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Abstract. Let R be an algebraically closed field of characteristic l �= p, let F
be a local non archimedean field of residual characteristic p, and let G be the
group of rational points of a connected reductive group defined over F . The
two main points in the search for a classification of the irreducible R-repre-
sentations of G is to try to prove that any irreducible cuspidal representation
is induced from an open compact subgroup and that the irreducible represen-
tations with a given inertial cuspidal support are classified by simple modules
for the Hecke algebra of a type. Over a field R which is not the complex field
new serious difficulties arise and the purpose of this article is to indicate a way
to avoid them. The mirabolic trick used when the group is GL(n, F ) does not
generalize but our new method is general and we can extend from the complex
case to R the results of Morris and Moy-Prasad for level 0 representations.
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1. Introduction

Let (K,σ) be an irreducible simple cuspidal R-type in GL(n, F ) as defined by
Bushnell and Kutzko, or a cuspidal R-type of level 0 in G as defined by Morris.
We consider also an irreducible extended maximal R-type (N,Λ). We denote by
ind the compact induction. We will prove:
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Theorem 1.1. 1) The irreducible R-representations of G which contain (K,σ)
are in bijection with the simple modules for the Hecke algebra of (K,σ) in
G.

2) indGN Λ is irreducible.

It is known that the Hecke algebra of (K,σ) in G is very closed to products of
affine Hecke R-algebras hence the construction of simple modules for affine Hecke
R-algebras is strongly related to the construction of irreducible R-representations
of G.

As a consequence one can extend to R-representations the complex theory of
representations of level 0 by Morris or by Moy and Prasad.

The theorem was already known for GL(n, F ) and lead to a complete clas-
sification of the irreducible R-representations of GL(n, F ) [10, 11]. But the proof
could not transfer to a general reductive group and the proof that we give here is
more simple and general.

When the characteristic of R is banal there is nothing to do. Indeed, if the
pro-order of the profinite group K is invertible in R, the representation indGK σ of
G is projective and 1) results from an easy lemma in algebra [10, I.6.3]. Let us
denote by Z the center of G. The group N contains Z and N/Z is profinite. If the
pro-order of N/Z is invertible in R, the category of R-representations of N where
Z acts by a given character is semi-simple, and EndRG indGN Λ � R implies the
irreducibility of indGN Λ.

In the general case the representation indGK σ is not projective, but 1) is true
if [11]:

1’) indGK σ is almost projective.
We denote by IrrRG the set of irreducible R-representations of G, modulo

isomorphism. The property 2) is true when (4.2):

2’) a) EndRG indGN Λ � R,
2’) b) if Λ is contained in π|N then Λ is a quotient of π|N , for any π ∈ IrrRG.

We denote by U the pro-p-radical of K. The quotient K/U is a finite reductive
group. In the GL(n, F )-case, we consider the Bushnell-Kutzko representations η ∈
IrrR(U), κ ∈ IrrR(K) (see the definition in the paragraph 8). In the level 0 case we
suppose that η, κ are trivial representations so that the notation becomes uniform.
We will compute the functor

σ → σ′ : ModRK/U → ModRK/U

such that the η-isotypic part of indGK κ ⊗ σ is isomorphic to κ ⊗ σ′. This func-
tor is the analogue of a well known functor: the parabolic induction followed by
the parabolic restriction in a reductive group. Parabolic groups are replaced by
parahoric subgroups or by Bushnell-Kutzko groups and the unipotent radical by
the pro-p-radical but: the representation of the pro-p-radical is not trivial in the
Bushnell-Kutzko case. We get an analogue of a classical formula for parabolics
originally due to Harish-Chandra for finite reductive groups and generalised by
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Casselman for p-adic groups. The precise results are given in the paragraphs 6, 7.
The following proposition is a corollary of this computation.

