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Abstract. We give a brief review of some of the wavelet-based techniques cur-
rently available for the analysis of arbitrary-length discrete time series. We
discuss the maximal overlap discrete wavelet packet transform (MODWPT),
a non-decimated version of the usual discrete wavelet packet transform, and
a special case, the maximal overlap discrete wavelet transform (MODWT).
Using least-asymmetric or coiflet filters of the Daubechies class, the coeffi-
cients resulting from the MODWPT can be readily shifted to be aligned with
events in the time series. We look at several aspects of denoising, and com-
pare MODWT and cycle-spinning denoising. While the ordinary DWT basis
provides a perfect decomposition of the autocovariance of a time series on a
scale-by-scale basis, and is well-suited to decorrelating a stationary time se-
ries with ‘long-memory’ covariance structure, a time series with very different
covariance structure can be decorrelated using a wavelet packet ‘best-basis’
determined by a series of white noise tests.

1. Introduction

One scientific area where wavelet methods have been finding many applications is
that of the analysis of discrete time series. A time series is defined to be a sequence
of observations associated with an ordered independent variable t. Here we only
consider the case of discrete values of t, but note that t could represent time, depth
or distance along a line.

In this paper we seek to give a brief review of a few discrete wavelet tech-
niques which have proven useful for analysing time series with a view to answering
scientific questions. The fundamental ideas are introduced, but many more details
and examples can be found in the references and in the comprehensive book [15]
which includes many other useful approaches and aspects not touched on here.

In §2 we particularly concentrate attention on the ‘maximal overlap’ versions
of the discrete wavelet transform and discrete wavelet packet transform which are
applicable for arbitrary sample sizes. The ability to ‘time align’ the transform co-
efficients for certain choices of filters is also stressed. In §3 we look at the progress
of wavelet denoising from its ‘universal threshold’ roots, while in §4 we discuss
the scale-by-scale decomposition of the autocovariance sequence of a stationary
process via the discrete wavelet transform. As discussed in §5 the correlations of
the discrete wavelet transform coefficients of a time series from a ‘long-memory’



2 A. T. Walden

process are mostly negligible, because the transform is well-matched to the co-
variance structure of the process; recent research suggests that a time series with
very different covariance structure can be successfully decorrelated using a wavelet
packet ‘best-basis’ determined by a series of white noise tests.

2. The Pyramid Algorithms

2.1. The discrete wavelet transform

For discrete compactly supported filters of the Daubechies class, ([4, Chapter 6]),
we denote the even-length scaling (low-pass) filter by {gl : l = 0, . . . , L − 1} and
the wavelet (high-pass) filter {hl : l = 0, . . . , L− 1}. The low-pass filter satisfies

L−1∑
l=0

g2
l = 1,

L−1∑
l=0

glgl+2n =
∞∑

l=−∞
glgl+2n = 0 , (1)

for all nonzero integers n, so that the filter has unit energy and is orthogonal
to its even shifts. The high-pass filter is also required to satisfy equation (1) but
additionally the high and low-pass filters are chosen to be quadrature mirror filters
(QMFs) satisfying:

hl = (−1)lgL−l−1 or gl = (−1)l+1hL−l−1 for l = 0, . . . , L− 1 .

Denote the series to be transformed by {Xt : t = 0, . . . , N − 1}. With V
(D)
0,t ≡ Xt,

the jth stage input to the pyramid algorithm is {V (D)
j−1,t : t = 0, . . . , Nj−1 − 1},

where Nj ≡ N/2j . For the discrete wavelet transform (DWT) pyramid algorithm
the jth stage outputs are the jth level wavelet and scaling coefficients given by,
respectively,

W
(D)
j,t =

L−1∑
t=0

hlV
(D)
j−1,(2t+1−l) mod Nj−1

, V
(D)
j,t =

L−1∑
t=0

glV
(D)
j−1,(2t+1−l) mod Nj−1

,

t = 0, . . . , Nj − 1. If we write {W (D)
j,t : t = 0, . . . , Nj − 1} as W(D)

j and {V (D)
j,t : t =

0, . . . , Nj − 1} as V(D)
j , then if N = 2J the pyramid algorithm is complete after J

repetitions yielding W(D)
1 , . . . ,W(D)

J ,V(D)
J , where the latter two vectors contain

only one coefficient each. This defines the full DWT. If however N is an integer
multiple of 2J0 say, then we can carry out a partial DWT to level J0. The DWT
is an orthonormal transform of {Xt : t = 0, . . . , N − 1}.

