ R ⇒ all roots of the equation f(Z) = h(γ) are in R. (A2)

Then all places x0 = α with α /∈ R are unramified in F̄ . In particular the ramifi-
cation locus V (F̄) and, a forteriori, the ramification locus V (F) are finite.
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Proof. Suppose that x0 = γ ∈ F̄∪{∞} is ramified in F̄ . Then there is some n ≥ 0
and a place Qn of F̄n lying above x0 = γ which ramifies in the extension F̄n+1/F̄n.
The restriction of Qn to F̄(xn) is of the form xn = α with α ∈ F̄∪ {∞}. Since Qn

ramifies in F̄n+1/F̄n, the place xn = α ramifies in the extension F̄(xn, xn+1)/F̄(xn),
hence α ∈ R0. By condition (A2) we conclude that γ ∈ R. �

We summarize: For a tower F as defined in (∗), the two conditions (A1) and
(A2) imply condition (A).

3. Examples

In this section we describe some examples of towers of the form (∗) explicitly.

3.1. Tame towers

We say that a tower F = (F0, F1, F2, . . . ) over Fl is tame if for all n ≥ 0 and all
places Qn of Fn, the ramification index e(Qn) in Fn/F0 is relatively prime to the
characteristic of Fl. This implies that

dn(P ) ≤ [Fn : F0] · deg P

for all places P of F0, i.e. condition (A1) holds in tame towers.

Example 3.1. (See [6]) Let l = pe with e ≥ 2 and m = (l − 1)/(p − 1). Consider
the tower F = (F0, F1, F2, . . . ) with Fn = Fl(x0, . . . , xn) and

xm
i+1 = 1 − (1 + xi)m for 0 ≤ i ≤ n − 1,

i.e. the functions f(Z) resp. h(Z) in (∗) are here

f(Z) = 1 − (1 + Z)m, h(Z) = Zm.

This is a tame tower, and it is easily seen that the place x0 = ∞ splits completely
in F . Condition (A2) from Lemma 2.4 holds for R := Fl, and we obtain

λ(F) ≥ 2
l − 2

> 0.

For l = 4 the tower is optimal, i.e. λ(F) =
√

l − 1.

Example 3.2. (See [6]) Let l = q2 > 4 be a square and Fn = Fl(x0, . . . , xn) with

xq−1
i+1 = 1 − (1 + xi)q−1 for 0 ≤ i ≤ n − 1.

Here again the pole of x0 splits completely, and we can take R := Fq in this case.
It follows that

λ(F) ≥ 2
q − 2

> 0.

The tower is optimal for l = 9.
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3.2. Wild towers

If some ramification index in the tower is divisible by the characteristic of Fl, the
tower F is said to be wild. In this case one does not have an obvious bound (A1)
for the different degrees.

Example 3.3. (See [5]) Let l = q2 be a square and Fn = Fl(x0, . . . , xn) with

xq
i+1 + xi+1 =

xq
i

xq−1
i + 1

for 0 ≤ i ≤ n − 1,

i.e. f(Z) = Zq/(Zq−1 + 1) and h(Z) = Zq + Z. Condition (A2) holds for R =
{γ ∈ Fl | γq +γ = 0}∪{∞} (this is easily checked), and condition (A1) holds with
c3 = 2 (this is non-trivial). All places x0 = α with α ∈ Fl \ R split completely in
this tower, and we conclude that

λ(F) = q − 1.

Hence the tower is optimal: it attains the Drinfeld-Vladut bound
√

l − 1.

Example 3.4. (See [4]) This example is similar to example 3.3. Again let l = q2 be
a square. Define Fn = Fl(x0, . . . , xn) by

xq
i+1x

q−1
i + xi+1 = xq

i for 0 ≤ i ≤ n − 1.

Although this is not precisely of the form (∗), one can determine ramification
and rational places in an analogous manner. One obtains that λ(F) = q−1, i.e. this
tower is also optimal. It can be shown that example 3.3 is in fact a subtower of
example 3.4 (see [5]).

For more information about the examples of this section see N. Elkies’ pa-
per [2] in this volume.
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