The groupN is attached to a maximal parahoric or Bushnell-Kutzko groupK.
In the level 0 case, the group N is the G-normalizer NG(K) of a maximal K and Λ
is an irreducible representation of NG(K) which contains σ. In the GL(n, F )-case,
there exists an extension E/F with E∗ ⊂ GL(n, F ) which normalises η and such
that N = KE∗ with K maximal, and Λ is an extension of σ to KE∗.

Proposition 1.2. (for any K) The action of K on the η-isotypic part of indGK σ
is isomorphic to κ ⊗ W where W is a direct sum of irreducible representations
conjugate to σ.

The action of N on the η-isotypic part of indGN Λ is isomorphic to Λ.

The properties 1’) and 2’) follow from the proposition. The theorem is proved.
The same method applies for a reductive finite group G and gives a new proof

of the almost projectivity of any R-representation of G parabolically induced from
a cuspidal irreducible representation [4]. This is done in the paragraph 5.

It is pleasure to thank Alberto Arabia for his work which lead to the simple
criterium of almost projectivity of indGK σ, which is basic in our proof.

2. Almost-Projectivity

The notion of almost projectivity was introduced by Dipper for finite groups and
is a particular case of the more general notion of quasi-projectivity.

LetR be a field and letA be anR-algebra. We consider the category Modtf (A)
(resp. Modotf (A)) of unital finite type left (resp. right) A-modules. A left module
is called a module.

Definition 2.1. A finite type unital A-module Q is called quasi-projective [11, A.3]
when for any two morphisms

Q
π ��
α

�� V

in Modtf (A) with π surjective, there exists β ∈ EndAQ such that α = π ◦ β.
It is called almost projective when there exists a surjective morphism π : P →

Q from a projective finite type unital A-module P such that for any morphism α ∈
HomA(P,Q), there exists β ∈ EndAQ with α = β ◦ π.

An almost projective module is quasi-projective [11, Proposition 7]. The fun-
damental property of quasi-projective modules is the following:
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Main Property. (Arabia [11, Appendice th. 10]) When Q is quasi-projective, the
functor

HomA(Q,−) : Modtf (A) → Modoft(EndAQ)

induces a bijection between
a) the isomorphism classes of simple A-modules V such that HomA(Q,V ) 	= 0

and
b) the isomorphism classes of simple right EndAQ-modules.

This functor is not in general an equivalence of category.

3. A Simple Criterium of Almost Projectivity

Let G be a locally profinite group, K an open compact subgroup of G, R a field and
σ an irreducible smooth R-representation of K which admits a projective cover in
ModRK.

We denote by

ModR(G) the category of smooth R-representations of G.
Vσ the σ-isotypic part of V ∈ ModR(G), i.e. the biggest RK-submodule of V

which is isomorphic to a direct sum ⊕Iσ.

The functor of compact induction indGK : ModR(K) → ModR(G) is exact
when G has an R-Haar measure, has a right ajoint (the restriction from G to K
denoted by π → π|K), respects projectivity and the property of beeing of finite
type [10, I.5.10, I.5.7, I.5.9].

Lemma 3.1. Suppose that the R-representation of G

Q = indGK σ

admits a K-equivariant direct decomposition Q = Qσ ⊕Qσ and no subquotient of
Qσ isomorphic to σ. Then Q is almost-projective.

This simple lemma which is basic for us was found by Arabia when G is a
finite group.

Proof. Let f : Pσ → σ be a projective cover in ModRK. We define

P := indGK Pσ, π := indGK f .

The isomorphism of adjunction,

HomRG(indGK Pσ, indGK σ) � HomRK(Pσ, indGK σ)

is given by restriction to the RK-submodule Pσ isomorphic to Pσ of functions with
support in K in the canonical model of indGK Pσ. The image of indGK f under the
isomorphism of adjunction is f : Pσ → σ (where σ � σ is the space of functions
with support in K in the canonical model of indGK σ).
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The hypothesis on indGK σ and the definition of a projective cover imply that
the map

γ → γ ◦ f : HomRK(σ, indGK σ) → HomRK(Pσ, indGK σ)

is an isomorphism. With the isomorphisms of right adjunction of indGK we obtain
that the map

β → β ◦ π : EndRG indGK σ → HomRG(indGK Pσ, indGK σ)

is an isomorphism. We deduce that indGK σ is almost projective. �

Exercise 3.2. If Q = indGK σ satisfies the lemma (3.1), then Q is quasi-projective.

