Irreducible Modular Representations
of a Reductive p-Adic Group
and Simple Modules for Hecke Algebras

Marie-France Vignéras

Abstract. Let R be an algebraically closed field of characteristic [ # p, let F'
be a local non archimedean field of residual characteristic p, and let G be the
group of rational points of a connected reductive group defined over F'. The
two main points in the search for a classification of the irreducible R-repre-
sentations of G is to try to prove that any irreducible cuspidal representation
is induced from an open compact subgroup and that the irreducible represen-
tations with a given inertial cuspidal support are classified by simple modules
for the Hecke algebra of a type. Over a field R which is not the complex field
new serious difficulties arise and the purpose of this article is to indicate a way
to avoid them. The mirabolic trick used when the group is GL(n, F') does not
generalize but our new method is general and we can extend from the complex
case to R the results of Morris and Moy-Prasad for level 0 representations.
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1. Introduction

Let (K,0) be an irreducible simple cuspidal R-type in GL(n, F') as defined by
Bushnell and Kutzko, or a cuspidal R-type of level 0 in G as defined by Morris.
We consider also an irreducible extended maximal R-type (N, A). We denote by
ind the compact induction. We will prove:
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Theorem 1.1. 1) The irreducible R-representations of G which contain (K, o)
are in bijection with the simple modules for the Hecke algebra of (K, o) in
G

2) ind$ A is irreducible.

It is known that the Hecke algebra of (K, o) in G is very closed to products of
affine Hecke R-algebras hence the construction of simple modules for affine Hecke
R-algebras is strongly related to the construction of irreducible R-representations
of G.

As a consequence one can extend to R-representations the complex theory of
representations of level 0 by Morris or by Moy and Prasad.

The theorem was already known for GL(n, F) and lead to a complete clas-
sification of the irreducible R-representations of GL(n, F') [10, 11]. But the proof
could not transfer to a general reductive group and the proof that we give here is
more simple and general.

When the characteristic of R is banal there is nothing to do. Indeed, if the
pro-order of the profinite group K is invertible in R, the representation indf( o of
G is projective and 1) results from an easy lemma in algebra [10, 1.6.3]. Let us
denote by Z the center of G. The group N contains Z and N/Z is profinite. If the
pro-order of N/Z is invertible in R, the category of R-representations of N where
Z acts by a given character is semi-simple, and Endgg indg A ~ R implies the
irreducibility of ind§ A.

In the general case the representation ind%'; o is not projective, but 1) is true
if [11]:

1) ind% o is almost projective.

We denote by Irrg G the set of irreducible R-representations of G, modulo

isomorphism. The property 2) is true when (4.2):
2) a) Endrgind§ A ~ R,
2’) b) if A is contained in 7|x then A is a quotient of 7|y, for any = € Irrg G.

We denote by U the pro-p-radical of K. The quotient K /U is a finite reductive
group. In the GL(n, F)-case, we consider the Bushnell-Kutzko representations n €
Irrg(U), k € Irrg(K) (see the definition in the paragraph 8). In the level 0 case we
suppose that 7, k are trivial representations so that the notation becomes uniform.
We will compute the functor

o —o': Modr K/U — Modg K/U

such that the n-isotypic part of ind?{ Kk ® o is isomorphic to k ® o’. This func-
tor is the analogue of a well known functor: the parabolic induction followed by
the parabolic restriction in a reductive group. Parabolic groups are replaced by
parahoric subgroups or by Bushnell-Kutzko groups and the unipotent radical by
the pro-p-radical but: the representation of the pro-p-radical is not trivial in the
Bushnell-Kutzko case. We get an analogue of a classical formula for parabolics
originally due to Harish-Chandra for finite reductive groups and generalised by
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Casselman for p-adic groups. The precise results are given in the paragraphs 6, 7.
The following proposition is a corollary of this computation.

The group N is attached to a mazimal parahoric or Bushnell-Kutzko group K.
In the level 0 case, the group N is the G-normalizer Ng(K) of a maximal K and A
is an irreducible representation of N (K) which contains o. In the GL(n, F)-case,
there exists an extension E/F with E* C GL(n, F') which normalises n and such
that N = KE* with K maximal, and A is an extension of o to K E*.

