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Abstract. A generalization of the Arnold’s simple Lagrangian singularities is
presented. Consider a fibration of a symplectic space by coisotropic fibers.
A generic Lagrangian submanifold can meet certain fibers non-transversally.
We call the set of corresponding points from the base of the fibration —the
coisotropic caustic. It turn out that the classification of simple local singular-
ities of coisotropic caustics is related to all Coxeter crystallographic groups
generated by reflections A, B, C, D, E, F (except G2).

Similar answers arise in the parallel theory of Legendre singularities in
contact spaces.

1. Introduction

Various applications of singularity theory in geometry and physics involve symplec-
tic geometry and in particular Arnold’s construction [1] of Lagrangian projections.

A bundle with a symplectic total space and Lagrangian fibers is called a
Lagrangian bundle. The main examples are: the cotangent bundle and the foliation
by common level sets of integrals of a completely integrable Hamiltonian system.
The restriction to an immersed Lagrangian submanifold L of the bundle projection
is called a Lagrangian mapping. Its critical value locus (in other words, the base
point set of nontransversal intersections of L with the corresponding fibers) is
called caustic.

The simple stable classes of caustic germs are related to A, D, E simple Lie
groups.

Here we describe a rather natural generalization of this construction corre-
sponding to the case of noncompletely integrable Hamiltonian systems.

Consider a collection of independent functions h1, . . . , hk k ≤ n defined on
a symplectic space (M2n, ω), which are pairwise in involution. Their common level
sets C2n−k

c , c ∈ Rk are coisotropic (at each point the tangent space to Cc contains
its symplectic orthogonal) and foliate M. Each fiber is itself foliated by charac-
teristic (isotropic submanifolds of dimension k being the integral submanifolds of
the distributions spanned by hi Hamiltonian vector fields). The space of these
characteristics is a symplectic (reduced) space of dimension 2(n− k).

The Lagrangian submanifold L ⊂M2n can meet certain fiber Cc nontransver-
sally. The isotropic variety L∩Cc in this case projects to a Lagrangian subvariety
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(which in general is singular) in the corresponding space of characteristics. The
set of such values of c ∈ Rk is called a coisotropic caustic of L.

Our result is the classification of simple (having no continuous invariants)
stable coisotropic caustics. The underlying equivalence relation is provided by the
group of symplectomorphisms of the ambient space, which preserve the coisotropic
fibration.

The answer was unexpected. Simple stable coisotropic caustics occur to be
diffeomorphic (with one exception) to irregular orbit hypersurfaces of Weil groups
of A, B, C, D, E, F types.

The same list of normal forms remains for simple stable (with respect to the
group of contactomorphisms) projections of Legendre submanifolds along coisotro-
pic fibration of a contact space.

The proofs (see [6]) are based on the classification of singularities of the
contact of Lagrangian submanifold with only one coisotropic subspace [5].

We determine also the range of nice dimensions n and k, for which simple sta-
ble coisotropic singularities are dense. In particular, if k = 1 then generic Morse
nontransversal intersections of Lagrangian submanifold with the level hypersur-
faces of regular Hamiltonian function are stable.

All constructions are local, and the initial objects are supposed to be
C∞-smooth.

The work was supported by RFFI 99-01-00147 and INTAS 1644 grants. It
was finished during the author’s visit to Purdue University.

2. Definitions

Let h : R2n → Rk, k ≤ n be a germ (at the origin) of a fibration with coisotropic
fibers Cc, c ∈ Rk of the standard symplectic space (R2n, ω). The Darboux theorem
implies that any two such fibrations (of equal dimensions) are symplectomorphic.

Consider a pair (Ln, h), where L is a germ of Lagrangian submanifold of
(R2n, ω). Two pairs will be called equivalent, if one of them can be transformed
into the other by some local symplectomorphism of R2n.

A pair is called stable if its orbit of the (pseudo) group of equivalencies is an
open subset (in the space of pairs equipped with the appropriate topology).