Let α, π : indGK σ → V be two morphisms in ModRG with π surjective. We
look for β ∈ EndRG indGK σ such that α = π ◦ β. The lemma implies that there
exists a simple RK-submodule W ′ of Qσ such that π(W ′) = α(σ). Let β′ : σ →
indGK σ be the RK-equivariant morphism with image W ′ with π ◦ β′ = α|σ, and
β ∈ EndRG indGK σ the image of β′ by adjunction. Then α = π ◦ β. �

4. A Simple Criterium for Irreducibility

We replace the property “compact” for K by “compact mod center”, we denote
by IndGK : ModRK → ModRG the induction without condition on the support.
This functor has a left adjoint (the restriction π → π|K from G to K) [10, I.5.7].

Lemma 4.1. Let Λ ∈ IrrRK. When the space EndRG(indGK Λ) is finite dimensional,
it is equal to HomRG(indGK Λ, IndGK Λ).

Proof. Use the Mackey decomposition and the adjunction. �

Lemma 4.2. The R-representation indGK Λ is irreducible when

a) EndRG(indGK Λ) = R.
b) If Λ is contained in π|K then Λ is also a quotient of π|K , for any π ∈

IrrRG.

Proof. Suppose that a) and b) are true. Let π ∈ IrrRG be a quotient of indGK Λ. By
adjunction Λ ⊂ π|K and by b), Λ is a quotient of π|K . By adjunction π ⊂ IndGK Λ.
Hence there is a morphism indGK Λ → IndGK Λ with image π. By a) and (4.1)
indGK Λ = π. Hence indGK Λ is irreducible. �
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5. Finite Reductive Group

G is the group of rational points of a reductive connected group over a finite
field of characteristic p,

P = MU is a parabolic subgroup of G with unipotent radical U , and Levi
subgroup M ,

IrrR(G) is the set of irreducible R-representations of G modulo isomorphism,
CuspR(G) ⊂ IrrR(G) is the subset of cuspidal representations,
σ ∈ CuspR(M) is identified with a representation of P trivial on U . We

denote by

NG(M) the G-normalizer of M ,
W (M) = NG(M)/M ,
gσP (?) = σP (g−1?g) ∈ CuspR(gPg−1) for g ∈ G,
wσ = gσ with g ∈ NG(M) above w ∈ W (M),
W (M,σ) := {w ∈ W (M), wσ � σ},
V → V U : ModRG → ModRM the functor of U -invariant vectors.

Proposition 5.1. ([5]) We have

(indGP σ)U � ⊕w∈W (M)
wσ .

With (3.1) we get a new proof of the almost projectivity of indGP σ [4, (2.3)]:

Corollary 5.2. indGP σ satisfies the simple criterium (3.1) of almost-projectivity.

Proof. As U is the p-radical of P , we have a direct P -equivariant decomposition

indGP σ = (indGP σ)U ⊕W ′ � ⊕W (M,σ)σ ⊕W

where W ′ has no non zero U -fixed vector, and W has no subquotient isomorphic
to σ. �

6. Morris Types of Level 0

F is a local non archimedean field of residual field Fq with q elements and
characteristic p,

G is the group of rational points of a reductive connected group G over F ,
P, Q are two parahoric subgroups of G [2, 5.2.4], with their canonical exact

sequence.

1 �� U �� P
fP �� P(q) �� 1 ,

1 �� V �� Q fQ �� Q(q) �� 1 .
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The kernels U , V are pro-p groups, the quotients P(q), Q(q) are the groups
of rational points of connected reductive finite groups over Fq. We denote by
f∗
P : ModR P (q) → ModR P the inflation along fP , and f∗−1

P the inverse (on the
representations of P trivial on U). We do not repeat the definitions of the para-
graph 5 which extend trivially.

