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Abstract. We survey a recent application of algebraic curves over finite fields
to the constructions of authentication codes.

1. Introduction

Authentication codes were invented by Gilbert, MacWilliams and Sloane [5]. The
general theory of unconditional authentication has been developed by Simmons
([10, 11]) and has been extensively studied in recent years.

In the conventional model for unconditional authentication, there are three
participants: a transmitter, a receiver and an opponent. The transmitter wants
to communicate some information to the receiver using a public channel which is
subject to active attack. That is, the opponent can either impersonate the trans-
mitter and insert a message on the channel, or replace a transmitted message with
another. To protect against these threats, the transmitter and the receiver share
a secret key, the key is then used in an authentication code (A-code for short).

A systematic A-code (or A-code without secrecy) is a code where the source
state (i.e. plain text) is concatenated with an authenticator (or a tag) to obtain
a message which is sent through the channel. Such a code is a triple (S, E , T ) of
finite sets together with a (authentication) mapping f : S × E → T . Here S is the
set of source states, E is the set of keys and T is the set of authenticators. When
the transmitter wants to send the information s ∈ S using a key e ∈ E , which
is secretly shared with the receiver, he transmits the message m = (s, t), where
s ∈ S and t = f(s, e) ∈ T . When the receiver receives a message m = (s, t), she
checks the authenticity by verifying whether t = f(s, e) or not, using the secret
key e ∈ E . If the equality holds, the message m is called valid.

Suppose the opponent has the ability to insert messages into the channel
and/or to modify existing messages. When the opponent inserts a new message
m′ = (s′, t′) into the channel, this is called impersonation attack. When the op-
ponent sees a message m = (s, t) and changes it to a message m′ = (s′, t′) where
s 6= s′, this is called substitution attack.

We assume that there is a probability distribution on the source states, which
is known to all the participants. Given the probability distribution on the source
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states, the receiver and the transmitter will choose a probability distribution for
E . We will denote the probability of success for the opponent when trying imper-
sonation attack and substitution attack, by PI and PS , respectively, and P (·) and
P (·|·) specify probability and conditional probability distribution on the message
space M := S × E . Then we have

PI = max
(s,t)∈M

P (m = (s, t) valid) and

PS = max
(s,t),(s′,t′)∈M,s6=s′

P (m′ = (s′, t′) valid | m = (s, t) observed).

If we further assume that the keys and the source states are uniformly distributed,
then the deception probabilities can be expressed as

PI = max
(s,t)∈M

|{e ∈ E : t = f(s, e)}|
|E| ,

PS = max
(s,t),(s′,t′)∈M,s6=s′

|{e ∈ E : t = f(s, e), t′ = f(s′, e)}|
|{e ∈ E : t = f(s, e)}| .

In the remainder of the paper, we will always assume that the keys and the
source states are uniformly distributed.

We observe that each parameter of an A-code (S, E , T ) plays a role:
• the size of S indicates how large the plain text could be;
• the size of E is the number of keys, which represents the number of users;
• the size of T is the number of authenticators, which represents the trans-

mission rate;
• PI is the security measure against the impersonation attack;
• PS is the security measure against the substitution attack.

It is clear that for fixed sizes of S, E and T , we want Pi and PS to be as
small as possible. In other words, if PI , PS and |T | are fixed, we are interested in
A-codes (S, E , T ) with |S| and |E| as large as possible. In particular, the study of
the asymptotic behaviour of (log |S|)/|E| for fixed |T |, PI = 1/|T | and PS is one
of the most important topics for A-codes. For a review of different bounds and
constructions for A-codes, we refer to [7, 13, 8].

In this survey paper, we present an explicit construction of A-codes based on
algebraic curves over finite fields.

2. Constructions

In this section, we describe a construction of authentication codes based on alge-
braic curves over finite fields.

Before starting our construction, we need to introduce some concepts and
notations that are essential for the construction. For further results on algebraic
curves over finite fields, we refer to [12, 16].

We fix some notations for this section.
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`: power of a prime;
F`: the finite field of ` elements;
X : a projective, absolutely irreducible, complete algebraic curve

defined over F`. We simply say that X is an algebraic curve;
g = g(X ): the genus of X ;

F`(X ): the function field of X ;
X (F`): the set of all F`-rational points on X .

A divisor G of X/Fq is a formal sum

G =
∑
P∈S

νP (G)P,

where S is a finite non-empty set of points of X , and νP (G) ∈ Z for all P ∈ S. A
divisor G of X/F` is called F`-rational if

Gσ = G

for all automorphisms σ ∈ Gal(F`/F`), where F` is a fixed algebraic closure of
F` and Gal(F`/F`) is the Galois group of F`/F`. In this paper we always mean a
rational divisor whenever a divisor is mentioned.

