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Abstract. We present a brief survey of results concerning self-interacting ran-
dom walks and self-repelling continuous random motions. A self-interacting
random walk (SIRW) is a nearest neighbour walk on the one-dimensional in-
teger lattice Z which starts from the origin and at each step jumps to a neigh-
bouring site, the probability of jumping along a bond being proportional to
w(number of previous jumps along that lattice bond), where w : N → R+ is
a monotone weight function. We consider various weight functions, the most
natural and most interesting one being w(n) = exp{−βn}, where β > 0 is a
fixed constant parameter. This weight function defines the so-called ‘myopic
self-repelling’ random walk. Other weight functions are also considered. We
present functional limit theorems for the local time processes of these random
walks and limit theorems for the position of the random walker at late times,
under anomalous scaling rate. A generalization of the Ray-Knight theory of
local time is in the background of these results.
In the second part of this note we present results concerning the construc-
tion and primary properties of a continuous, locally self-repelling process Xt.
The process is a.s. continuous and recurrent, it has a regular occupation time
density (local time) denoted Lt(x), and the self-repellence of its trajecto-
ries is achieved by the dynamical driving mechanism formally expressed as
dXt = −grad Lt(Xt)dt. This means that the process Xt is instantaneously
pushed in the direction of the decrease of its local time. The constructed
process is self-similar with scale-exponent ν = 2/3 and has non-trivial lo-
cal variation of order 3/2 (in contrast with the finite quadratic variation of
semi-martingales).
This note is an abridged version of the survey paper [16]. Full proofs of the
cited results can be found in [12]–[15] and [17].

1. Self-Interacting Random Walks on Z
The need for investigation of late-time asymptotics of random walks with long
memory arose naturally in the probability and statistical physics literature. See
e.g. [1, 2, 3, 6, 9, 10] etc. and the survey chapters of [7] and [8] for the historical
origins of the problems. We present a survey of results concerning the long time
asymptotics of self-interacting random walks on Z defined as follows: the walk Xi

starts from the origin of the lattice and at time i + 1 it jumps to one of the two
neighbouring sites of Xi, so that the probability of jumping along a bond of the
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lattice is proportional to

w(number of previous jumps along that bond)

where
w : N → R+

is a weight function to be specified later. Complicated long-time memory effects are
built up by the self-interaction mechanism driving these random walk. In papers
[12]–[15] we developed a method which allowed us to prove limit theorems for the
distributions of the late time position of a wide class of SIRWs.

1.1. Setup and main examples

Let N 3 i 7→ Xi ∈ Z be a nearest neighbour walk, starting from the origin of the
lattice. I.e. X0 = 0 and |Xi+1 −Xi| = 1 for any i ∈ N. For such a walk we define
the (edge) local time process in the most natural usual way:

Li(x) := #{j ∈ [0, i) : (Xj , Xj+1) = (x, x + 1) or (x + 1, x)}.

That is: Li(x) is the number of jumps across the edge 〈x, x+1〉 in either direction,
performed before time i.

Let w : N → R+ be a weight function, either monotone non-decreasing or
monotone non-increasing. The SIRW defined by the weight function w(·) is a
nearest neighbour walk Xi on Z with X0 = 0 and governed by the law

P
(
Xi+1 = Xi + 1

∣∣∣ Xi
0

)
=

w
(
Li(Xi)

)
w

(
Li(Xi)

)
+ w

(
Li(Xi − 1)

)
= 1−P

(
Xi+1 = Xi − 1

∣∣∣ Xi
0

)
, (1)

where we used the shorthand notation Xi
0 := (X0, X1, . . . , Xi). In plain words:

the random walker jumps to one of the two nearest neighbour sites so that the
probability of jumping across an edge of the lattice is always proportional to the
weight associated to the number of previous jumps across that edge. It is intuitively
clear that monotone non-increasing weight functions define self-repelling walks
while monotone non-decreasing weight functions define self-attracting walks. It is
also clear that in the conditional jump probabilities (1) the full past history of the
walk plays an important role, so these walks have extremely long memory, they are
strongly non-Markovian. So, one should expect interesting, non-trivial long time
asymptotic behaviour.

