Explicit Constructions of Towers of Function Fields with Many Rational Places

Henning Stichtenoth

Abstract. We discuss several examples of function field towers $F_0 \subseteq F_1 \subseteq F_2 \subseteq \ldots$ over a finite field \mathbb{F}_l , for which the limit (number of rational places of F_n)/(genus of F_n) is positive.

1. Introduction

We consider algebraic function fields (of one variable) F/\mathbb{F}_l whose constant field is the finite field \mathbb{F}_l of cardinality l. By g(F) (resp. N(F)) we denote the genus (resp. the number of rational places, i.e. places of degree one) of F/\mathbb{F}_l . A tower of function fields over \mathbb{F}_l is a sequence

$$\mathcal{F} = (F_0, F_1, F_2, \dots)$$

of function fields F_i/\mathbb{F}_l with the following properties:

- i) $F_0 \subseteq F_1 \subseteq F_2 \subseteq \ldots$
- ii) For each $n \ge 0$, the extension F_{n+1}/F_n is separable of degree $[F_{n+1} : F_n] > 1$.
- iii) $g(F_j) \ge 2$, for some $j \ge 0$.

It is easily seen that $g(F_n) \to \infty$ for $n \to \infty$, and that the limit

$$\lambda(\mathcal{F}) := \lim_{n \to \infty} N(F_n) / g(F_n)$$

exists [5]. The Drinfeld-Vladut bound [1] gives an upper bound for $\lambda(\mathcal{F})$,

$$\lambda(\mathcal{F}) \le \sqrt{l} - 1.$$

A tower \mathcal{F} is said to be asymptotically good if $\lambda(\mathcal{F}) > 0$; it is asymptotically optimal if it attains the Drinfeld-Vladut bound $\lambda(\mathcal{F}) = \sqrt{l} - 1$. These notions are motivated by applications to coding theory: asymptotically good towers of function fields yield asymptotically good sequences of (algebraic geometric) codes over \mathbb{F}_l , see [9, 10].

In general, it is hard to find asymptotically good towers of function fields. A famous result of Ihara [7] and Tsfasman, Vladut and Zink states that certain (reductions of) modular towers are asymptotically optimal, for $l = q^2$ being a square.

H. Stichtenoth

As a consequence, there exist sequences of codes having excellent error-correcting properties: they improve the so-called Gilbert-Varshamov bound [10].

Another approach how to construct asymptotically good towers is the method of class field towers which was introduced by Serre [8]. Class field towers are, however, not explicit, and modular towers require deep results from algebraic geometry.

It is therefore desirable to give a more elementary construction of asymptotically good towers of function fields. In the following I will present some joint results with A. García.

2. The Method

We begin with some simple observations on the asymptotic behaviour of a tower of function fields.

Proposition 2.1. A tower $\mathcal{F} = (F_0, F_1, F_2, ...)$ of function fields F_i/\mathbb{F}_l is asymptotically good if and only if there exists constants $c_1, c_2 > 0$ such that

$$g(F_n) \le c_1 \cdot [F_n : F_0], \quad and \tag{A}$$

$$N(F_n) \ge c_2 \cdot [F_n : F_0] \tag{B}$$

hold for all $n \geq 0$.

Proof. Obviously conditions (A) and (B) imply that \mathcal{F} is asymptotically good. Conversely we assume now that \mathcal{F} is asymptotically good. For $n \geq j \geq 0$, the Hurwitz genus formula yields a relation between the genera $g(F_n)$ and $g(F_j)$

$$g(F_n) - 1 = [F_n : F_j] \cdot (g(F_j) - 1) + \frac{1}{2} \operatorname{deg}(\operatorname{Diff}(F_n/F_j)) \\ \ge [F_n : F_j] \cdot (g(F_j) - 1),$$

where $\text{Diff}(F_n/F_j)$ denotes the different divisor of F_n/F_j . On the other hand, we have the trivial estimate

$$N(F_n) \le [F_n : F_0] \cdot N(F_0).$$

Conditions (A) and (B) follow easily from these two inequalities.

The simplest way to ensure condition (B) is a follows:

Lemma 2.2. Suppose that S is a non-empty set of rational places of F_0 such that any $P \in S$ splits completely in all extensions F_n/F_0 . Then

$$N(F_n) \ge \#(\mathcal{S}) \cdot [F_n : F_0].$$

Condition (A) is more delicate: we need to know the behaviour of the degree deg(Diff(F_n/F_0)) of the different divisor of F_n/F_0 . The following notion is useful: A place P of F_0 is said to be unramified in \mathcal{F} if P is unramified in all extensions F_n/F_0 ; otherwise P is called ramified in \mathcal{F} . The set

 $V(\mathcal{F}) = \{P \mid P \text{ is a place of } F_0 \text{ which is ramified in } \mathcal{F}\}$

is called the ramification locus of \mathcal{F} . For a place P of F_0 and a place Q_n of F_n lying above P, let $d(Q_n \mid P)$ be the different exponent of Q_n over P, and let

$$d_n(P) := \sum_{Q_n \mid P} d(Q_n \mid P) \cdot \deg Q_n \cdot$$

Then we have

$$\deg(\operatorname{Diff}(F_n/F_0)) = \sum_{P \in V(\mathcal{F})} d_n(P).$$

Lemma 2.3. Assume that the ramification locus $V(\mathcal{F})$ is finite, and that there exists a constant $c_3 \geq 0$ such that

$$d_n(P) \le c_3 \cdot [F_n : F_0] \tag{A1}$$

for all $P \in V(\mathcal{F})$ and all $n \geq 0$. Then condition (A) holds.