The jth level wavelet and scaling coefficients may be linked directly to the
series {Xt}. We define the jth level wavelet filter {hj,l} formed by convolving
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together

filter 1 g0, g1, . . . , gL−2, gL−1 ;
...

...
filter j − 1 g0, 0, . . . , 0,︸ ︷︷ ︸

2j−2−1 zeros

g1, 0, . . . , 0,︸ ︷︷ ︸
2j−2−1 zeros

. . . , gL−2, 0, . . . , 0,︸ ︷︷ ︸
2j−2−1 zeros

gL−1; and

filter j h0, 0, . . . , 0,︸ ︷︷ ︸
2j−1−1 zeros

h1, 0, . . . , 0,︸ ︷︷ ︸
2j−1−1 zeros

. . . , hL−2, 0, . . . , 0,︸ ︷︷ ︸
2j−1−1 zeros

hL−1 .

(2)

Filter {hj,l} has Lj = (2j − 1)(L − 1) + 1 terms. To obtain the jth level scaling
filter {gj,l} the only difference is that filter j in the list above is replaced by

filter j g0, 0, . . . , 0,︸ ︷︷ ︸
2j−1−1 zeros

g1, 0, . . . , 0,︸ ︷︷ ︸
2j−1−1 zeros

. . . , gL−2, 0, . . . , 0,︸ ︷︷ ︸
2j−1−1 zeros

gL−1 . (3)

Then

W
(D)
j,t =

Lj−1∑
l=0

hj,lX(2j(t+1)−1−l)modN and V
(D)
j,t =

Lj−1∑
l=0

gj,lX(2j(t+1)−1−l)modN .

The jth level filters have the following properties:
Lj−1∑
l=0

gj,l = 2j/2;
Lj−1∑
l=0

g2
j,l = 1;

Lj−1∑
l=0

gj,lhj,l = 0;
Lj−1∑
l=0

hj,l = 0;
Lj−1∑
l=0

h2
j,l = 1 . (4)

At level j the nominal frequency band to which the corresponding wavelet
coefficients {W (D)

j,t } are associated is given by |f | ∈ (1/2j+1, 1/2j ]; an ‘octave’

band. For example {W (D)
1,t }, {W (D)

2,t } and {W (D)
3,t } have nominal pass-bands of

(1/4, 1/2], (1/8, 1/4] and (1/16, 1/8] respectively.

2.2. The maximal overlap discrete wavelet transform

The DWT has several limitations:
• It requires the sample size to be an integer multiple of 2J0 for a par-

tial DWT, or to be exactly a power of 2 for the full transform.
• It is sensitive to where we ‘break into’ a time series. The wavelet and scal-

ing coefficients are not circularly shift equivariant, i.e., circularly shifting
the time series by some amount will not circularly shift the DWT wavelet
and scaling coefficients by the same amount.

• The number of wavelet and scaling coefficients, Nj , decreases by a factor
of 2 for each increasing level of the transform, limiting the ability to carry
out statistical analyses on the coefficients.

These deficiencies can be overcome if the downsampling in the DWT can be
avoided. This can be achieved by using the maximal overlap discrete wavelet trans-
form (MODWT) ([12, 13]); see also the undecimated discrete wavelet transform
([19]), and stationary discrete wavelet transform ([10]). A rescaling of the defin-
ing filters is required to conserve energy: g̃l = gl/

√
2 and h̃l = hl/

√
2 so that
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now for example,
∑L−1

l=0 g̃2
l = 1/2, while the filters are still QMFs. Now the DWT

pyramid algorithm consists of filter-subsample steps repeated for each level. If we
define V

(M)
0,t = Xt, then the MODWT pyramid algorithm generates the MODWT

wavelet coefficients {W (M)
j,t } and the MODWT scaling coefficients {V (M)

j,t } from

{V (M)
j−1,t} using the ‘new filters’ (2) and (3) with non-zero coefficients divided by√
2; the circular filterings (convolutions) can be written as

W
(M)
j,t =

L−1∑
l=0

h̃lV
(M)
j−1,(t−2j−1l) mod N , V

(M)
j,t =

L−1∑
l=0

g̃lV
(M)
j−1,(t−2j−1l) mod N ,

t = 0, . . . , N − 1.
These coefficients can also be formulated in terms of a filtering of {Xt}, using

the filters {h̃j,l = hj,l/2j/2} and {g̃j,l = gj,l/2j/2}:

W
(M)
j,t =

Lj−1∑
l=0

h̃j,lX(t−l)modN and V
(M)
j,t =

Lj−1∑
l=0

g̃j,lX(t−l)modN .