Proposition 1.2. (for any K) The action of K on the n-isotypic part of indf( o
is isomorphic to Kk @ W where W is a direct sum of irreducible representations
conjugate to o.

The action of N on the n-isotypic part of indg A is isomorphic to A.

The properties 1’) and 2’) follow from the proposition. The theorem is proved.

The same method applies for a reductive finite group G and gives a new proof
of the almost projectivity of any R-representation of G parabolically induced from
a cuspidal irreducible representation [4]. This is done in the paragraph 5.

It is pleasure to thank Alberto Arabia for his work which lead to the simple
criterium of almost projectivity of indf( o, which is basic in our proof.

2. Almost-Projectivity

The notion of almost projectivity was introduced by Dipper for finite groups and
is a particular case of the more general notion of quasi-projectivity.

Let R be a field and let A be an R-algebra. We consider the category Modyf(A)
(resp. Modj;(A)) of unital finite type left (resp. right) A-modules. A left module
is called a module.

Definition 2.1. A finite type unital A-module Q is called quasi-projective [11, A.3]
when for any two morphisms

Q==v

in Modyf(A) with m surjective, there exists § € Enda Q such that « = 7o §.
It is called almost projective when there exists a surjective morphism w: P —

Q from a projective finite type unital A-module P such that for any morphism o €
Homy (P, Q), there exists 8 € Enda Q with o = Bo.

An almost projective module is quasi-projective [11, Proposition 7]. The fun-
damental property of quasi-projective modules is the following:
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Main Property. (Arabia [11, Appendice th. 10]) When Q is quasi-projective, the
functor

HOHIA(Q, _) : MOdtf (A) i Mod(;rt (EHdA Q)

induces a bijection between

a) the isomorphism classes of simple A-modules V' such that Homa(Q, V) # 0
and
b) the isomorphism classes of simple right End 4 Q-modules.

This functor is not in general an equivalence of category.

3. A Simple Criterium of Almost Projectivity

Let G be a locally profinite group, K an open compact subgroup of G, R a field and
o an irreducible smooth R-representation of K which admits a projective cover in
MOdR K.

We denote by

Modg(G) the category of smooth R-representations of G.
V. the o-isotypic part of V' € Modg(G), i.e. the biggest RK-submodule of V
which is isomorphic to a direct sum ®’o.

The functor of compact induction ind%: Modg(K) — Modg(G) is exact
when G has an R-Haar measure, has a right ajoint (the restriction from G to K
denoted by m — 7|k), respects projectivity and the property of beeing of finite
type [10, 1.5.10, 1.5.7, 1.5.9].

Lemma 3.1. Suppose that the R-representation of G
Q=ind% o

admits o K-equivariant direct decomposition @ = Q, ® Q° and no subquotient of
Q° isomorphic to o. Then Q is almost-projective.

This simple lemma which is basic for us was found by Arabia when G is a
finite group.

Proof. Let f: P, — o be a projective cover in Modg K. We define
P = indf{ P,, m:= ind?( f-
The isomorphism of adjunction,
Homp(ind$ Py, ind$ o) ~ Hompk (P,, ind$ o)

is given by restriction to the RK-submodule P_ isomorphic to P, of functions with
support in K in the canonical model of ind%’; P,. The image of indf( f under the
isomorphism of adjunction is f: P, — ¢ (where g ~ ¢ is the space of functions
with support in K in the canonical model of ind%’; o).
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The hypothesis on ind% o and the definition of a projective cover imply that
the map

v — ~o f: Hompk(0,ind% ¢) — Hompk (P,, ind% o)

is an isomorphism. With the isomorphisms of right adjunction of indg we obtain
that the map

B — Bom: Endgrag ind% o — Hong(indf{ P,, ind% o)

is an isomorphism. We deduce that indf( o is almost projective. O

Exercise 3.2. If Q = ind% o satisfies the lemma (3.1), then Q is quasi-projective.