A pair is called simple, if germs of L and h have such representatives that
the germs of their small deformations at any nearby point define a pair, which is
equivalent to one of the finite list of normal forms.

Denote by h0 a distinguished coordinate coisotropic fibration defined in Dar-
boux coordinates R2n = {(x, y, u, v)}, ω = dy∧dx+dv∧du, x = (x1, . . . , xk) ∈ Rk,
y = (y1, . . . , yk) ∈ Rk, u = (u1, . . . , un−k) ∈ Rn−k, v = (v1, . . . , vn−k) ∈ Rn−k by
the projection h0 : (x, y, u, v) 7→ y.

The associated isotropic characteristics are the subspaces parallel to x coor-
dinate subspace and the reduction mapping is the projection ρc : Cc → R2(n−k),
ρc : (x, c, u, v) 7→ (u, v).
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Denote by Γk the (pseudo)group of symplectomorphism germs at the ori-
gin of the standard symplectic space R2n, which commute with the projection
h0 (map fibers to fibers). It contains the germs of the products of symplectomor-
phisms of (x, y), dy ∧ dx space, preserving Lagrangian fibration (y, x) 7→ y, and
symplectomorphisms of (u, v), dv ∧ du space.

If k is odd the group is not connected. In this case we denote by Γ+
k its

connected component of the identity, whose elements preserve the orientation of
the fiber C0 = {y = 0} The group Γk (for odd k) is isomorphic to the semidirect
product of Γ+

k and of Z2, generated by reflection

I : (x1, . . . , xk, y1, . . . , yk, u, v) 7→ (−x1, . . . , xk,−y1, . . . , yk, u, v) ,

which changes the orientation of C0.
Let r be the rank of the projection h0 restricted to the tangent space T0L at

the origin of the Lagrangian submanifold L.
There exists a Lagrange coordinate subspace L∗ transversal to T0L having

r-dimensional intersection with x isotropic coordinate subspace. A permutations of
subset (1, . . . , k) of indices and a symplectic permutation of (u, v) coordinates space
induce a symplectomorphism from Γ+

k . Hence, without loss of genericity, suppose
that this is the subspace L∗ = {xr+1 = · · · = xk = y1 = · · · = yr = 0, u = 0}.
Then the Lagrangian germ L is defined by a (generating) function S in the variables
xr+1, . . . , xk, y1 . . . , yr, u by standard formulas

L =
{

(x, y, u, v)
∣∣∣∣yj =

∂S

∂xj
, j = r + 1, . . . , k; xi = − ∂S

∂yi
j = 1, . . . , r; v =

∂S

∂u

}
.

Such a Lagrangian germ, its generating function and its variables will be called
(r, k)-adapted.

If r = k (that is Ln is transversal to C0 at the origin), then the intersection
L ∩ C0 is transversal to characteristic fibers of C and ρc is nonsingular.

All such transversal pairs are equivalent to each other. Really, in this case
function S depends only on y and u and the symplectomorphism

(x, y, u, v) 7→
(
x+

∂S

∂y
, y, v − ∂S

∂u
, u

)
belongs to Γ+

k and maps L to the coordinate Lagrangian submanifold L∗ defined
by the zero generating function.

Denote by Gk the subgroup of symplectomorphisms, which preserve only one
distinguished coisotropic fiber C0.

3. Classification Theorems

If k = n we are in classical Lagrangian projection setting without any v, u coor-
dinates. The simple stable pairs are classified by generating functions S in x and
y only, which are versal (with respect to the R+ group of right diffeomorphisms
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and additions with constants) deformations with y parameters of functions in x
having A, D, E simple singularities.

Suppose now k < n.