Proof. This follows immediately from the Hurwitz genus formula. \Box

From here on we will consider towers $\mathcal{F} = (F_0, F_1, F_2, ...)$ over \mathbb{F}_l of the following specific form: There are two rational functions $f(Z), h(Z) \in \mathbb{F}_l(Z)$ of the same degree

$$\deg f(Z) = \deg h(Z) = m,$$

such that $F_n = \mathbb{F}_l(x_0, x_1, \dots, x_n)$ with

$$h(x_{n+1}) = f(x_n)$$
 and $[F_{n+1}:F_n] = m$ (*)

for all $n \ge 0$ (as usual, the degree of a rational function $f(Z) = f_0(Z)/f_1(Z)$ with relatively prime polynomials $f_0(Z), f_1(Z) \in \mathbb{F}_l[Z]$ is defined as deg $f(Z) = \max\{\deg f_0(Z), \deg f_1(Z)\}$). Note that $F_0 = \mathbb{F}_l(x_0)$ is a rational function field, and $[F_n: F_0] = m^n$ for all $n \ge 0$.

We need a criterion whether the ramification locus of this tower is finite. Since ramification does not change in constant field extensions, we may replace \mathbb{F}_l by its algebraic closure $\overline{\mathbb{F}}$ and the fields F_n by $\overline{F}_n := F_n \cdot \overline{\mathbb{F}}$, and we consider the tower $\overline{\mathcal{F}} = (\overline{F}_0, \overline{F}_1, \overline{F}_2, ...)$ of function fields over $\overline{\mathbb{F}}$. For $\gamma \in \overline{\mathbb{F}} \cup \{\infty\}$ we denote by " $x_i = \gamma$ " the unique place of the rational function field $\overline{\mathbb{F}}(x_i)$ which is a zero of $x_i - \gamma$ (resp. the pole of x_i if $\gamma = \infty$). Let

$$R_0 := \{ \gamma \in \overline{\mathbb{F}} \cup \{ \infty \} \mid x_0 = \gamma \text{ ramifies in } F_1 / F_0 \}.$$

This is a finite set since \bar{F}_1/\bar{F}_0 is separable.

Lemma 2.4. Notations as above. Assume in addition that $R \subseteq \overline{\mathbb{F}} \cup \{\infty\}$ is a finite set which contains R_0 and has the following property:

$$\gamma \in R \Rightarrow all \text{ roots of the equation } f(Z) = h(\gamma) \text{ are in } R.$$
 (A₂)

Then all places $x_0 = \alpha$ with $\alpha \notin R$ are unramified in $\overline{\mathcal{F}}$. In particular the ramification locus $V(\overline{\mathcal{F}})$ and, a forteriori, the ramification locus $V(\mathcal{F})$ are finite.

H. Stichtenoth

Proof. Suppose that $x_0 = \gamma \in \overline{\mathbb{F}} \cup \{\infty\}$ is ramified in $\overline{\mathcal{F}}$. Then there is some $n \geq 0$ and a place Q_n of \overline{F}_n lying above $x_0 = \gamma$ which ramifies in the extension $\overline{F}_{n+1}/\overline{F}_n$. The restriction of Q_n to $\overline{\mathbb{F}}(x_n)$ is of the form $x_n = \alpha$ with $\alpha \in \overline{\mathbb{F}} \cup \{\infty\}$. Since Q_n ramifies in $\overline{F}_{n+1}/\overline{F}_n$, the place $x_n = \alpha$ ramifies in the extension $\overline{\mathbb{F}}(x_n, x_{n+1})/\overline{\mathbb{F}}(x_n)$, hence $\alpha \in R_0$. By condition (A₂) we conclude that $\gamma \in R$.

We summarize: For a tower \mathcal{F} as defined in (*), the two conditions (A₁) and (A₂) imply condition (A).

3. Examples

In this section we describe some examples of towers of the form (*) explicitly.

3.1. Tame towers

We say that a tower $\mathcal{F} = (F_0, F_1, F_2, ...)$ over \mathbb{F}_l is tame if for all $n \ge 0$ and all places Q_n of F_n , the ramification index $e(Q_n)$ in F_n/F_0 is relatively prime to the characteristic of \mathbb{F}_l . This implies that

$$d_n(P) \le [F_n : F_0] \cdot \deg P$$

for all places P of F_0 , i.e. condition (A₁) holds in tame towers.