Let a,7: ind% o — V be two morphisms in Modg G with 7 surjective. We
look for g € Endgrg indg o such that @ = 7 o 8. The lemma implies that there
exists a simple RK-submodule W’ of Q, such that #(W’) = «(g). Let 8': ¢ —
ind% o be the RK-equivariant morphism with image W’ with 7 o ' = als, and
0 € Endgg indf( o the image of 8’ by adjunction. Then a = 7o 3. O

4. A Simple Criterium for Irreducibility

We replace the property “compact” for K by “compact mod center”, we denote
by Ind%’;: Modgr K — Modg G the induction without condition on the support.
This functor has a left adjoint (the restriction 7 — 7|k from G to K) [10, 1.5.7].

Lemma 4.1. Let A € Irrg K. When the space Endge (ind$ A) is finite dimensional,
it is equal to Hompe (ind% A, Ind% A).

Proof. Use the Mackey decomposition and the adjunction. O

Lemma 4.2. The R-representation ind% A is irreducible when

a) EndRc;(indf{ A) =R.
b) If A is contained in 7|k then A is also a quotient of |k, for any ™ €
Irrg G.

Proof. Suppose that a) and b) are true. Let m € Irrg G be a quotient of ind% A. By
adjunction A C 7|k and by b), A is a quotient of 7|k . By adjunction = C Ind% A.
Hence there is a morphism ind% A — Ind$ A with image m. By a) and (4.1)
ind?( A = 7. Hence indf( A is irreducible. (|
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5. Finite Reductive Group

G is the group of rational points of a reductive connected group over a finite
field of characteristic p,

P = MU is a parabolic subgroup of G with unipotent radical U, and Levi
subgroup M,

Irr(G) is the set of irreducible R-representations of G modulo isomorphism,

Cuspr(G) C Irrr(G) is the subset of cuspidal representations,

o € Cuspr(M) is identified with a representation of P trivial on U. We

denote by

Ng(M) the G-normalizer of M,

W(M) = Ne(M)/M,

Iop(?) = op(g~'7g) € Cuspgr(gPg~") for g € G,

Yo =90 with g € Ng(M) above w € W(M),
W(M,o):={weW(M), Yox~o},

V — VY. Modr G — Modg M the functor of U-invariant vectors.

Proposition 5.1. ([5]) We have
(ind% o)V ~ Bwew (m)" 0.

With (3.1) we get a new proof of the almost projectivity of ind% o [4, (2.3)]:
Corollary 5.2. indg o satisfies the simple criterium (3.1) of almost-projectivity.
Proof. As U is the p-radical of P, we have a direct P-equivariant decomposition

ind$ o = (ind% o)V @ W' ~ &M g W

where W’ has no non zero U-fixed vector, and W has no subquotient isomorphic
to o. (]

6. Morris Types of Level 0

F is a local non archimedean field of residual field F, with ¢ elements and
characteristic p,

G is the group of rational points of a reductive connected group G over F,

P, Q are two parahoric subgroups of G [2, 5.2.4], with their canonical exact
sequence.

fr
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The kernels U, V are pro-p groups, the quotients P(q), Q(q) are the groups
of rational points of connected reductive finite groups over F,. We denote by
fp: Modg P(q) — Modg P the inflation along fp, and f;;*l the inverse (on the
representations of P trivial on U). We do not repeat the definitions of the para-
graph 5 which extend trivially.

Definition 6.1. We call parahoric induction the functor of compact induction:
ind,, = ind% ofj: Modg P(q) — Modg G
where indg is the compact induction and parahoric restriction the functor
resg(q) =f5lo res%: Modg G — Modg P(q),

(where resG V = VY € Modg P).

We will compute the composite functor

Tg(qm,(q) = resg(q) Oindg(q) : Modg P(q) — Modg Q(q) .
Let

T a maximal split torus of G (more precisely the group of rational points of
this torus),

N = Ng(T) the G-normalizer or T (the N of the introduction is no more
used),

A the apartment in the semi-simple Bruhat-Tits building of G defined by T,

x,y € A such that P, Q are the (connected) parahorics defined by z, y. This
is a restriction on P, Q.