Definition 6.1. We call parahoric induction the functor of compact induction:

indGP(q) = indGP ◦f∗
P : ModR P(q) → ModRG

where indGP is the compact induction and parahoric restriction the functor

resGP(q) = f∗−1
P ◦ resGP : ModRG → ModR P(q) ,

(where resGP V = V U ∈ ModR P).

We will compute the composite functor

TGQ(q),P(q) = resGQ(q) ◦ indGP(q) : ModR P(q) → ModRQ(q) .

Let

T a maximal split torus of G (more precisely the group of rational points of
this torus),

N = NG(T ) the G-normalizer or T (the N of the introduction is no more
used),

A the apartment in the semi-simple Bruhat-Tits building of G defined by T ,
x, y ∈ A such that P, Q are the (connected) parahorics defined by x, y. This

is a restriction on P, Q.
We denote Gx = P, Gy = Q, G1

x = U , G1
y = V, Gx(q) = P(q), Gy(q) = Q(q),

fx = fP , f∗
x = f∗

P .

Lemma 6.2. Let z be a point in the building, Gz the corresponding parahoric sub-
group of G and fx : Gx → Gx(q) the canonical surjection. Then fx(Gx ∩Gz) is a
parabolic subgroup of Gx(q) with unipotent radical fx(Gx ∩G1

z).

Proof. ([6]) We reduce easily to the case treated by Morris where x, x′ ∈ A are in
the closure of a chamber and z = nx′ for n ∈ N , using the following properties:

a) gGxg
−1 = Ggx for g ∈ G [9, 2.1], [2, 5.2.4], [1, 6.2.10],

b) the Bruhat decomposition

G = GoNGo

where Go is the Iwahori subgroup fixing a point o in a chamber C of A [1,
7.2.6, 7.3.4], [8, page 105],

c) Gx ⊃ Gz when x is contained in the closure of the facet containing z [9,
5.2.4],

d) given a point a and a chamber C of closure C in the building, there exists
g ∈ G such that ga ∈ C [9, 1.7, 2.1].
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By d) we can suppose z = g′x′ where x, x′ ∈ C for a chamber C of A
and g′ ∈ G. By b) we can write g′ = b′nb where b′, b ∈ Go where o ∈ C and
n ∈ N . By c) Go ⊂ Gx ∩Gx′ hence bx′ = x′, b

′−1x = x, z = b′nx′. With a) we get
Gx ∩Gz = b′(Gx ∩Gnx′)b

′−1. The lemma for Gx ∩Gnx′ [6] implies the lemma for
Gx ∩Gz. �

We denote

(Gx ∩Gz)(q) = fx(Gx ∩Gz)/fx(Gx ∩G1
z) = (Gx ∩Gz)/(Gx ∩G1

z)(G
1
x ∩Gz) .

The groups Gx(q) are isomorphic when x belongs to an orbit of G in the building
(property a)) and the conjugation by g ∈ G induces an equivalence of categories

σ → gσ : ModRGx(q) → ModRGgx(q)

and more generally an equivalence of categories

ModR(Gx ∩Gz)(q) → ModR(Ggx ∩Ggz)(q)

because ModR(Gx∩Gz)(q) is identified via fx to the category of R-representations
of Gx∩Gz trivial on Gx∩G1

z and on G1
x∩Gz, and ModR(Ggx∩Ggz)(q) is identified

via fgz to the category of R-representations of Ggx ∩Ggz trivial on Ggx ∩G1
gz and

on G1
gx ∩Ggz.

Definition 6.3. The functor

FGQ(q)gP(q) : ModR P(q) → ModR(P ∩ g−1Qg)P(q) →
→ ModR(gPg−1 ∩Q)Q(q) → ModRQ(q)

is the composite of
a) the parabolic restriction along fP(P ∩ g−1Qg), i.e. the fP(P ∩ g−1Vg)-in-

variants
b) the conjugation by g
c) the parabolic induction along fQ(gPg−1 ∩Q).