It turns out that the asymptotic behaviour of the SIRW is very sensitive to
the choice of the weight function w(·). The following classes of weight functions
have been considered:

(1) In the exponentially self-repelling case

w(n) = exp(−βn), β > 0,

the random walk scales like n−2/3Xn (see [12]).
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(2) The subexponentially self-repelling random walk governed by

w(n) = exp(−βnκ), β > 0, κ ∈ (0, 1)

scales like n−(κ+1)/(κ+2)Xn (see [13]).
(3) In case of power law self-interaction

w(n) =
1

1− α

(n

2

)α

− B

(1− α)2
(n

2

)α−1

+O(nα−2) , B ∈ R, α ∈ (−∞, 1) ,

We found three very different sub-cases (see [14]): If α ∈ (−∞, 0) (polynomial
self-repellence), then the correct scaling is n−1/2Xn but the limit law is not
gaussian and does not depend essentially on the parameters. If α = 0 (asymp-
totic freedom), then the correct scaling is again n−1/2Xn but the limit law
will depend essentially on the value of

δ := 2w(0)−1 + 2
∞∑

j=1

(
w(2j)−1 − w(2j − 1)−1

)
.

For related results on the so-called random walk and Brownian motion per-
turbed at extrema see also [4, 5, 11, 18] etc.

(4) Finally, if α ∈ (0, 1) (weak reinforcement) then the walk scales like
n−(1−α)/(2−α)Xn (see [15]).

1.2. Limit theorems for the exponentially self-repelling random walk

Pars pro toto we present in some detail the main results (limit theorems) con-
cerning the ‘physically’ most interesting case, the so-called ‘true self-avoiding’ or
exponentially self-repelling walk.

For a nearest neighbour random walk N 3 i 7→ Xi ∈ Z we define the upcross-
ing, downcrossing processes:

Ui(x) :=#{j ∈ [0, i) : (Xj , Xj+1) = (x, x + 1)} ,

Di(x) :=#{j ∈ [0, i) : (Xj , Xj+1) = (x + 1, x)} , i ∈ N, x ∈ Z .

Clearly Li(x) := Ui(x) + Di(x). It is straightforward that for any i ≥ 0 we
have

i =
∑
y∈Z

Li(y) . (2)

The inverse local time processes are

TU
x,m := inf{i ∈ N : Ui(x) ≥ m} , TD

x,m := inf{i ∈ N : Di(x) ≥ m} .

Finally, the local time processes stopped at inverse local times are

Λ∗x,m(y) := LT∗x,m
(y) ,

Hereafter the superscript ∗ stands for either U or D. In Λ∗x,m(y) one should think
about x ∈ Z and m ∈ Z+ as fixed parameters and y ∈ Z variable. From (2) it
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follows that for any x ∈ Z and m ∈ N

T ∗x,m =
∑
y∈Z

Λ∗x,m(y) . (3)

The quantities defined above make perfectly good sense for any nearest neighbour
walk on Z.

We also need the reflected-absorbed Brownian motion process. Fix the pa-
rameters x ∈ R and h ∈ R+ and let R 3 y 7→ W (y) ∈ R be a two-sided standard
Brownian motion with W (0) = 0. Then

Λx,h(y) :=
∣∣W (y − x) + h

∣∣11{ω−x,h≤y≤ω+
x,h}

where

ω−x,h := sup
{
y < min{x, 0} :

∣∣W (y − x) + h
∣∣ = 0

}
,

ω+
x,h := inf

{
y > max{x, 0} :

∣∣W (y − x) + h
∣∣ = 0

}
.

In plain words: y 7→ Λx,h(y) is a two-sided Brownian motion starting at ‘time’
y = x from level Λx,h(x) = h which in the ‘time’ interval [min{x, 0},max{x, 0}] is
reflected at level 0 and outside this interval is absorbed at first hitting of level 0.
The total area under the curve y 7→ Λx,h(y) is

Tx,h :=
∫ ∞

−∞
Λx,h(y)dy =

∫ ω+
x,h

ω−x,h

Λx,h(y)dy .

If (x, h) ∈ R× R+ and (x, h) 6= (0, 0) the random variable Tx,h has an absolutely
continuous distribution. Its density is %(t, x, h) with Laplace transform (in the t
variable %̂(s, x, h):

%(t, x, h) :=
∂

∂t
P

(
Tx,h < t

)
, %̂(s, x, h) := s

∫ ∞

0

%(t;x, h)e−stdt .