We denote G, = P, Gy = Q, G}, =U, G, =V, G.(q) = P(q), Gy(q) = (q),
Jo=Ip f2=1p

Lemma 6.2. Let z be a point in the building, G, the corresponding parahoric sub-
group of G and f,: G, — G.(q) the canonical surjection. Then f,(G. NG.) is a
parabolic subgroup of G(q) with unipotent radical f.(G, N GL).

Proof. ([6]) We reduce easily to the case treated by Morris where x,2’ € A are in
the closure of a chamber and z = na’ for n € N, using the following properties:
a) gGrg7 ' = Gy, for g € G [9, 2.1], [2, 5.2.4], [1, 6.2.10],
b) the Bruhat decomposition

G =G,NG,

where G, is the Iwahori subgroup fixing a point o in a chamber C of A [1,
7.2.6, 7.3.4], [8, page 105],

¢) Gy D G, when x is contained in the closure of the facet containing z [9,
5.2.4],

d) given a point a and a chamber C of closure C in the building, there exists
g € G such that ga € C [9, 1.7, 2.1].
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By d) we can suppose z = g¢'z’ where x,2’ € C for a chamber C of A
and ¢’ € G. By b) we can write ¢’ = b'nb where ¥/,b € G, where o € C and
n e N.Byc) G, C Gy NGy hence bz’ = 2/,b "'z =z, z = b'na’. With a) we get
G,NG,=b(G;N Gm/)b/_l. The lemma for G, N G, [6] implies the lemma for
G, NG,. O

We denote
(G2NG) () = fo(Ga N G2)/f2(GaNGL) = (G. NG.) /(Ga NGL(GL NG

The groups G (q) are isomorphic when x belongs to an orbit of G in the building
(property a)) and the conjugation by g € G induces an equivalence of categories

o —90: Modg G;(q) — Modg Gyz(q)
and more generally an equivalence of categories
Modr(Gz N G;)(g) = Modr(Gge N Gy2)(q)

because Mod g (G NG)(q) is identified via f, to the category of R-representations
of G;NG, trivial on G, NG and on GLNG,, and Modg(Gy: NG, )(q) is identified
via fy. to the category of R-representations of G4, NGy, trivial on Gy, N G;Z and
on G;w NGy..

Definition 6.3. The functor

Fg‘(q)gp(q> : Modg P(q) — Modg(P Ng~'Qg)p(q) —
— Modg(gPg~" N Q)a(q) — Modg Q(q)

is the composite of

a) the parabolic restriction along fp(PNg~1Qg), i.e. the fp(PNg~tVg)-in-

variants

b) the conjugation by g

c) the parabolic induction along fo(gPg~' N Q).
Proposition 6.4. Tg(qm,(q) ~ @QGQ\G/pFS(q)gP(q).
Proof. By the Mackey formula, we have a Q-equivariant decomposition

mdg(q) g~ @gEQ\G/'P indgmgfpg,l (f,;;g)(g_l?g) .

Taking the V invariants we get the proposition. O

When the.z functor Fg(q)gp(q) does not vanish on Cuspg P(q), then fp(P N
g Wg) = {1} ie.

(PNg~'Qg)(q) = P(q). (1)

When there exists 0 € Modg P(q) such that Fg(q)gp(q)(a) admits a cuspidal non

zero representation as a sub-module or as a quotient, then fo(gdg~' N Q) = {1}
ie.

(gPg~" N Q)(9) = Qa)- (2)
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The equations (1) and (2) are not independent.

Lemma 6.5. Let x, z be two points in the building with corresponding parahoric
subgroups Gy, G,. If (Gx NG,)(q) = Gz(q) then the three following properties are
equivalent:
(i) (GaNG:)(q) = G=(q),
(ii) the order of G,(q) is less or equal to the order of G4(q),
(iii) G.(q) ~G.(q) ~ (G.NG.)/(GLNGL).
If x is a vertex, then f,(G, NG.) = G,(q) is equivalent to z = x.

Proof. (G» N G,)(q) = Gx(q) is equivalent to G, N G = GL N GL. When this
holds, we have

Gu(q) = (G N GZ)/(G;: n Gi) ~ f:(GxNG.) CG.(q).