We write νP for the normalized discrete valuation corresponding to the point
P of X .

For a divisor G we form the vector space

L(G) = {x ∈ F`(X )\{0} : div(x) +G ≥ 0} ∪ {0}.
Then L(G) is a finite-dimensional vector space over F`, and we denote its dimen-
sion by l(G). By the Riemann-Roch theorem (see [12, 16]), we have

l(G) ≥ deg(G) + 1− g,
and equality holds if deg(G) ≥ 2g − 1.

Now we are ready to describe the construction.
Let P be a subset of X (F`), i.e., P is a set of F`-rational points of X . Let D be

a positive divisor with P ∩ Supp(D) = ∅. Choose an F`-rational point R in P and
put G = D −R. Then deg(G) = deg(D)− 1, L(G) ⊂ L(D) and F` ∩ L(G) = {0}.
Moreover, we have

L(D) = F` ⊕ L(G) = {α+ f |f ∈ L(G), α ∈ F`}.
Put

S = L(G), E = P × F`, T = F`,
and consider the map f

S × E → T , (s, (P, α)) 7→ s(P ) + α.

It can be proved that (S, E , T ) constructed above together with f forms an A-code
with the deception probabilities

PI =
1
`
, PS =

deg(D)
|P|
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provided deg(D) ≥ 2g + 1. More precisely, we have the following result.

Theorem 2.1. Let X be an algebraic curve and P a set of F`-rational points on X .
Suppose that D is a positive divisor with deg(D) ≥ 2g + 1 and P ∩ Supp(D) = ∅.
Then there exists an A-code (S, E , T ) with

|S| = `l(D)−1 = `deg(D)−g, |E| = `|P|, |T | = `

PI =
1
`
, PS =

deg(D)
|P| .

Theorem 2.1 gives a construction of A-codes based on general algebraic curves
over finite fields. In the examples below, we apply Theorem 2.1 to some special
curves to obtain A-code with nice parameters.

Example 2.2. Consider the projective line X/F`. Then g = g(X ) = 0.
(a) Let d be an integer between 1 and `, and P an F`-rational point of X .

Put
D = dP, P = X (F`)− {P}.

Then deg(D) = d ≥ 2g + 1, |P| = ` and P ∩ Supp(D) = ∅. By Theorem 2.1, we
obtain an A-code (S, E , T ) with

|S| = `d, |E| = `2, |T | = `

PI =
1
`
, PS =

d

`
.

The A-code (S, E , T ) with the above parameters can also be found in [2]. It can be
proved that the above A-code is optimal in the sense that

(b) Let d be an integer between 2 and `. Put P = X (F`). As there always
exists an irreducible polynomial of degree d over F`, we can find a positive divisor
D such that deg(D) = d and P ∩ Supp(D) = ∅. Then deg(D) = d ≥ 2g + 1,
|P| = `+ 1. By Theorem 4.1, we obtain an A-code (S, E , T ) with

|S| = `d, |E| = `(`+ 1), |T | = `

PI =
1
`
, PS =

d

`+ 1
.

These A-codes had not been known before the construction in Theorem 2.1 was
introduced (see [19]).

Example 2.3. Let ` be a square and put r =
√
`. Consider a sequence of algebraic

curves Xm/F` given in [4] as follows. Let X1 be the projective line with the function
field F`(X ) = F`(x1). Let Xm be obtained by adjoining a new equation:

xrm + xm =
xrm−1

xr−1
m−1 + 1

,

for all m ≥ 2. Then the number of F`-rational points of Xm is more than (r2 −
r)rm−1, and the genus gm of Xm is less than rm for all m ≥ 1. Choose an integer
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c between 2 and
√
`−1(c is independent of m) and an F`-rational point Pm of Xm

and put Dm = c`m/2Pm. Let Pm be a subset of Xm(F`)− {Pm} with

|Pm| = (r2 − r)rm−1 = `m/2(
√
`− 1).

By Theorem 2.1, we obtain a sequence of A-code (Sm, Em, Tm) with

|Sm| = `(c−1)`m/2 , |Em| = `m/2(`
√
`m − `), |Tm| = `,

and with deception probabilities

PI =
1
`
, PS =

c√
`− 1

.

The above example provides the first explicit construction of A-codes with
lim|E|→0(log |S|)/|E| > 0 for fixed |T |, PI = 1/|T | and PS .
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