We shall also use

π(t, x) :=
∫ ∞

0

%(t, x, h)dh , π̂(s, x) :=
∫ ∞

0

%̂(s, x, h)dh .

Scale invariance of Brownian motion implies:

α%(αt, α2/3x, α1/3h) = %(t, x, h) , α2/3π(αt, α2/3x) = π(t, x) ,

α%̂(α−1s, α2/3x, α1/3h) = %̂(s, x, h) , α2/3π̂(α−1s, α2/3x) = π̂(s, x) .

Theorem 1.1. Given t ∈ (0,∞) (respectively, s ∈ (0,∞)) fixed, (x, h) 7→ %(t, x, h)
(respectively, (x, h) 7→ %̂(s, x, h)) is a probability density on R× R+. That is:∫ ∞

−∞
π(t, x)dx = 1 =

∫ ∞

−∞
π̂(s, x)dx .

The following Ray-Knight-type invariance principle for the local time process
(stopped at inverse local times) and its corollary are the clue to the asymptotic
description of the self-interacting walk:
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Theorem 1.2. Let x ∈ R, h ∈ R+ be fixed and the superscript ∗ stand for either U
(upcrossing) or D (downcrossing). Then, as n →∞,

(
√

nσ)−1Λ∗[nx],[
√

nσh]([ny]) ⇒ Λx,h(y) ,

in the function space D(−∞,∞) endowed with the Skorohod topology.

Using the identity (3) we get the following:

Corollary 1.3. Under the same conditions(
n3/2σ

)−1
T ∗[nx],[

√
nσh] ⇒ Tx,h ,

Let s > 0 be fixed and θn a geometrically distributed stopping time which is
independent of the walk Xi,

P
(
θN = k

)
= (1− e−s/n)e−sk/n . (4)

The next statement is a limit theorem for the distribution of the location of the
walk Xi, stopped at the random stopping time θn, with n → ∞. It follows from
the conversion of the full information contained in the previous corollary.

Theorem 1.4. Let s > 0 and x ∈ R be fixed and θn a geometric stopping time,
independent of the walk Xi, distributed according to (4). Then, as n →∞,

P
(
n−2/3Xθn

< x
)
→

∫ x

−∞
π̂(σs, y)dy , (5)

Remarks 1.5. (1) In the original paper a slightly stronger statement was proved:
the local version of this limit theorem, i.e. pointwise convergence of the properly
defined density functions, rather than convergence of the distribution functions.

(2) The statement in theorem1.4 is a little bit short of stating the limit theorem
for deterministic time:

P
(
n−2/3X[nt] < x

)
→

∫ x

−∞
π(σ−1t, y)dy , (6)

In order to convert (5) to (6) some refined Tauberian argument would be
needed, which we were not able to push through. But, of course, we can conclude
that, if X[nt] obeys any limit law as n →∞, then (6) also must hold.

2. The True Self-Repelling Motion

2.1. Setup

In the previous section a limit theorem was stated for the one dimensional marginal
distributions of X

(n)
t := n−2/3X[nt], where Xj was the exponentially self-repelling

(or myopic self-avoiding) random walk on Z, defined by the weight function w(n) =
exp(−βn). Now we consider the problem of invariance principle, i.e. that of the
weak convergence of the process X

(n)
t , as n → ∞. The results presented in this

section are quoted from [17], where we constructed the presumed limit-process:



6 B. Tóth

a robust, self-similar stochastic process R+ 3 t 7→ Xt ∈ R, with all the natural
properties requested from a locally self-repelling continuous motion.

The following are the fundamental properties of the true self-repelling motion
Xt constructed in [17]:

Continuity, recurrence: Almost surely, X0 = 0, the process t 7→ Xt is continuous
on [0,∞) and for any x ∈ R, the set of times {t ≥ 0 : Xt = x} is unbounded.

Scaling: For all α > 0, (Xαt, t ≥ 0) and (α2/3Xt, t ≥ 0) are identical in law.