We deduce that the three properties are equivalent.

The last part of the lemma follows from the following facts:

Let C be a chamber of A and let A = {a,,...,an} be the basis of the
affine roots of G associated to C [9, 1.8]. For x in the closure C of C the set of «;
with a;(z) = 0 is a proper subset A, C A, and the group W, generated by all
reflexions s, for o € A, is finite.

— Let o,y € C and n € N. Suppose that the image w of n in the affine Weyl
group W is of minimal length in WywW,. Then (G, N G,y)(q) = Gz(q)
implies wA, D A, [6].

— z € C is a vertex if and only if A, has n elements. Then y € C is equal to
x is and only if A, = A,. If y # x then there is no element w € W such
that wA, D A,. Otherwise s Ay = A, where A = A, U{a} but @ € A,
and a € s, A.

The lemma shows that on an orbit of GG in the building the relation

(G=NG.)(q) = Ga(q)

is a symetric relation z ~ z because the groups G.(¢) ~ G.(q) are isomorphic on
an orbit. The set of g € G with x ~ gz is a disjoint union of double classes G, nG,
for n in some set of representatives N(z) C N. For n € N(z) with image w € W
and 0 € Modg G,(¢q) the isomorphism class of "o depends only on w and we
denote by "o =" ¢ and W(z) the image of N(z) in N. We define W(z,0) :=
{w € W(x), Yo ~ o}. When P = G, we replace by P in the notation. We
deduce from (6.5) and (6.4):

Corollary 6.6. Let o € Cuspy P(q). The U-invariants vectors of indg o is isomor-
phic to

Buwew(p) 0.
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As in (5.2) this implies the existence of a P-equivariant decomposition
indgo =" W

where W has no subquotient isomorphic to o. Hence indg o satisfies the simple
criterium of almost projectivity (3.1).

7. Cuspidal Representations of Level 0

We suppose that z is a vertex (not necessarily special). The parahoric subgroup G,
is mazimal among the parahoric subgroups of G, the G-normalizer P, which is
the fixator of x, is an open compact mod center subgroup of G, and is the set of
g € G such (G, NGy)(q) = Gu(q) by (6.5). Let A € Irrg P, trivial on G} and
with restriction to G, identified by f¥ to a cuspidal representation of G, (q).

Proposition 7.1. (indgm A)Gi is an R-representation of Py isomorphic to A.
Proof. The functor
A — (ind§ A)%:: Modg P, — Modg P, /G
is a direct sum
(ind, A)% = @yepc/p, Py (A)
of functors FgG: Modg P, — Modg P,./GL composite of

— the invariants by P, Ng~1Glg
— the conjugation by g
— the induction from (P, NgP,g~1)/(GL NgP,g~ 1) to P,/GL.

The cuspidality of A implies that if the P, N g~!GLg~!-invariants vectors
are not 0 then G, N g 'Glg™! = GLNg 'Glg™?, ie. g € P, by (6.5). Then
(indgGC A)% = FEZ(A) = A and the proposition is proved. O

The simple criterium for irreduciblity (4.2) is easily deduced from this propo-
sition. By adjunction (7.1) implies

Endpe(ind§ A) =R

and if 7 € Irrg G is a quotient of indgz A then by adjunction A C 7|p, and (7.1)
implies

1
7% ~ A

In Modpg Py, 7Gx is a direct factor of 7|p, and indgm A satifies the simple criterium
for irreduciblity (4.2).
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8. Bushnell-Kutzko Simple Types in GL(n, F)

We suppose G = GLp(V) ~ GL(n, F) for an F-vector space V of dimension n.
We fix f € GLp(V) such that

— the algebra E = F(() is a field
- krp(8) <0 [3, 1.4.5, 1.4.13, 1.4.15, 2.4.1]. We will not use kr(8) and we
do not recall its definition.

We denote by gg the number of elements of the residual field of £ and by
B* = GLg(V) the centralizer of E* in GLp(V). If d[E : F| = n then B* ~
GL(d,E).