Proposition 6.4. TGQ(q),P(q) � ⊕g∈Q\G/PF
G
Q(q)gP(q).

Proof. By the Mackey formula, we have a Q-equivariant decomposition

indGP(q) σ � ⊕g∈Q\G/P indQ
Q∩gPg−1(f∗

Pσ)(g−1?g) .

Taking the V invariants we get the proposition. �
When the functor FGQ(q)gP(q) does not vanish on CuspR P(q), then fP(P ∩

g−1Vg) = {1} i.e.

(P ∩ g−1Qg)(q) = P(q) . (1)

When there exists σ ∈ ModR P(q) such that FGQ(q)gP(q)(σ) admits a cuspidal non
zero representation as a sub-module or as a quotient, then fQ(gUg−1 ∩ Q) = {1}
i.e.

(gPg−1 ∩Q)(q) = Q(q) . (2)
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The equations (1) and (2) are not independent.

Lemma 6.5. Let x, z be two points in the building with corresponding parahoric
subgroups Gx, Gz. If (Gx ∩Gz)(q) = Gx(q) then the three following properties are
equivalent:

(i) (Gx ∩Gz)(q) = Gz(q),
(ii) the order of Gz(q) is less or equal to the order of Gx(q),
(iii) Gx(q) � Gz(q) � (Gx ∩Gz)/(G1

x ∩G1
z).

If x is a vertex, then fx(Gx ∩Gz) = Gx(q) is equivalent to z = x.

Proof. (Gx ∩ Gz)(q) = Gx(q) is equivalent to Gx ∩ G1
z = G1

x ∩ G1
z. When this

holds, we have

Gx(q) � (Gx ∩Gz)/(G1
x ∩G1

z) � fz(Gx ∩Gz) ⊂ Gz(q) .

We deduce that the three properties are equivalent.
The last part of the lemma follows from the following facts:
Let C be a chamber of A and let ∆ = {αo, . . . , αn} be the basis of the

affine roots of G associated to C [9, 1.8]. For x in the closure C of C the set of αi
with αi(x) = 0 is a proper subset ∆x ⊂ ∆, and the group Wx generated by all
reflexions sα for α ∈ ∆x is finite.

– Let x, y ∈ C and n ∈ N . Suppose that the image w of n in the affine Weyl
group W is of minimal length in WxwWy. Then (Gx ∩ Gny)(q) = Gx(q)
implies w∆y ⊃ ∆x [6].

– x ∈ C is a vertex if and only if ∆x has n elements. Then y ∈ C is equal to
x is and only if ∆x = ∆y. If y 	= x then there is no element w ∈ W such
that w∆y ⊃ ∆x. Otherwise sα∆y = ∆x where ∆ = ∆y ∪ {α} but α ∈ ∆x
and α 	∈ sα∆.

�
The lemma shows that on an orbit of G in the building the relation

(Gx ∩Gz)(q) = Gx(q)

is a symetric relation x ∼ z because the groups Gz(q) � Gx(q) are isomorphic on
an orbit. The set of g ∈ G with x ∼ gx is a disjoint union of double classes GxnGx
for n in some set of representatives N(x) ⊂ N . For n ∈ N(x) with image w ∈ W
and σ ∈ ModRGx(q) the isomorphism class of nσ depends only on w and we
denote by nσ =w σ and W (x) the image of N(x) in N . We define W (x, σ) :=
{w ∈ W (x), wσ � σ}. When P = Gx we replace x by P in the notation. We
deduce from (6.5) and (6.4):

Corollary 6.6. Let σ ∈ CuspR P(q). The U-invariants vectors of indGP σ is isomor-
phic to

⊕w∈W (P)
wσ .
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As in (5.2) this implies the existence of a P-equivariant decomposition

indGP σ = ⊕W (P,σ)σ ⊕W

where W has no subquotient isomorphic to σ. Hence indGP σ satisfies the simple
criterium of almost projectivity (3.1).