Notice that the DWT of {Xt} can be extracted from the MODWT via a
rescaling and subsampling:

W
(D)
j,t = 2j/2W

(M)
j,2j(t+1)−1 and V

(D)
j,t = 2j/2V

(M)
j,2j(t+1)−1 . (5)

The MODWT coefficients at level j are associated to the same nominal fre-
quency band |f | ∈ (1/2j+1, 1/2j ] as for the DWT, but there are always N of them
at each level. The overdetermined MODWT is not an orthonormal transform of
{Xt : t = 0, . . . , N − 1}.

2.3. The discrete wavelet packet transform

The discrete wavelet packet transform (DWPT) is a generalization of the DWT
which at level j of the transform partitions the frequency axis into 2j equal width
frequency bands, often labelled n = 0, . . . , 2j − 1. Increasing the transform level
increases frequency resolution, but, starting with a series of length N , at level j
there are only N/2j DWPT coefficients for each frequency band n.

We denote the time series to be transformed, {Xt : t = 0, . . . , N − 1} by X,
thought of as a column vector. Initially we set W(D)

0,0 ≡ X. At the first step of the
algorithm X is circularly filtered by the low-pass filter {gl}, with corresponding
transfer function G(f) =

∑L−1
l=0 gle

−i2πfl, and then downsampled by 2, to give first
level coefficients W(D)

1,0 = {W (D)
1,0,t, t = 0, . . . , (N/2) − 1} and X is also circularly

filtered by the high-pass filter {hl}, with corresponding transfer function H(f),
and then downsampled by 2, to give W(D)

1,1 = {W (D)
1,1,t, t = 0, . . . , (N/2)− 1}. Both

W(D)
1,0 and W(D)

1,1 are of length N1 = N/2 due to the downsampling.
Subsequent levels j of the transform repeat these steps: entries for the DWPT

table up to level j = 3 are processed as shown in figure 1; the figure emphasizes
that circular filtering is used by showing that the jth level coefficients are obtained
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by filtering the (j − 1)th level coefficients with the circular filter having discrete
Fourier transform {H( k

Nj−1
)} or {G( k

Nj−1
)}, followed by downsampling by 2.
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Figure 1. Wavelet packet table showing the DWPT of X.

Figure 1 can be summarised as follows. To compute the DWPT coefficients for
levels j = 1, . . . , J0, we circularly filter the wavelet packet coefficients at the pre-
vious stage and downsample by 2. Given the series {W (D)

j−1,�n/2�,t} of length Nj−1

we calculate {W (D)
j,n,t} using

W
(D)
j,n,t ≡

L−1∑
l=0

rn,lW
(D)
j−1,�n/2�,(2t+1−l) mod Nj−1

, t = 0, . . . , Nj − 1 ,

where

rn,l =

{
gl, if n mod 4 = 0 or 3 ;
hl, if n mod 4 = 1 or 2 .

(6)

Here 
·� denotes ‘the integer part’ operator. The ordering of the filters means
that at level j band n is nominally associated with frequencies in the inter-
val ( n

2j+1 ,
n+1
2j+1 ]. Such a DWPT would be said to be sequency ordered [22].

The transform that takes X to W(D)
j,n , n = 0, . . . , 2j − 1, for any j between 0

and J0 is called a DWPT, and is orthonormal.
We can also write {W (D)

j,n,t} in terms of filtering {Xt : t = 0, . . . , N − 1}.
Suppose we let

{u1,0,l} = {gl : l = 0, . . . , L− 1} and {u1,1,l} = {hl : l = 0, . . . , L− 1} ,



6 A. T. Walden

and for general (j, n) define

uj,n,l =
L−1∑
k=0

rn,k uj−1,�n/2�,l−2j−1k, l = 0, . . . , Lj − 1 , (7)

where Lj = (2j − 1)(L− 1) + 1 is the length of {uj,n,l}. For example, for j = 2,

u2,1,l =
L−1∑
k=0

r1,k u1,0,l−2k =
L−1∑
k=0

hkgl−2k

which is the convolution of the upsampled version of {hl} with {gl}; if {Xt : t =
0, . . . , N − 1} is circularly convolved with this filter and the result downsampled
by 4, then {W (D)

2,1,t} results. In general, for j = 1, . . . , J0, we can write {W (D)
j,n,t} in

terms of a filtering of {Xt : t = 0, . . . , N − 1}, via

W
(D)
j,n,t =

Lj−1∑
l=0

uj,n,lX(2j [t+1]−1−l) mod N , t = 0, 1, . . . , Nj − 1 .