Local variation: For all ε > 0, define by induction θε
0 := 0 and for all n ≥ 1,

θε
n := inf{t > θε

n−1 : |Xt −Xθε
n−1

| = ε} .

Then, for all t ≥ 0,

P- lim
ε↓0

ε3/2 sup{n ≥ 0 : θε
n ≤ t} =

2√
π

t .

(Here and in the sequel P- lim stands for limit in probability.)

Occupation-time density: Almost surely, for all t ≥ 0, the occupation-time measure
of Xs on the time-interval [0, t] has a bounded density with respect to the Lebesgue
measure and this density has a continuous version that we denote by Lt(·). We
call Lt(x) the local time of X at time t and position x.

Markov property of (Xt, µt): The process (Xt, Lt(·))t≥0 ,or equivalently the pro-
cess (Xt, µt)t≥0, is a Markov process.

Locality: The self-interaction is local in the following sense: For all t ≥ 0, the law
of X just after t depends only on Lt restricted to the immediate neighbourhood of
the point Xt. In other words, the process Xt is ‘feeling’ only the self-interaction due
to the germ of its own past occupation-time measure at the points it is currently
visiting.

The following property is of crucial importance: it describes in proper math-
ematical terms the phenomenon of local self-repellence.

Dynamical driving mechanism: There exists a random set I ⊂ R+, which is a.s. of
full Lebesgue measure, such that for any T ∈ I

P- lim
ε↓0

∫ T

0

Ls(Xs + ε)− Ls(Xs − ε)
2ε

ds =

−XT +
1
4

(
sup

0≤s≤T
Xs + inf

0≤s≤T
Xs

)
. (7)

Unfortunately, we could prove (7) only for the random set of (stopping) times
I ⊂ R+. Actually, this property should hold for all T ∈ R+. Phenomenologically,
this equation states that the motion is driven by the negative gradient of the
local time at the actual position, as long as the moving point is in the interior
of the range swept in the past. This behaviour entitles us to call this process
‘truely self-repelling’. In addition, at the edges of this range an instantaneous
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partial reflection (moving boundary condition) is felt. Indeed: writing (7) formally
in differential form we find:

dXt = −∂Lt(Xt)
∂x

dt +
(

boundary effects at sup
0≤s≤t

Xs and inf
0≤s≤t

Xs

)
. (8)

Strictly speaking, (8) does not make sense mathematically: the local time process is
so singular that a ‘differential equation’ involving its gradient can not be rigorously
defined (Lt(·) has the same regularity properties as Brownian motion). Neverthe-
less, this formal way of writing may help the intuition about the dynamics of the
process. Note, that there is no ‘external noice’, or ‘external source of randomness’
in the driving mechanism. One could think naively that such a mechanism would
give rise to a deterministic motion. This is not the case: due to the extremely high
singularity of this “differential equation”, (8) has only truely stochastic solutions.

One of the main novelties of the process Xt is exactly the fact that it is
in striking contrast with our traditional intuition about a random motion being
driven by local drift and external noice.

The full proof of the results can be found in [17]. The construction and
derivation of key features of the process relies essentially on the construction and
analysis of system of independent coalescing Brownian paths, emerging from every
point of a two-dimensional space-time.

In the next subsection we present a not fully rigorous, phenomenological
derivation of the driving mechanism. For the technical parts of the construction
and analysis see the original publication.

2.2. Phenomenological derivation of the dynamical driving mechanism.

In [12] a limit theorem was proved, essentially for the distribution of n−2/3Xn as
n ↑ ∞, but the natural question of the asymptotics of the process

X
(N)
t := N−2/3X[Nt] , t ∈ R+ (9)

in the limit N ↑ ∞ remained open. In the following paragraphs we argue that, if the
sequence of processes t 7→ X

(N)
t converges in distribution to a process t 7→ X

(∞)
t , as

N ↑ ∞, then the limit process is driven by the gradient of its local time, as claimed
in (8). The forthcoming argument is based on a somewhat formal computation
and it is by no means mathematically rigorous, but it sheds light on the essential
phenomenon of local self-repellence.