We counsider the Bushnell Kutzko group J = J(3, P) associated to a “defining
sequence” for § and a parahoric subgroup P in B* [3, 2.4.2, 3.1.8, 3.1.14]. The
group does not depend on the defining sequence [3, 3.1.9 (v)]. The Bushnell-Kutzko
groups, called the BK-groups, have the following properties [3, 1.6.1]:

Lemma 8.1. Let P be a parahoric subgroup of B* with the canonical exact sequence

Ir

1 U P Plge) —=1,.

The BK-group J = J(8,P) is an open compact subgroup of G normalized by E*
with pro-p radical J*, and

J=J'P, JnB*=P, J'nB*=U. (3)
The canonical surjection f; given by the lemma

1 J! J—1 Plqe) —=1

has the property
f1UNK) = fp(PNQ) (4)

because f;(JNK) = fr(JNKNB*) and JNKNB* = PNQ, f;(PNQ) = fp(PNQ).
By (4), the properties of parahoric subgroups of B* seen in the paragraphs 6 and
7 transfer to the BK-groups associated to (.

We consider the irreducible Bushnell Kutzko (or BK) representations 1y €
Irrr J1, ky € Irrp J attached to a fixed endo-class © [3, 5.1.8, 5.2.1 and 5.2.2, 2
4.3]. We do not recall the definitions. The BK-representations satisfy:

The restriction of ky to J* is ny and 0y, ky are normalised by E* . (5)

When 77 is fixed there is some choice for x; but only by multiplication by
a character trivial on J! and normalized by E*. We use the definitions of the
paragraph 6 for the parahoric subgroup P of B*.
Definition 8.2. We consider the functors:

a) The kj-inflation functor

0 — kg ® fpo: Modg P(qr) — Modg J
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which induces an equivalence of categories between ModrP(qr) and the
nj-isotypic R-representations of J.
b) The compact kj-induction functor:

ind{ : Modg P(qr) — Modr G

given by the kj-inflation followed by the compact induction ind?:
Modg J — Modg G.
¢) The kj-restriction functor

resEJ: Modr G — ModgP(qe) m— o

given by the ny-isotypic part 1 — m,, = k; @ fpo: Modr G — Modgr J
followed by the inverse of the kj-inflation.
d) When K is the BK-group J(8, Q) attached to another parahoric Q of B*,
the functor
TS . =rest o inng : Modg P(qr) — Modg Q(qE) -

RK,KJ

We will prove (8.5) that the functor TEK}KJ is equal to the functor Tg(*QE),P(QE)

associated to the parahoric subgroups P, Q of B* (6.1) and already described (6.3),
(6.4).

Remark 8.3. For g € G, we have J(gBg~ %, gPg~t) = gJ(3,P)g~ L.

It is not immediately apparent that the elaborate definition of J is G-equi-
variant. I suppose that the construction of 7; and x is also G-equivariant [3, 3.5,
5.7] but I didnt check the details for the representations.

Let £ = (L;);ecz be a strictly decreasing periodic lattice chain of O g-modules
in V such that P = GL°(L) is the set of f € GLg(V) with f(L;) C L; for all
1 € Z. We consider

— the period e of £ (the smallest integer n such that L;y, = pgL; for all
i €Z),

— the L-valuation v of § (the biggest integer n such that SL; C L, for all
i €Z),

— the herditary order Endg, _ £ of Endp (V') associated to £ seen as a chain of
Op-modules (the F-endomorphisms f such that f(L;) C L; for all i € Z),

— $: EndpV — EndgV the tame corestriction map relative to E/F [3,
1.3.3].

We take g € G and we replace (3, L) by (9891, gL). It is easy to see what
happens to the various objects and numbers introduced above. First we see that
(P,End$. £) is replaced by (¢gPg~ ', g(End% £)g™!), the period e and the valua-
tion v do not change. Then looking at the definition of kr(3) [3, 1.3.5], we see that
kp(B) does not change, and finally if ¢,: Endg(V) — Endggg-1(V) is the natural
isomorphism f(x) — gf(g ' zg)g™", we see on the definition [3, 1.3.3] that ¢, 0 s
is a tame corestriction map relative to gEg~!/F.
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These remarks imply that a defining sequence (A;,n,r;,7;) for
(A, n,r, 3) gives a defining sequence (gA;g~ 1, n,r;, g9~ ") for (9 Ag=—t,n,r, gBg™1)
with the definitions [3, 2.4.2]. We deduce from [3, 3.1.8] that J(gBg~!,gPg!) =
9J(8,P)g~". O

The three k -functors (8.2) do not determine the group J neither the repre-
sentation . In fact we will not keep (J, x).