Theorem 3.1. i. Any simple stable nontransversal pair has corank k− r equal to 1.
ii. Any simple stable nontransversal germ (Ln, h) is equivalent to a pair germ
(LS , h0), where Lagrangian submanifold LS is defined in (k−1, k)-adapted Darboux
coordinates by the generating function (with k − r = 1) S(y1, . . . , yk−1, t, u) (here
t stands for xk) of one of the following forms:

(In the following Q(u1, . . . , uk) denotes a nondegenerate quadratic form Q =
±u2

1 ± · · · ± u2
k.)

(1) S = t3 + tf(y, u), where f(y, u) is a restricted versal deformation with
parameters y of one of the simple singularities of functions in u:

Am : k ≥ m ≥ 1 f(u) = ±um+1
1 +Q(u2, . . . , un−k)

+y1u1 + · · ·+ ym−1u
m−1
1

(for even m the singularities with ± signs are equivalent);

Dm : k ≥ m ≥ 4 f(y, u) = u2
1u2 ± um−1

2 +Q(u3, . . . , un−k)
+y1u

1
2 + · · ·+ ym−2u

m−2
2 + ym−1u1

(for odd m the singularities with ± signs are equivalent);

E6 : k ≥ 5 f(y, q) = u3
1 ± u4

2 +Q(u3, . . . , un−k)+
+y1u1 + y2u2 + y3u1u2 + y4u

2
2 + y5u1u

2
2 ;

E7 : k ≥ 6 f(q) = u3
1 + u1u

3
2 +Q(u3, . . . , un−k)+

+y1u1 + y2u2 + y3u1u2 + y4u
2
2 + y5u

2
1 + y6u

2
1u2 ;

E8 : k ≥ 7 f(q) = u3
1 + u5

2 +Q(u3, . . . , un−k) + y1u1 + y2u2+
+y3u1u2 + y4u

2
2 + y5u1u

2
2 + y6u

3
2 + y7u

3
2u1 .

(2) Classes, corresponding to boundary singularities

Cm : k ≥ m ≥ 2 S = t2m+1 + ym−1t
2m−1 + · · ·+ y1t

3 + t2u1

+tQ(u2, . . . , un−k) ;

Bm : k ≥ m ≥ 2 S = t3u2 + t2u1 + t(±um2 +Q(u3, . . . , un−k)+
y1u

1
2 + · · ·+ ym−1u

m−1
2 ) ;

F4 : k ≥ 4 S = t5 + y3t
3 + t2u1 + t(u3

2+
Q(u3, . . . , un−k) + y2u

2
2 + y1u2) .

(3) Exceptional class

Un−k+2 : k ≥ n− k + 2 S = ±t4 + t2(y1u1 + · · ·+ yn−kun−k
+yn−k+1) + tQ(u1, . . . , un−1) .

Remark 3.2. Classes Ck, F4 have an alternative equivalent form (when n−k > 2),
S = t3u2 + t2u1 + tf , where f is a versal deformation (with parameters y) of the
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corresponding simple boundary singularity of functions in u2, . . . , un−k with the
hypersurface u2 = 0 as the boundary. In particular, B2 is equivalent to C2.

Remark 3.3. The adjacency table of these simple classes differs from that of bound-
ary singularities by the term Un−k+2 → B2 only.

Generically the coisotropic caustic of a pair consists of two components: one
(Σs) is formed by those values of y = (y1, . . . , yk), for which the corresponding
reduced Lagrangian variety ρ(L∩Cy) has singular points, and the other (Σi) —is
formed by those values of y, for which the corresponding reduced Lagrangian va-
riety ρ(L∩Cy) has nontransversal intersections of smooth branches. The straight-
forward calculations imply the following

Proposition 3.4. The hypersurface (Σs) in y space for A,D,E classes from the-
orem 3.1 is defined by the equations f(u, y) = yk,∂f∂u = 0, for the corresponding
family f = f(u, y1, . . . , yk−1). Thus it is the irregular orbit hypersurface in the
space of orbits of one of the A,D,E Coxeter finite groups, generated by reflec-
tions.