7. Cuspidal Representations of Level 0

We suppose that x is a vertex (not necessarily special). The parahoric subgroup Gx
is maximal among the parahoric subgroups of G, the G-normalizer Px which is
the fixator of x, is an open compact mod center subgroup of G, and is the set of
g ∈ G such (Gx ∩ Ggx)(q) = Gx(q) by (6.5). Let Λ ∈ IrrR Px trivial on G1

x and
with restriction to Gx identified by f∗

x to a cuspidal representation of Gx(q).

Proposition 7.1. (indGPx
Λ)G

1
x is an R-representation of Px isomorphic to Λ.

Proof. The functor

Λ → (indGPx
Λ)G

1
x : ModR Px → ModR Px/G1

x

is a direct sum

(indGPx
Λ)G

1
x = ⊕g∈Px\G/Px

FGg (Λ)

of functors FGg : ModR Px → ModR Px/G1
x composite of

– the invariants by Px ∩ g−1G1
xg

– the conjugation by g
– the induction from (Px ∩ gPxg

−1)/(G1
x ∩ gPxg

−1) to Px/G
1
x.

The cuspidality of Λ implies that if the Px ∩ g−1G1
xg

−1-invariants vectors
are not 0 then Gx ∩ g−1G1

xg
−1 = G1

x ∩ g−1G1
xg

−1, i.e. g ∈ Px by (6.5). Then
(indGPx

Λ)G
1
x = FG1 (Λ) = Λ and the proposition is proved. �

The simple criterium for irreduciblity (4.2) is easily deduced from this propo-
sition. By adjunction (7.1) implies

EndRG(indGPx
Λ) = R

and if π ∈ IrrRG is a quotient of indGPx
Λ then by adjunction Λ ⊂ π|Px and (7.1)

implies

πG
1
x � Λ .

In ModR Px, πG
1
x is a direct factor of π|Px and indGPx

Λ satifies the simple criterium
for irreduciblity (4.2).
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8. Bushnell-Kutzko Simple Types in GL(n, F )

We suppose G = GLF (V ) � GL(n, F ) for an F -vector space V of dimension n.
We fix β ∈ GLF (V ) such that
– the algebra E = F (β) is a field
– kF (β) < 0 [3, 1.4.5, 1.4.13, 1.4.15, 2.4.1]. We will not use kF (β) and we

do not recall its definition.
We denote by qE the number of elements of the residual field of E and by

B∗ = GLE(V ) the centralizer of E∗ in GLF (V ). If d[E : F ] = n then B∗ �
GL(d,E).

We consider the Bushnell Kutzko group J = J(β,P) associated to a “defining
sequence” for β and a parahoric subgroup P in B∗ [3, 2.4.2, 3.1.8, 3.1.14]. The
group does not depend on the defining sequence [3, 3.1.9 (v)]. The Bushnell-Kutzko
groups, called the BK-groups, have the following properties [3, 1.6.1]:

Lemma 8.1. Let P be a parahoric subgroup of B∗ with the canonical exact sequence

1 �� U �� P
fP �� P(qE) �� 1, .

The BK-group J = J(β,P) is an open compact subgroup of G normalized by E∗

with pro-p radical J1, and

J = J1P, J ∩B∗ = P, J1 ∩B∗ = U . (3)

The canonical surjection fJ given by the lemma

1 �� J1 �� J
fJ �� P(qE) �� 1

has the property

fJ(J ∩K) = fP(P ∩Q) (4)

because fJ(J∩K) = fI(J∩K∩B∗) and J∩K∩B∗ = P∩Q, fJ(P∩Q) = fP(P∩Q).
By (4), the properties of parahoric subgroups of B∗ seen in the paragraphs 6 and
7 transfer to the BK-groups associated to β.