2.4. The maximal overlap discrete wavelet packet transform

The downsampling step in the DWPT can also be removed. The maximal over-
lap (undecimated, stationary) discrete wavelet packet transform (MODWPT) as
developed in [20] can be briefly summarized as follows.

Let G̃(f) =
∑L−1

l=0 g̃le
−i2πfl, be the transfer function of {g̃l}, and let the trans-

fer function corresponding to {h̃l} be defined similarly. Initially we set W(M)
0,0 ≡ X.

At the first step of the algorithm X is circularly filtered by the low-pass fil-
ter {g̃l}, with corresponding transfer function G̃(f), to give first level coefficients
W(M)

1,0 = {W (M)
1,0,t, t = 0, . . . , N−1} and X is also circularly filtered by the high-pass

filter {h̃l}, with corresponding transfer function H̃(f), to give W(M)
1,1 = {W (M)

1,1,t, t =

0, . . . , N − 1}. Both W(M)
1,0 and W(M)

1,1 are of length N since there is no downsam-
pling.

For subsequent levels j of the transform we again insert 2j−1−1 zeros, j ≥ 1,
between the elements of {g̃l} as in equation (3); the resulting filter has a transfer
function given by G̃(2j−1f). We can do likewise for {h̃l} to obtain H̃(2j−1f). The
set of entries for the MODWPT table up to level j = 3 are processed as shown
in figure 2. The jth level coefficients are obtained by filtering the level j − 1 co-
efficients with the circular filter having discrete Fourier transform {H̃(2j−1 k

N )}
or {G̃(2j−1 k

N )}, as appropriate. Figure 2 can be summarised as follows. To com-
pute the MODWPT coefficients for levels j = 1, . . . , J0, we circularly filter the
wavelet packet coefficients at the previous stage. Given the series {W (M)

j−1,�n/2�,t}
of length N we calculate {W (M)

j,n,t} using

W
(M)
j,n,t ≡

L−1∑
l=0

rn,lW
(M)
j−1,�n/2�,(t−2j−1l) mod N , t = 0, . . . , N − 1 ,
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where now

rn,l =

{
g̃l, if n mod 4 = 0 or 3 ;
h̃l, if n mod 4 = 1 or 2 .

(8)
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Figure 2. Undecimated wavelet packet table showing the MOD-
WPT of X.

We can also write {W (M)
j,n,t} in terms of filtering {Xt : t = 0, . . . , N − 1}. Suppose

we now let

{u1,0,l} = {g̃l : l = 0, . . . , L− 1} and {u1,1,l} = {h̃l : l = 0, . . . , L− 1} ,
and for general (j, n) define {uj,n,l} as in (7) so for example, for j = 2,

u2,1,l =
L−1∑
k=0

r1,k u1,0,l−2k =
L−1∑
k=0

h̃kg̃l−2k

which is the convolution of the upsampled version of {h̃l} with {g̃l}; if {Xt : t =
0, . . . , N − 1} is circularly convolved with this filter then {W (M)

2,1,t} results. In gen-

eral, for j = 1, . . . , J0, we can write {W (M)
j,n,t} in terms of a filtering of {Xt : t =

0, . . . , N − 1}, via

W
(M)
j,n,t =

Lj−1∑
l=0

uj,n,lX(t−l) mod N , t = 0, . . . , N − 1 .

The transfer function Uj,n(f) =
∑Lj−1

l=0 uj,n,le
−i2πfl, of {uj,n,l : l = 0, . . . ,

Lj − 1} is defined entirely by the two filters {g̃l} and {h̃l}. Suppose we let
M̃0 = G̃(f), say, and M̃1 = H̃(f), say, as in [3]. Further, suppose we attach
to each pair (j, n) in the wavelet packet tree a sequence of ones and zeros accord-
ing to the following rule. Let {c1,0} = {0} and {c1,1} = {1} and let {cj,n} =
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{cj,n,0, . . . , cj,n,j−1} where cj,n,k ∈ {0, 1} for k = 0, . . . , j − 1. Define, for n =
0, . . . , 2j − 1,

cj,n =

{
{cj−1,�n/2�, 0}, if n mod 4 = 0 or 3 ;
{cj−1,�n/2�, 1}, if n mod 4 = 1 or 2 .

