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Abstract. In this paper we describe a new method for image denoising. We
analyze statistical properties of the wavelet coefficients of natural images. It
turns out that there is a strong local covariance structure introduced by the
edges. We suggest a model for this covariance which allows us to estimate it
from the noisy image. Then Wiener filter is employed in order to remove the
noise.

We compare our approach to other noise removal techniques. Wiener-
wavelet denoising produces superior results both visually and in terms of mean
square error.

1. Introduction

A good model of the signal statistics is essential in many applications. This pa-
per describes a simple and effective model for the covariance structure of natural
images. We use this model for noise removal.

There are two powerful techniques to reduce the noise level in a signal: Wiener
filtering [3] and wavelet thresholding [2]. Wiener filtering is a linear procedure.
Wavelet thresholding is nonlinear. Classical versions of both methods tend to blur
edges in images. We try to blend these two approaches in order to improve the
performance. Our idea is to apply Wiener filter to blocks of wavelet coefficients.
This requires an estimate of the covariance matrix of each block. We obtain it
adaptively which makes the whole procedure nonlinear (similar to thresholding).

Many authors argue that the distribution of wavelet coefficients of images
is strongly non-Gaussian. In particular the histogram has a sharp peak at zero.
Common approach is to model the distribution as a generalized Gaussian e−|y/λ|p

[1, 4, 6, 7, 8]. Instead of modeling statistics of all wavelet coefficients together we
suggest that each subband has slightly different statistics. Moreover, it is important
to concentrate on blocks of wavelet coefficients.

Why do we choose to work with blocks? It is know that the wavelet trans-
form acts as an edge detector. In images edges represent features. Each feature
corresponds to a block of wavelet coefficients. Working with these blocks is natural
in order to preserve the edges (features) better.
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It can be proved that if both the signal and the noise are Gaussian then
Winer filtering is the best possible mean square estimator. Our approach is to
assume that in each subband blocks of wavelet coefficients are Gaussian vectors
with slowly changing covariance matrix. We concentrate on creating a model for
the covariance of the blocks and hope that Wiener filtering will be close to optimal.
Experimental results presented in section 5 confirm our point of view.

2. Wiener Filter

Suppose a vector S is corrupted by Gaussian white noise with variance σ2 and
mean 0, X = S + σZ. Wiener filtering is the following linear procedure:

X̂ =
∑
m

β2
m

β2
m + σ2

〈X,gm〉gm . (1)

Here βm and gm are eigenvalues and eigenvectors of the covariance matrix
(Karhuen-Loeve transform) of S. If S is Gaussian then X̂ is the best mean square
estimate of S (see for example [3]). In order to apply Wiener filter one needs to es-
timate the covariance matrix (Karhuen-Loeve transform) of the signal. We develop
a model for the block covariance structure in the next section.

3. Model of Local Covariance

It is known that wavelet transform has good decorrelating properties and is a
reasonable approximation to the Karhuen-Loeve basis of images. Nevertheless,
wavelet coefficients are highly structured. Figure 1 shows 512 by 512 fingerprint
image and its 256 by 256 horizontal detail wavelet subband.

fingerprint 512 image, 256 gray scales

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

50 100 150 200 250

50

100

150

200

250

Figure 1. Fingerprint image and its horizontal detail wavelet subband.

One can see that large wavelet coefficients (lighter in color) correspond to
edges of the original image. Also, because it is the horizontal detail subband, large
coefficients tend to align horizontally . It is reasonable to assume that there is
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Figure 2. Covariance matrix of 4 by 8 block of wavelet coeffi-
cients estimated from the horizontal detail subband of the finger-
print image.

correlation within the rows. On the other hand, edges are mostly local and only a
few adjacent coefficients should be correlated.

Figure 2 presents covariance matrix of 4 by 8 block of wavelet coefficients
estimated from the horizontal detail subband of the fingerprint image. Lighter color
corresponds to the elements with larger absolute value. One can see that there is
a strong correlation between adjacent coefficients within rows. This confirms our
hypothesis.

Figure 2 gives an idea how the block covariance structure of the horizontal
detail subband should look like. Nevertheless, it would be an oversimplification to
use the same covariance matrix for all blocks. Coefficients are correlated along and
decorrelated across the edges. A block without edges should be weakly correlated
while a block with many edges should exhibit strong correlation structure of the
form similar to the one shown in figure 2. We would like to distinguish between
these two types of blocks.

Suppose a vector Xj corresponds to a block of noisy wavelet coefficients
belonging to a given subband. We suggest the following model for its covariance
matrix Cj :

Cj = σ2I + γjB . (2)

Here σ2 is the variance of the noise, γj is a parameter which has to be estimated
from the data, I is the identity matrix. The covariance matrix Cj has two parts.
σ2I represents the contribution of the noise (the transform is orthogonal and the
wavelet coefficients of the noise are decorrelated). γjB is the contribution of the
edges. Matrix B characterizes the local covariance structure of noise-free wavelet
coefficients of the particular subband. Figure 2 gives an example of such matrix. We
assume that each block Xj has the same “amount” of noise but different “amount”
of edges proportional to γj . This parameter changes from block to block.
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Parameter γj can be estimated using maximum likelihood method. Assuming
that Xj is Gaussian with zero mean and covariance Cj ,

Xj ∼ 1
(2π)n/2|Cj |1/2

e−XT C−1
j X/2 =

1
(2π)n/2|Cj |1/2

e−XT (σ2I+γjB)−1X/2

we obtain the likelihood functional

L(Yj) = − 1
2

ln |Cj | −
1
2
Yj(σ2I + γjΛ)−1Yj =

− 1
2

n∑
k=1

ln(σ2 + γjλk) − 1
2

n∑
k=1

y2
k

σ2 + γjλk
.