The hypersurface (Σi) for these classes is a cylinder (with the line generator
parallel to yk axis) over the ordinary A,D,E caustic in y1, . . . , yk−1 space, defined
by equations

∂f

∂u
= 0, det

(
∂2f

∂ui∂uj

)
= 0 .

Remark 3.5. Using methods of [4, 3] one can verify that the Lagrangian projections
defined by the fibration (u, v) 7→ u of reduced singular Lagrangian varieties ρ(L ∩
Cy) for A,D,E classes of theorem 3.1 are stable in the sense of [3] (with respect
to perturbations of simplectic structure and Lagrangian projections) for any y.

Proposition 3.6. The coisotropic caustics of normal forms B,C, F are diffeomor-
phic to the bifurcation sets of zeros (alternatively called wave fronts) of the cor-
responding boundary singularities, that is to the irregular orbit hypersurface Σ of
the corresponding reflection group.

Amazingly, one irreducible component of Σ coincide with Σs and the other
—with Σi.

For example, the curve Σs of the normal form C2 : S = t5 + y1t
3 + t2u1 (here

we put k = 2, n = 4) is the set of parameters y1, y2 where zero is a multiple root
of the polynomial P (t) = 5t4 + 3y1t

2 + 2tu1−u2, while the curve Σi is determined
by the condition that P (t) has an arbitrary multiple root provided that u1 = 0.

Thus the coisotropic caustic in the (y1, y2)-plane is the union of a line and a
half of a parabola tangent to this line (that is the C2 bifurcation diagram).

Similar answers arise in the parallel problem of classifying the simple sta-
ble pairs of Legendre submanifold germs and coisotropic contact fibrations with
respect to the group of contactomorphisms of contact space.

Let (K2n+1, α) be a contact space. A submanifoldM ⊂ K is called coisotropic
if at each point m ∈M the subspace TmM is transversal to the contact distribution
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Am = {v ∈ TmK : α(v) = 0} and subspace STmM ⊂ Am of vectors skew-orthogo-
nal to Am∩TmM with respect to non-degenerate two-form β = dα |A ( β is defined
up to a multiplication by a non-zero factor) belong to Am∩TmM (therefore STmM
determines an integrable distribution on M).

A fibration ρ : K → E with isotropic fibers is called isotropic. Locally all
isotropic fibrations are contactomorphic to standard one ρ : (z, x, y, u, v, ) 7→ (z, y),
z ∈ R, α = dz − ydx− udv.

A pair consisting of a germ of Legendre submanifold L ∈ K and a coisotropic
fibration is contactomorphic to a pair of the standard fibration and a Legendre
germ L = {z, (x, y, u, v)|z = S, (x, y, u, v) ∈ L} determined in appropriate adapted
coordinates by a generating function S of the associated Lagrangian submanifold
L ⊂ R2n.

The contact counterparts of definitions of simple stable pairs are straightfor-
ward.

Theorem 3.7. Non-transversal contact pair L, ρ is simple and stable if it is con-
tactomorphic to a pair determined by one of the generating functions from theo-
rem 3.1.

The following theorem characterizes the range of nice dimensions (n, k), for
which any generic pair of Lagrangian submanifold and collection of functions in
involution has stable and simple singularities.

However, involutive collections of functions h1, . . . , hk on R2n form a subset
with very complicated singularities in the space of collections of arbitrary func-
tions, if at some point the rank of the mapping h is less than k − 1. In this case
it is not clear what does “generic” mean. To avoid this difficulty consider only
collections (called 1-generic) without such points.

Theorem 3.8. For open and dense subset in the space (equipped with the fine Whit-
ney topology) of pairs formed by a proper Lagrangian submanifold in R2n and a
1-generic coisotropic mapping h the germs of pairs (L, h) are stable at each point if
and only if n = k and k < 6, or n > k and k < 4 except for the pair (k, n) = (3, 4).