Let Prmax be a maximal parahoric subgroup of B* and let Py, be a minimal
parahoric subgroup of B* contained in Ppax. We suppose Pmin € P C Prmax-
Let Nmax € Irrg J} Kmax € Irrg Jmax be the BK-representations associated to

max’

(6,0). We consider
J = JEaPy TV =T U 0y = Kmaxd g, Kgr = Fmal
It is clear that (3) hence (4), (5) are satisfied for (J',J Y, ny:, k).

With the notation of the remark 8.3, we can suppose that Lyax = (Lop%)
is a Og-lattice chain in Endg V' such that Ppax = GL%(Limax) is the set of g €
GLg(V) with gL, C Lo. We denote GLY(Limax) the set of g € GLp(V) with
gLopy C Lep'd™ for all i € Z. The open compact subgroup A = GLL(Liyax)P of
G has a pro-p-radical A = GLL(Lmax)U and satisfies (3). By construction J, J’

are contained in A and J' = A'nJ, J' = A' N J". We recall [3, 5.2.5] that the
R-representations of A'

NA = indJA/l1 Ny ind‘}‘1 nJs
are isomorphic and irreducible, and one may suppose (or we twist s by a character
normalised by E*) that the R-representations of A

k4 = ind Ky~ indg Ky
are isomorphic and irreducible. This implies:

Lemma 8.4. The k4, Ky, Ky -functors are equal, the compact BK-induction and
BK-restriction functors associated to ka, Ky, Ky are equal.

Hence the functor T,?;,W = TEJ/,W can be computed using kj/, kKi. By
the Mackey formula, we have a K’-equivariant decomposition (where we write o
instead of fjo)

. 1G Y A o) 1

indj Ky ©0 = Sgerng/r M o0 51 pyoi (Fmax ® 0) (g7 79).

We compute the ng-isotypic part, i.e. the K/max|Jé]axZ/{—iSOtypiC part. We recall [3,
5.1.8 page 160, 5.2.7 page 170]:
dimR Hoer{laxﬂgJ}nangl (nmax7 gnmax) = dlmR I{Orﬂ‘]maxﬂngaxg*1 (fimaxy gﬁmax)
is equal to 1 for g € JL,  B*JL.., and is equal to O when g & JL  B*JL ..
The terms in g € JL, B*JL. . give no contribution to the nx-isotypic part
of ind, ;s ® o and

Q\B" /P = Jax Q\imax B Jinase/ Fmax P -
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Using the property (4) for f;(J'NgK’g~') when g € B* we deduce with the
same proof and notations of (6.3) and (6.4):
oys G ~ B* ~ TB*
Proposition 8.5. T, o, =~ Sgea\5+/PFo(4r)9P(ar) = T(ar) Plar)”
With (6.6) we get:
Corollary 8.6. When o € Cuspg P(qg), then resS (ind§ Ky ® o) = Sgewp) 0.

As J' is a pro-p-group, the restriction of ind? Ky ® o to J is semi-simple,
and its n-isotypic part is a direct factor. We deduce as in (5.2) that ind? k® o
satisfies the simple criterium of almost projectivity (3.1).

The representation kmax extends to JyaxF* by Clifford theory. An R-repre-
sentation A € Irrg Jyax E* which extends k ® o with 0 € Cusp g Pmax(¢r) is called
a maximal extended Bushnell-Kutzko type. We prove as in the level 0 case (7.1):

Proposition 8.7. The nyax-isotypic part of ind?max g« N is an R-representation of
Jmax E* isomorphic to A.

As in the level 0 case we deduce from (8.7) that imdg;max g A\ satisfies the
simple criterium for is irreducibility (4.2).
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