(3)

Here |C| = detC, yk, k = 1, . . . , n are components of the vector Yj = QXj , λk

are eigenvalues of B, and Q is the matrix of eigenvectors of B. Differentiating (3)
by γj and setting the derivative equal to zero we obtain an equation for γj :

1
σ2

n∑
k=1

λky2
k

(1 + γjλk)2
−

n∑
k=1

λk

1 + γjλk
= 0 . (4)

This equation can be solved numerically.

3.1. Estimate of matrix B
In order to solve (4) eigenvalues and eigenvectors of the matrix B are needed. By
our model B characterizes average covariance structure of the given subband. We
estimate it from the mean of XjXT

j using model (2).

1
n

∑
j

XjXT
j = σ2I + βB .

Multiplication of B by a constant changes only normalization and is not important.
We set B to be the difference between 1

n

∑
j XjXT

j and σ2I:

B =
1
n

∑
j

XjXT
j − σ2I . (5)

4. Denoising Algorithm

Using results from previous sections we suggest the following procedure for image
denoising.

1. Perform orthogonal wavelet decomposition of an image corrupted by Gauss-
ian white noise.

2. For each detail (high pass) subband
a) Estimate general block covariance matrix B using (5).
b) Split the subband into non-intersecting blocks Xj. Estimate covariance

matrix Cj of each block in the form (2). Compute coefficients γj by
solving equations (4) numerically.

c) Apply Wiener filter (1) to each block Xj using covariance matrix Cj.
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3. Keep scaling (low pass) coefficients unchanged.
4. Reconstruct the image from denoised wavelet coefficients.
We call this algorithm Wiener-wavelet denoising.

5. Numerical Results

We implemented Wiener-wavelet denoising and compared it to two other methods,
MATLAB’s wiener2.m routine and wavelet soft thresholding.

wiener2.m uses a pixel-wise adaptive Wiener method based on statistics
estimated from a local neighborhood of each pixel. In all experiments we chose
neighborhood such that the root mean square error (rmse) was minimal.

Value of the threshold in wavelet thresholding was optimized in order to
produce the smallest possible rmse.

We used Daubechies least asymmetric orthogonal wavelets with 8 coefficients
both in Wiener-wavelet and thresholding methods.

Table 1 compares peak signal to noise ratios (PSNR) obtained by these three
methods for different images (PSNR= 20 log10

255
rmse ). Wiener-wavelet denoising

always gave the best results.

Lenna Barbara Boats Yogi
noise 20.16db 20.16db 14.14db 14.14db
thresholding 27.93db 24.00db 23.90db 21.38db
wiener2.m 28.13db 24.28db 23.94db 22.18db
Wiener-wavelet 29.53db 25.19db 24.80db 22.81db

Table 1. PSNR obtained by different denoising methods.

From figure 3 one can see that in the presence of strong noise Wiener-wavelet
method preserves edges better. Careful examination shows that some visual infor-
mation is lost in the noisy image and can be recovered only from Wiener-wavelet
denoised image.

6. Conclusions

This paper presents a new technique for image denoising. We assume that blocks
of wavelet coefficients are Gaussian with slowly changing covariance matrix. We
develop a model for the covariance and use it for Wiener filtering.

In almost all experiments our method produces rmse lower than other meth-
ods. Visually Wiener-wavelet method preserves the edges better.

In case of white Gaussian noise with unknown variance Wiener-wavelet de-
noising allows easy and accurate estimate of the noise variance. If the covariance
structure of the noise is know it can be easily taken into account.
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original image noisy image

soft thresholding wiener2.m Wiener-wavelet method

Figure 3. Visual comparison of different denoising methods.

There is another possible modification of our covariance model. Instead of
estimating γj as a deterministic parameter one can model it as a random variable.
Similar approach is adopted in [8]. We also would like to mention an independent
work [5]. There image wavelet coefficients are modeled as a scalar Gaussian variable
with spatially changing variance.

Acknowledgements

Author would like to thank Geoffrey Davis and Eero Simoncelli for useful discus-
sions and comments.

References

[1] G. Chang, B Yu and M. Vetterli, Spatially adaptive wavelet thresholding with context
modeling for image denoising, preprint (1998).

[2] D. Donoho, De-noising by soft-thresholding, IEEE Trans. on Info. Theory, 43 (1995),
613–627.

[3] S. Mallat, Wavelet Tour of Signal Processing, Academic Press (1998).



Wiener-Wavelet Denoising 7

[4] S. Mallat, A theory for multiresolution signal decomposition: the wavelet representa-
tion, IEEE Trans. Patttern Anal. Machine Intell., 11 (1989), 674–693.

[5] K. Mihcak, I. Kozintsev and K. Ramchadndran, Spatially adaptive statistical model-
ing of wavelet image coefficients and its application to denoising, preprint, (1999).

[6] P. Moulin and J. Liu, Analysis of multiresolution image denoising schemes using a
generalized Gaussian and complexity priors, IEEE Trans. Info. Theory, 45 (1999),
909–919.

[7] E. Simoncelli and E. Adelson, Noise removal via Bayesian wavelet coring, Proc.
IEEE ICIP, I (1996), 379–382.

[8] M. Wainwright and E. Simoncelli, Scale mixtures of Gaussians and the statistics of
natural images in: S. A. Solla, T. K. Leen, and K.-R. Müller, Eds., Advances in
Neural Information Processing Systems 12, (MIT Press, Cambridge MA) (2000).

Department of Mathematics & Computer Science,
Drexel University,
Philadelphia, PA 19104, USA
E-mail address: vstrela@mcs.drexel.edu