Corollary 3.9. In the range of nice dimensions k < n only the following classes
generically appear: for k = 1 : A1 (at isolated points); for k = 2 : A1 (on curves),
A2, B2 ≈ C2 (at isolated points) and for k = 3, n > 4 : A1 (on surfaces), A2, B2 ≈
C2 (on curves), B3, C3 (at isolated points).

4. Infinitesimal Stability

Time-depending family of local symplectomorphisms from Γk are phase flows of
time depending Hamilton vector fields, whose −∂H∂x ∂

∂y components, may depend
only on y. Similarly for Gk-families these components vanish on C0. This observa-
tion proves the following
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Lemma 4.1. i. Infinitesimal transformations from Γ+
k are defined by Hamiltonian

vector fields with Hamiltonian functions H of the form

H =
k∑
i=1

xiHi(y) +H0(y, u, v)

with certain smooth functions Hi and H0.

In particular, this lemma implies, that Γk-symplectomorphisms preserve a
well-defined affine structure on isotropic characteristic fibers.

The image of an (r, k)-adapted Lagrangian germ under a symplectomorphism
ϕ from a neighbourhood of the identity in Γ+

k or in G+
k remains transversal to L∗.

Thus ϕ acts on the adapted generating families.
Let for (r, k)-adapted coordinates p = (p1, . . . , pk−r) = (yr+1, . . . , yk), q =

(q1, . . . , qk−r) = (xr+1, . . . , xk), w = (w1, . . . , wr) = (y1, . . . , yr) and z = (z1, . . . zr)
= (x1, . . . , xr).

Lemma 4.2. i. The tangent space TSΓ to the Γ+
k -orbit of generating function S

consists of all functions of the form

S̃ =
k−r∑
i=1

qiHi (
∂S

∂q
, w ) +

r∑
j=1

∂S

∂w
Hj (

∂S

∂q
, w ) +H0 (

∂S

∂q
, w, u,

∂S

∂u
),

with smooth functions Hi, Hj and H0.
ii. The tangent space TSG to the G+

k -orbit of generating function S consists
of all functions of the form

S̃ =
k−r∑
i=1

∂S

∂qi
Hi(q, w, u) +

r∑
j=1

wjHj(q, w, u) +H0(
∂S

∂u
, u),

with smooth functions Hi, Hj and H0.

Remark 4.3. In the contact case the tangent space to the orbit of the group of con-
tactomorphisms is determined by the set of contact Hamiltonians. The counterparts
of the formulas from this lemma are similar: only each summand can contain the
functions S itself as an extra argument.

The (r, k)-adapted Lagrangian germ L(S) with generating function germ
S(q, w, u) is called infinitesimally stable if it tangent space TSΓ coincides with
the total space C∞(q, w, u) of germs of smooth functions in q, w and u. The in-
finitesimally stable germ is stable.

Lemma 4.4. Germ S is infinitesimally stable if and only if any function S̃ in x, y, u
variables has a decomposition

S̃ =
k−r∑
i=1

∂S

∂qi
Hi(q, y, u) +

k∑
j=1

∂S

∂yj
Hj(y, u) +H0(y,

∂S

∂u
, u).
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Similarly to the classical result of J.Mather on right-left equivalence of smooth
mappings, the classes, which are stable with respect to the group Γk, are defor-
mations transversal to the orbits of the bigger group Gk.

Lemma 4.5. If classes of ∂(S(q,w,u)−q1p1−···−qk−rpk−r)
∂y

∣∣∣
y=o

span O, then the germ

S is infinitesimally stable (and therefore stable).

Remark 4.6. The transversality to the Gk orbit persists under the transformations
from Γk. Thus any stable adapted germ S of (r, k)-finite type is infinitesimally
stable. Otherwise it would be not equivalent to nearby germs which are transversal
to the corresponding Gk-orbit.

Since Γk-simple germ ought to be Gk simple it rests to classify simple Gk
orbits (see[5, 6]).
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