Beside the scaled position process t 7→ X
(N)
t defined in (9) we define the

properly scaled local time process of the exponentially self-repelling walk

L
(N)
t (x) := N−1/3L[Nt]([N2/3x]) , t ∈ R+ , x ∈ R (10)

and we assume that the sequences of processes X
(N)
t and L

(N)
t (x) converge jointly

weakly (in some vague topological space):(
X

(N)
t , L

(N)
t (x)

)
⇒

(
X

(∞)
t , L

(∞)
t (x)

)
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where (t, x) 7→ L
(∞)
t (x) is assumed to be the local time of the process t 7→ X

(∞)
t .

Let Fn be the σ-algebra generated by (X0, . . . , Xn), then

E
(
Xn+1 −Xn

∣∣∣Fn

)
= − tanh

(
β(Ln(Xn)− Ln(Xn − 1))

)
Var

(
Xn+1 −Xn

∣∣∣Fn

)
= cosh−2

(
β(Ln(Xn)− Ln(Xn − 1))

)
.

So:

Xn +
n−1∑
k=0

tanh
(
β(Lk(Xk)− Lk(Xk − 1))

)
=: Mn (11)

is a martingale with quadratic variation process

〈M〉n =
n−1∑
k=0

cosh−2
(
β(Lk(Xk)− Lk(Xk − 1))

)
< n . (12)

Our object of study is the scaled form of (11):

N−2/3X[Nt] + N−2/3

[Nt]−1∑
k=0

tanh (β(Lk(Xk)− Lk(Xk − 1))) = N−2/3M[Nt] . (13)

The first term on the left-hand side of (13) is just X
(N)
t . From (12) in particular

it follows that for any T < ∞

P- lim
N↑∞

(
sup

0≤t≤T

∣∣∣N−2/3M[Nt]

∣∣∣) = 0 (14)

so that the right hand-side of (13) is asymptotically negligible. A formal compu-
tation of the second term on the left-hand side of (13) follows: the first two steps
are straightforward transformations using the definitions (9) and (10) of the scaled
process and scaled local time:

N−2/3

[Nt]−1∑
k=0

tanh
(
β(Lk(Xk)− Lk(Xk − 1))

)

=N−1

[Nt]−1∑
k=0

N1/3 tanh
(
β(LNk/N (N2/3X

(N)
k/N )− LNk/N (N2/3X

(N)
k/N − 1))

)

=N−1

[Nt]−1∑
k=0

N1/3 tanh
(
βN1/3(L(N)

k/N (X(N)
k/N )− L

(N)
k/N (X(N)

k/N −N−2/3))
)

.

The next step is the formal, non-rigorous one: we treat formally L
(N)
t (x) as a

smooth function and replace

L
(N)
t (x)− L

(N)
t (x− δx) by

∂L
(N)
t (x)
∂x

δx
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to get

N−2/3

[Nt]−1∑
k=0

tanh
(
β(Lk(Xk)− Lk(Xk − 1))

)
“=” N−1

[Nt]−1∑
k=0

N1/3 tanh
(
βN1/3N−2/3

∂L
(N)
k/N (X(N)

k/N )

∂x

)
“=” βN−1

[Nt]−1∑
k=0

∂L
(N)
k/N (X(N)

k/N )

∂x
+O(N−1/3)

“⇒” β

∫ t

0

∂L
(∞)
s (X(∞)

s )
∂x

ds . (15)

With the quotation marks “· · ·” we intend to emphasize that these last equalities
and convergence need more careful consideration. From (13), (14) and (15) we get

X
(∞)
t + const.

∫ t

0

∂L
(∞)
s (X(∞)

s )
∂x

ds = 0

which is indeed somewhat reminiscent of (7). The effect of ‘pushing the boundaries
of the range’ and the right constant in front of the gradient term can not be
recovered on this level of formal computations. We repeat again: this computation
is nothing like rigorous, but on the phenomenological level it is convincing.

The same reasoning (on the same level of ‘rigour’) can be applied to the
‘polymer model’ proposed by Durrett and Rogers in [6]:

Xt = Bt +
∫ t

0

{∫ s

0

f(Xs −Xu)du

}
ds

where f : R → R is a smooth function of compact support and satisfies f(−x) =
−f(x) and sgn(f(x)) = sgn(x). Defining X

(N)
t = N−2/3XNt, in the limit N →∞

f transforms into δ′ and the same dynamical driving mechanism is found.
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