Hence to obtain {cj,n} we append a zero to the sequence {cj−1,�n/2�} if n mod 4 =
0 or 3 and append a one if n mod 4 = 1 or 2. Then,

Uj,n(f) =
j−1∏
m=0

M̃cj,n,m(2mf) . (9)

As an example consider U3,3(f), to which is associated the binary sequence {c3,3} =
{c3,3,0, c3,3,1, c3,3,2} = {0, 1, 0}. We then have U3,3(f) = M̃0(f)M̃1(2f)M̃0(4f) =
G̃(f)H̃(2f)G̃(4f).

Each factor in the product in equation (9) can be written

M̃cj,n,m(2mf) = |M̃cj,n,m(2mf)| exp{iθcj,n,m(2mf)} ,
where

θcj,n,m
(2mf) =

{
θ(G̃)(2mf), if cj,n,m = 0 ;
θ(H̃)(2mf), if cj,n,m = 1 ,

where θ(G̃)(f) and θ(H̃)(f) are the phase functions of the filters {g̃l} and {h̃l},
respectively.

For the Daubechies least asymmetric filters of lengths L = 8(2)20, denoted
here LA(L), and the Daubechies coiflet filters of lengths L = 6(6)30, denoted here
C(L), it may be shown that θ(G̃)(f) ≈ 2πfν and θ(H̃)(f) ≈ −2πf(L − 1 + ν),
where, for the LA(L) filters

ν =


−(L/2) + 1, if L = 8, 12, 16 or 20 ;
−(L/2), if L = 10 or 18 ;
−(L/2) + 2, if L = 14 ;

and for the C(L) filters, ν = −(2L/3) + 1, L = 6, 12, 18, 24 and 30. The overall
phase function of Uj,n(f) is thus

j−1∑
m=0

θcj,n,m
(2mf) ≈ 2πf

ν

j−1∑
m=0

{m:cj,n,m=0}

2m − (L− 1 + ν)
j−1∑
m=0

{m:cj,n,m=1}

2m


= 2πfνj,n, say .

Since νj,n < 0 for the filters discussed above, we obtain the closest approximation
to zero phase filtering if we associate the coefficient W

(M)
j,n,(t+|νj,n|) mod N with the

input Xt. (For further details, including the necessity of reversing some of the
filters listed in [4] for phase correction purposes, see [20] and [15].)
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3. Denoising

3.1. The DWT and universal thresholding

Suppose that our observed time series consists of a signal plus noise, i.e.,

X = D + ε , (10)

where D is a deterministic signal and ε represents an N dimensional vector of in-
dependent and identically distributed (IID) Gaussian noise, each random variable
having variance σ2

ε .
For the purpose of denoising via thresholding Donoho and Johnstone ([5])

recommend firstly computing a level J0 partial DWT giving coefficient vectors
W(D)

1 , . . . ,W(D)
J0

and V(D)
J0

. Component-wise, we have, say,

W
(D)
j,t = dj,t + ej,t j = 1, . . . , J0; t = 0, . . . , Nj − 1 .

(J0 must be specified by the user.) Then, only the coefficients in the W(D)
k vectors

are subjected to thresholding; i.e., the elements of V(D)
J0

are untouched, so that
portion of X is automatically assigned to the signal D.

Next a threshold level must be chosen. A key property about an orthonormal
transform, (such as the partial DWT), of IID Gaussian noise is that the trans-
formed noise has the same statistical properties as the untransformed noise so
that the {ej,t} are also IID Gaussian with mean zero and variance σ2

ε . The uni-
versal threshold was defined in [5] as

δU ≡ √
[2σ2

ε log(N)] .