We consider the irreducible Bushnell Kutzko (or BK) representations ηJ ∈
IrrR J1, κJ ∈ IrrR J attached to a fixed endo-class Θ [3, 5.1.8, 5.2.1 and 5.2.2, 2
4.3]. We do not recall the definitions. The BK-representations satisfy:

The restriction of κJ to J1 is ηJ and ηJ , κJ are normalised by E∗ . (5)

When ηJ is fixed there is some choice for κJ but only by multiplication by
a character trivial on J1 and normalized by E∗. We use the definitions of the
paragraph 6 for the parahoric subgroup P of B∗.

Definition 8.2. We consider the functors:
a) The κJ -inflation functor

σ → κJ ⊗ f∗
Pσ : ModR P(qE) → ModR J
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which induces an equivalence of categories between ModRP(qE) and the
ηJ -isotypic R-representations of J .

b) The compact κJ -induction functor:

indGκJ
: ModR P(qE) → ModRG

given by the κJ -inflation followed by the compact induction indGJ :
ModR J → ModRG.

c) The κJ -restriction functor

resGκJ
: ModRG → ModR P(qE) π → σ

given by the ηJ -isotypic part π → πηJ
= κJ ⊗ f∗

Pσ : ModRG → ModR J
followed by the inverse of the κJ -inflation.

d) When K is the BK-group J(β,Q) attached to another parahoric Q of B∗,
the functor

TGκK ,κJ
= resGκK

◦ indGκJ
: ModR P(qE) → ModRQ(qE) .

We will prove (8.5) that the functor TGκK ,κJ
is equal to the functor TB

∗

Q(qE),P(qE)

associated to the parahoric subgroups P,Q of B∗ (6.1) and already described (6.3),
(6.4).

Remark 8.3. For g ∈ G, we have J(gβg−1, gPg−1) = gJ(β,P)g−1.

It is not immediately apparent that the elaborate definition of J is G-equi-
variant. I suppose that the construction of ηJ and κJ is also G-equivariant [3, 3.5,
5.7] but I didnt check the details for the representations.

Let L = (Li)i∈Z be a strictly decreasing periodic lattice chain of OE-modules
in V such that P = GLo(L) is the set of f ∈ GLE(V ) with f(Li) ⊂ Li for all
i ∈ Z. We consider

– the period e of L (the smallest integer n such that Li+n = pELi for all
i ∈ Z),

– the L-valuation v of β (the biggest integer n such that βLi ⊂ Li+n for all
i ∈ Z),

– the herditary order EndoOF
L of EndF (V ) associated to L seen as a chain of

OF -modules (the F -endomorphisms f such that f(Li) ⊂ Li for all i ∈ Z),
– s : EndF V → EndE V the tame corestriction map relative to E/F [3,

1.3.3].

We take g ∈ G and we replace (β,L) by (gβg−1, gL). It is easy to see what
happens to the various objects and numbers introduced above. First we see that
(P,EndoF L) is replaced by (gPg−1, g(EndoF L)g−1), the period e and the valua-
tion v do not change. Then looking at the definition of kF (β) [3, 1.3.5], we see that
kF (β) does not change, and finally if cg : EndE(V ) → EndgEg−1(V ) is the natural
isomorphism f(x) → gf(g−1xg)g−1, we see on the definition [3, 1.3.3] that cg ◦ s
is a tame corestriction map relative to gEg−1/F .
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These remarks imply that a defining sequence (Ai, n, ri, γi) for
(A, n, r, β) gives a defining sequence (gAig−1, n, ri, gγig

−1) for (gAg−1, n, r, gβg−1)
with the definitions [3, 2.4.2]. We deduce from [3, 3.1.8] that J(gβg−1, gPg−1) =
gJ(β,P)g−1. �

The three κJ -functors (8.2) do not determine the group J neither the repre-
sentation κJ . In fact we will not keep (J, κJ).

Let Pmax be a maximal parahoric subgroup of B∗ and let Pmin be a minimal
parahoric subgroup of B∗ contained in Pmax. We suppose Pmin ⊂ P ⊂ Pmax.
Let ηmax ∈ IrrR J1

max, κmax ∈ IrrR Jmax be the BK-representations associated to
(β,Θ). We consider

J ′ = J1
maxP, J

′1 = J1
maxU , ηJ′ = κmax|J′1 , κJ′ = κmax|J′ .