Example 3.1. (See [6]) Let $l = p^e$ with $e \ge 2$ and m = (l-1)/(p-1). Consider the tower $\mathcal{F} = (F_0, F_1, F_2, ...)$ with $F_n = \mathbb{F}_l(x_0, ..., x_n)$ and

$$x_{i+1}^m = 1 - (1 + x_i)^m$$
 for $0 \le i \le n - 1$,

i.e. the functions f(Z) resp. h(Z) in (*) are here

$$f(Z) = 1 - (1+Z)^m, \ h(Z) = Z^m.$$

This is a tame tower, and it is easily seen that the place $x_0 = \infty$ splits completely in \mathcal{F} . Condition (A₂) from Lemma 2.4 holds for $R := \mathbb{F}_l$, and we obtain

$$\lambda(\mathcal{F}) \ge \frac{2}{l-2} > 0.$$

For l = 4 the tower is optimal, i.e. $\lambda(\mathcal{F}) = \sqrt{l} - 1$.

Example 3.2. (See [6]) Let $l = q^2 > 4$ be a square and $F_n = \mathbb{F}_l(x_0, \ldots, x_n)$ with

$$x_{i+1}^{q-1} = 1 - (1+x_i)^{q-1}$$
 for $0 \le i \le n-1$.

Here again the pole of x_0 splits completely, and we can take $R := \mathbb{F}_q$ in this case. It follows that

$$\lambda(\mathcal{F}) \ge \frac{2}{q-2} > 0.$$

The tower is optimal for l = 9.

3.2. Wild towers

If some ramification index in the tower is divisible by the characteristic of \mathbb{F}_l , the tower \mathcal{F} is said to be wild. In this case one does not have an obvious bound (A₁) for the different degrees.

Example 3.3. (See [5]) Let $l = q^2$ be a square and $F_n = \mathbb{F}_l(x_0, \dots, x_n)$ with $x_{i+1}^q + x_{i+1} = \frac{x_i^q}{x_i^{q-1} + 1}$ for $0 \le i \le n - 1$,

i.e. $f(Z) = Z^q/(Z^{q-1}+1)$ and $h(Z) = Z^q + Z$. Condition (A₂) holds for $R = \{\gamma \in \mathbb{F}_l \mid \gamma^q + \gamma = 0\} \cup \{\infty\}$ (this is easily checked), and condition (A₁) holds with $c_3 = 2$ (this is non-trivial). All places $x_0 = \alpha$ with $\alpha \in \mathbb{F}_l \setminus R$ split completely in this tower, and we conclude that

$$\lambda(\mathcal{F}) = q - 1.$$

Hence the tower is optimal: it attains the Drinfeld-Vladut bound $\sqrt{l} - 1$.

Example 3.4. (See [4]) This example is similar to example 3.3. Again let $l = q^2$ be a square. Define $F_n = \mathbb{F}_l(x_0, \ldots, x_n)$ by

$$x_{i+1}^q x_i^{q-1} + x_{i+1} = x_i^q \quad for \quad 0 \le i \le n-1.$$

Although this is not precisely of the form (*), one can determine ramification and rational places in an analogous manner. One obtains that $\lambda(\mathcal{F}) = q-1$, i.e. this tower is also optimal. It can be shown that example 3.3 is in fact a subtower of example 3.4 (see [5]).

For more information about the examples of this section see N. Elkies' paper [2] in this volume.

References

- V. G. Drinfeld and S. G. Vladut, Number of points of an algebraic curve, Functional Anal. Appl., 17 (1983), 53–54.
- [2] N. Elkies, Explicit towers of drinfeld modular curves, this volume.
- [3] G. van der Geer, Curves over finite fields and codes, this volume.
- [4] A. García and H. Stichtenoth, A tower of Artin-Schreier extensions of function fields attaining the Drinfeld-Vladut bound, Invent. Math., 121 (1995), 211–222.
- [5] A. García and H. Stichtenoth, On the asymptotic behaviour of some towers of function fields over finite fields, J. Number Theory, 61 (1996), 248–273.
- [6] A. García, H. Stichtenoth and M. Thomas, On towers and composita of towers of function fields over finite fields, Finite Fields Appl., 3 (1997), 257–274.
- [7] Y. Ihara, Some remarks on the number of rational points of algebraic curves over finite fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 28 (1981), 721–724.
- [8] J. P. Serre, Rational points on curves over finite fields, Lecture Notes, Harvard University, 1985.

H. Stichtenoth

- [9] H. Stichtenoth, Algebraic Function Fields and Codes, Universitext, Springer-Verlag, Berlin, 1993.
- [10] M. A. Tsfasman, S. G. Vladut and T. Zink, Modular Curves, Shimura curves and Goppa codes, better than the Varshamov-Gilbert bound, Math. Nachr., 109 (1982), 21–28.

FB 6,

Mathematik und Informatik, Universität GH Essen, 45117 Essen, Germany *E-mail address*: stichtenoth@uni-essen.de

6