To understand the rationale for this threshold suppose that the signal D is in fact
a vector of zeros so that the transform coefficients {W (D)

j,t } are a portion of an IID
Gaussian sequence {ej,t} with zero mean and variance σ2

ε . Then, as N → ∞, we
have

P
[
max{|W (D)

j,t |} ≤ δU

]
≡ P

[
max{|ej,t|} ≤ δU

]
→ 1 ,

so that asymptotically we will correctly estimate the signal vector. Universal
thresholding typically removes all the noise, but, in doing so, it can mistakenly
set some small signal transform coefficients to zero. Universal thresholding thus
ensures, with high probability, that the reconstruction is at least as smooth as the
true deterministic signal. If σ2

ε is unknown as is frequently the case in applications,
a practical procedure is to estimate it based upon the median absolute deviation
(MAD) standard deviation estimate using just the N/2 level j = 1 coefficients in
W(D)

1 . By definition, this standard deviation estimator is

σ̂MAD ≡
median{|W (D)

1,0 |, |W (D)
1,1 |, . . . , |W (D)

1, N
2 −1

|}
0.6745

.

The factor 0.6745 rescales so that σ̂MAD is also a suitable estimator for the standard
deviation for Gaussian white noise. σ̂MAD is calculated from the elements of W(D)

1

because the smallest scale wavelet coefficients should be noise dominated, with the
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possible exception of the largest values. The MAD standard deviation estimate is
designed to be robust against large deviations and hence should reflect the noise
variance rather than the signal variance.

Finally, for W
(D)
j,t , j = 1, . . . , J0 and t = 0, . . . , Nj − 1, we apply a chosen

thresholding rule, such as hard thresholding defined by

Ŵ
(D)
j,t =

{
0, if |W (D)

j,t | ≤ δU ;
W

(D)
j,t , otherwise ,

to obtain the thresholded coefficients {Ŵ (D)
j,t }, which are then used to form

Ŵ(D)
j , j = 1, . . . , J0. D is estimated as D̂ obtained by inverse transforming

Ŵ(D)
1 , . . . ,Ŵ(D)

J0
and V(D)

J0
.

3.2. Level-dependent thresholding

In the event that the noise wavelet coefficients {ej,t} are uncorrelated, but not
identically distributed, as will be the case if the additive noise is still IID but is
non-Gaussian, a level-dependent (universal thresholding) can be used where now

δU,j ≡ √
[2σ2

j log(N)] ,

and σ2
j is the variance of the jth level coefficients. As pointed out in [7] in the

general case of unknown variances, we could use the MAD estimate at each level j,
namely,

σ̂MAD,j ≡
median{|W (D)

j,0 |, |W (D)
j,1 |, . . . , |W (D)

j,Nj−1|}
0.6745

,

and then use the universal threshold

δ̂U,j ≡ √
[2σ̂2

MAD,j log(N)]

at each level. The estimate σ̂MAD,j is only appropriate for small j, where there is
a considerable number of coefficients in a given level, and the signal is sparse.

Scale-dependent thresholding was investigated in the context of spectrum
estimation in [21]; in this application the variances σ2

j at each level were known,
and did not need to be estimated.

3.3. Cycle-spinning denoising and the MODWT

It was noted in section (2.2) that one potential problem with the DWT is its sensi-
tivity to where we ‘break into’ a time series. As a consequence the result of denois-
ing using the DWT will depend somewhat on the starting point of the series. To try
to alleviate this problem the idea of cycle spinning was introduced in [2]. Consider
a partial DWT of level J0 calculated from a time series of length N an integer mul-
tiple of 2J0 . The idea of denoising via cycle spinning is to apply denoising not only
to X, but also to all possible unique circularly shifted versions of X, and to aver-
age the results. Consider the model in (10). Let T X = [XN−1, X0, X1, . . . , XN−2],
i.e., T (circularly) delays X by one time unit, and let T 2X = T T X etc. Also we
take T −1 to be a circular advance operator. Suppose that D̂n is the estimate of D
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resulting from applying a denoising procedure to T nX. Then the cycle spinning
denoising estimate of D is given by

D =
1

2J0

2J0−1∑
n=0

T −nD̂n .

(Shifts greater than or equal to 2J0 are redundant.)
However, we know that the DWT of each T nX can be extracted readily from

the MODWT of X: see equation (5) where we note that the variance of the DWT
coefficients is 2j times that of the MODWT coefficients. Hence cycle-spinning can
be implemented efficiently in terms of the MODWT as follows ([15]):

• Compute a level J0 partial MODWT giving coefficient vectors W(M)
1 , . . . ,

W(M)
J0

and V(M)
J0

.
• For each j = 1, . . . , J0 apply a chosen thresholding rule to each element of

W(M)
j using the level-dependent universal threshold δU,j ≡ √

[2σ2
j log(N)],

with σ2
j = σ2

ε /2
j .