It is clear that (3) hence (4), (5) are satisfied for (J ′, J
′1, ηJ′ , κJ′).

With the notation of the remark 8.3, we can suppose that Lmax = (LopZE)
is a OE-lattice chain in EndE V such that Pmax = GLoE(Lmax) is the set of g ∈
GLE(V ) with gLo ⊂ Lo. We denote GL1

F (Lmax) the set of g ∈ GLF (V ) with
gLop

i
E ⊂ Lop

i+1
E for all i ∈ Z. The open compact subgroup A = GL1

F (Lmax)P of
G has a pro-p-radical A1 = GL1

F (Lmax)U and satisfies (3). By construction J , J ′

are contained in A and J1 = A1 ∩ J , J
′1 = A1 ∩ J ′. We recall [3, 5.2.5] that the

R-representations of A1

ηA := indA
1

J′1 ηJ′ � indA
1

J ηJ

are isomorphic and irreducible, and one may suppose (or we twist κJ by a character
normalised by E∗) that the R-representations of A

κA := indAJ′ κJ′ � indAJ κJ
are isomorphic and irreducible. This implies:

Lemma 8.4. The κA, κJ , κJ′-functors are equal, the compact BK-induction and
BK-restriction functors associated to κA, κJ , κJ′ are equal.

Hence the functor TGκJ ,κK
= TGκJ′ ,κK′ can be computed using κJ′ , κK′ . By

the Mackey formula, we have a K ′-equivariant decomposition (where we write σ
instead of f∗

Pσ)

indGJ′ κJ′ ⊗ σ � ⊕g∈K′\G/J ′ indJ
1
maxQ
J1
maxQ∩gJ1

maxPg−1(κmax ⊗ σ)(g−1?g) .

We compute the ηK′ -isotypic part, i.e. the κmax|J1
maxU -isotypic part. We recall [3,

5.1.8 page 160, 5.2.7 page 170]:

dimRHomJ1
max∩gJ1

maxg
−1(ηmax,

gηmax) = dimRHomJmax∩gJmaxg−1(κmax,
gκmax)

is equal to 1 for g ∈ J1
maxB

∗J1
max, and is equal to 0 when g 	∈ J1

maxB
∗J1

max.

The terms in g 	∈ J1
maxB

∗J1
max give no contribution to the ηK′ -isotypic part

of indGJ′ κJ′ ⊗ σ and

Q\B∗/P = J1
maxQ\J1

maxB
∗J1

max/J
1
maxP .
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Using the property (4) for fJ′(J ′∩gK ′g−1) when g ∈ B∗ we deduce with the
same proof and notations of (6.3) and (6.4):

Proposition 8.5. TGκK ,κJ
� ⊕g∈Q\B∗/PF

B∗

Q(qE)gP(qE) � TB
∗

Q(qE),P(qE).

With (6.6) we get:

Corollary 8.6. When σ ∈ CuspR P(qE), then resGκJ
(indGJ κJ ⊗ σ) = ⊕g∈W (P)

gσ.

As J1 is a pro-p-group, the restriction of indGJ κJ ⊗ σ to J1 is semi-simple,
and its ηJ -isotypic part is a direct factor. We deduce as in (5.2) that indGJ κ ⊗ σ
satisfies the simple criterium of almost projectivity (3.1).

The representation κmax extends to JmaxE
∗ by Clifford theory. An R-repre-

sentation Λ ∈ IrrR JmaxE
∗ which extends κ⊗σ with σ ∈ CuspR Pmax(qE) is called

a maximal extended Bushnell-Kutzko type. We prove as in the level 0 case (7.1):

Proposition 8.7. The ηmax-isotypic part of indGJmaxE∗ Λ is an R-representation of
JmaxE

∗ isomorphic to Λ.

As in the level 0 case we deduce from (8.7) that indGJmaxE∗ Λ satisfies the
simple criterium for is irreducibility (4.2).
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