• The thresholded coefficients {Ŵ (M)
j,t } are then used to form Ŵ(M)

j , j =
1, . . . , J0. D is estimated as D̂ obtained by applying the inverse MODWT
to Ŵ(M)

1 , . . . ,Ŵ(M)
J0

and V(M)
J0

.

The advantages of this approach to cycle spinning are two-fold. Cycle spinning
originated assuming that the sample size N is an integer multiple of 2J0 , whereas
the MODWT-based approach above is valid for general N . Secondly, if σ2

ε is un-
known, the MAD scale estimate can be adapted by taking

σ̃MAD ≡
21/2 median{|W (M)

1,0 |, |W (M)
1,1 |, . . . , |W (M)

1,N−1|}
0.6745

.

The scaling factor of ‘21/2’ in the numerator above, reflects the fact that W (D)
1,t =

21/2W
(M)
1,2t+1.

4. Scale-Based Decomposition

Let {Xt, t ∈ Z} denote a real-valued second-order stationary process for which
{Xt : t = 0, . . . , N − 1} would represent a realization. The autocovariance se-
quence {sX,m} is defined as

sX,m ≡ cov{Xt, Xt+m} = E {[Xt − µX ][Xt+m − µX ]} = sX,−m ,

where µX is the mean of {Xt, t ∈ Z}.
The stationary stochastic processes resulting from applying the filters {h̃j,l},

j = 1, . . . , J0, and {g̃J0,l}, to {Xt} are given by the jth level wavelet coefficients
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{W(M)
j,t }, j = 1, . . . , J0, and J0th scaling coefficients {V(W )

J0,t }, calculated by non-
circular filtering, where

W(M)
j,t =

Lj−1∑
l=0

h̃j,lXt−l, j = 1, . . . , J0, and V(M)
J0,t =

LJ0−1∑
l=0

g̃J0,lXt−l, t ∈ Z .

The autocovariance of the wavelet coefficient process at transform level j,
{W(M)

j,t }, is given by

sWj ,m = E
{
W(M)

j,t W(M)
j,t+m

}
.

Note that {W(M)
j,t } has a mean of zero since by design

∑Lj−1
l=0 h̃j,l = 0.

The autocovariance of the scaling coefficient process at transform level J0,
{V(M)

J0,t }, is given by

sVJ0 ,m = E
{
V(M)

J0,t V
(M)
J0,t+m

}
− E2

{
V(M)

J0,t

}
= E

{
V(M)

J0,t V
(M)
J0,t+m

}
− µ2

X ,

since the mean of {V(M)
j,t } is µX , because by design

∑Lj−1
l=0 g̃j,l = 1. Then ([16]),

sX,m =
J0∑

j=1

sWj ,m + sVJ0 ,m (11)

i.e., the autocovariance sequence of the process {Xt, t ∈ Z} can be decomposed
in terms of the autocovariance sequences of the wavelet coefficient processes, and
the autocovariance sequence of the single scaling coefficient process. (This type of
decomposition extends to cross-covariances (see [16]); it was noted for sequence
variance in [11].) Most usefully, we can interpret this result as a scale-by-scale
decomposition.

A standard measure of effective width of the jth level scaling filter is the
‘autocorrelation width,’ ([1]), defined as widtha{g̃j,l} = (

∑
l g̃j,l)

2
/

∑
l g̃

2
j,l. But,

from (4), (∑
l

g̃j,l

)2

= 1 and
∑

l

g̃2
j,l = 2−j ,

so that widtha{g̃j,l} = 2j . The averaging effect of {g̃j,l} thus extends over a scale
of 2j . Moreover, because the wavelet filter {h̃j,l} has the same length Lj as {g̃j,l},
is orthogonal to {g̃j,l} and sums to zero, it represents the difference between two
generalized averages, each occupying half the width of 2j . Thus the wavelet coef-
ficients at transform level j are associated with a scale of 2j−1. For processes with
sample interval ∆t the jth level scaling coefficients are associated with a physical
scale of 2j ∆t and the jth level wavelet coefficients with a physical scale of 2j−1 ∆t.
We are thus able to think of the decomposition in (11) as a scale-by-scale decompo-
sition of the autocovariance sequence of {Xt, t ∈ Z}. For estimation considerations
and examples of practical applications of such scale-based decompositions see [17]
and [18].
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5. Decorrelation

It has become well-recognised in recent years ([6, 8, 23]) that wavelet transforms
are particularly well suited to the analysis of long-memory or ‘1/f -type’ processes;
these have power spectra which plot as straight lines on log-frequency/log-power
scales over many octaves of frequency and tend to infinity as the frequency tends
to zero. The application of the DWT to a particular discrete-time long-memory
model class, namely the stationary fractionally differenced (FD) processes, was
investigated in [9]. A long-memory FD(d) process can be written an an infinite
order moving average process:

Xt =
∞∑

k=0

Γ(k + d)
Γ(k + 1)Γ(d)

εt−k ,

where 0 < d < 1/2, Γ(·) is the gamma function, and {εt} is a sequence of un-
correlated random variables (white noise) with mean zero and variance σ2

ε . The
spectrum of such a process is of the form S(f) = σ2

ε(4 sin2 πf)−d, |f | ≤ 1/2. Using
a full DWT for N = 2J = 25 = 32 the exact 32× 32 correlation matrix, (including
boundary effects), of the wavelet coefficients {W (D)

j,t }, j = 1, . . . , 5 and the single

scaling coefficient V (D)
5,0 was computed, (for each of three different Daubechies scal-

ing and wavelet filters). The only large off-diagonal correlations occurred between,
rather than within, levels of the transform, the largest being due to boundary
effects. The lack of correlation within a level can be explained by computing the
covariance of the wavelet coefficients, ignoring boundary effects; from [15],

cov{W (D)
j,t ,W

(D)
j,t+τ} =

∫ 1/2

−1/2

ei2j+1πfτ |Hj(f)|2S(f)df ,

where Hj(f) =
∑Lj−1

l=0 hj,le
−i2πfl is the transfer function of {hj,l}. The jth level

wavelet filter has an (ideal) pass band |f | ∈ (1/2j+1, 1/2j ]; hence if in addition to
|Hj(f)|2 being approximately constant over this band, S(f) is also, then approxi-
mately

cov{W (D)
j,t ,W

(D)
j,t+τ} ∝

∫ −1/2j+1

−1/2j

ei2j+1πfτdf +
∫ 1/2j

1/2j+1
ei2j+1πfτdf = 0 for τ �= 0 .

But the basis underlying the DWT ensures that S(f) for a FD process is in-
deed approximately constant over |f | ∈ (1/2j+1, 1/2j ]; although S(f) rises rapidly
towards zero frequency, the interval (1/2j+1, 1/2j ] becomes increasingly narrow to-
wards zero frequency as j increases, ‘tracking’ the change in the spectrum. Hence
the covariance, and correlation, is negligible within a level. Covariances between
levels can be considered using similar reasoning —see [15].

The ability to decorrelate a process is a powerful weapon in statistical analysis
as it enables the use of statistical tools which will fail in the presence of strong
correlations (see for example [14]). For a stochastic process with a spectrum very
different from that of a long-memory process, the DWT can be very sub-optimal
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as a decorrelator. A more flexible basis is of course provided by the DWPT; we can
define a disjoint dyadic decomposition of the table in figure 1 by noting that at each
potential parent node (j, n) we can either carry out the splitting using both G(·)
and H(·) or not split at all. Such a resulting decomposition is also orthonormal,
being associated with a nonoverlapping partition of (0, 1/2]. A way of determining a
‘best basis,’ suitable for decorrelating, from all the possible orthonormal partitions,
is given in [14]. The algorithm looks at each node (j, n) and carries out a statistical
white noise test on W

(D)
j,n,t, t = 0, . . . , Nj − 1. If we fail to reject the hypothesis

that the DWPT coefficients are from a white noise process, then we retain W
(D)
j,n,t,

t = 0, . . . , Nj − 1, i.e., this sequence is processed no further. If we reject the
hypothesis, then W

(D)
j,n,t, t = 0, . . . , Nj − 1, is further filtered and downsampled

to produce W
(D)
j+1,2n,t, t = 0, . . . , Nj+1 − 1 and W

(D)
j+1,2n+1,t, t = 0, . . . , Nj+1 − 1.

Further details and application examples can be found in [14].

6. Conclusions

We have shown that a number of very useful wavelet-based tools are currently
available for the analysis of discrete time series from both algorithmic and statis-
tical perspectives. We expect many more to be developed in the coming years.
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