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CENTRAL EXTENSIONS OF SL2 OVER DIVISION RINGS

AND SOME METAPLECTIC THEOREMS

Ulf Rehmann

This paper contains essentially three theorems together with
their proofs: The first is a generalization of Matsumoto's
description [9] of central extensions of SL, over fields (ef.
Theorem 2.1 and Theorem 4.9). The second describes the tame
splitting of the Schur multiplier of SL2(D) of a non-archimedean
local division algebra D (c¢cf. Theorem 5.6, Corollary 5.7). The
third, and probably most important result, describes all continuous
central extensions of SLr(D) of a non~archimedean local divi-
sion algebra, by proving that - without any exception - the
topological fundamental group of SLr(D) for all r » 2, is
isomorphic to the group wu(K) of roots of unity of the center
K of D and that there is a uniform description of this phenom-
enon in terms of the local power norm residue symbol of K (ef.
Theorem 6.8, Corollary 6.9). On the basis of this last result
and the existing literature (see below) it seems to be conceivable
that an analogous result is true for arbitrary semisimple groups
of positive rank over non-archimedean local fields and that a
general proof will soon be forthcoming.

Since this paper is rather technical, it might be reasonable
to discuss some of its aspects in this introduction.

Theorem 2.1 describes central extensions of G = SLE(D) for
arbitrary skew fields D wunder the assumption that G is per-
fect (which is true in all interesting cases, e.g., if the center
K of D is infinite - cf. §1). The description is in terms of
suitable central extensions of the commutator subgroup
D*l = [D*,D*] of the units D* of D and extends results pre-
viously obtained by the author in the case G = SL,, T > 3 [14].
These extensions of D*1 are described by generators and rela-
tions, which are technically more complicated than in the case
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r > 3. The only "{nhomogeneous" relation 2.1 y) (this is a
relation which allows changing the parity of the number of letters
in a given word) requires certain entries to be commutators
rather than arbitrary units.

Nevertheless, as applications, the two other theorems can be
derived from it.

This presentation immediately allows one to define the tame
symbol of SLQ(D) as a straightforward generalization of the
corresponding symbol which is known in the commutative situation
in case r » 3 (cf. §5). The analogues notion for r > 3 has
been discussed by Bak-Rehmann [1; §4]. To show the splitting
property in case 1 = 2 (Theorem 5.2) some additional arithmetic
work is necessary, which essentially consists in extending cer-
tain results of Carroll [6] to the situation considered. As to
my knowledge, these results have been unknown even in the commuta-
tive case, where they describe certain properties of the
"symplectic K2" (cf. [9]). The result is the following: The
Schur multiplier of G is isomorphic to a product of the multi-
plicative group of the residue field of the valuation ring A9K
of K (the "tame" part) and the canonical image of the Schur
multiplier of SLE(AE). The corresponding result for r > 3 is
proved in [1; §4], in which case, in addition, it is known that
the Schur multiplier of SLr(ﬂh) injects into that of G. I do
not know whether this is true as well in case r = 2.

The determination of the topological fundamental group of
semisimple algebraic groups has a long history, beginning with
the work of Moore [10] and Matsumoto [9], both in 1969, and
investigating essentially K-split groups, Deodhar [8] (1978) for
quasi-split groups; and more recently it became possible to
handle groups defined in terms of (non-split) division algebras
also, at least in almost all cases: SL, (r > 3) has been investi-
gated by Bak-Rehmann ([1], 1982), while Prasad-Raghunathan ([12],
1984) have results including all isotropic semisimple groups over
local fields. However, these last results ([1], [12]) all have
the same gap in common: in a special dyadic situation (if a non-
split division algebra is involved) it was not possible to decide
whether the fundamental group should be  w(K) or
u(K)/{£1}. (For example, the group SL, (r > 2) over the quater-
nions over QE is such a case, which, on the other hand, has been
treated already in the appendix of [1] by an ad-hoc construction
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of a suitable central extension.) The reason for this gap 1is a
functorial deficiency of the local power norm residue symbol:
To distinguish elements in the fundamental group, say vl(G),
G = SLT(D), a standard technique is to split the underlying
division algebra by a suitable splitting field E and to look at
its canonical image in vl(GE), Gp = SLr(D ®, E). This has been
investigated by Rehmann-Stuhler [15; §3], 1978, and in [1; §3,
cf. p.500f.] with the result that, in the exceptional cases,
there is no algebraic splitting field of D which allows one
distinguishing =1 ¢ Wl(G) in this way. Similar results are
obtained in [12; §8].

Of course this point of view invites one to try transcend-
ental splitting fields of D, and the best possibility, of course,
is the generic splitting field E of D, which is characterized
by the property that every splitting field of D is an extension
of a specialization of E. It is known that the center K of D
is algebraically closed in E [18], but then one has, by a result
of Suslin [21], 1982, the injectivity of the natural map
KE(K) > K2(E), which almost immediately yields the desired result
if one uses the transfer techniques of [15], together with the
main result of §6 of this paper, which says: Everything in

m,(G) 1lies in the canonical image of Fl(SLr(L)), where L < D

1 (
is a maximal unramified commutative subextension of K. (For

r > 3, this is already contained in [1].) This together with an
argument derived from the Skolem-Noether theorem, gives Iu(K)|

as an upper bound of |W1<G)|, thereby concluding the proof.

I would like to thank the Department of Mathematics of
Cornell University for its hospitality during the last year and
the Fulbright Foundation for a travel grant which made this stay
possible. This paper was written during that stay.

Part I: Arbitrary Skew Fields

1. The Steinberg group of rank 2 over a skew field.
Let D be any skew field. The elementary group EQ(D) of
rank 2 over D is the 2x 2-matrix group generated by the ele-

. 1 10
mentary matrices elg(u) $= (O E)’ egl(v) 1= (v 1), where
u,v € D. It contains the matrices
. -1 . -
mij(u) = eij(u)eji( u )eij(u), dij(u) = mij(u)mij( 1),
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where 1< i, j< 2, 1#j, ue D := {u € D|u # 0}. We have

O u) w = [ 'u_l)
m u = s n u =
12 (_u—l o 21 (u o/
) u 0 ) ut 0)
d u) = d u) = .
12 (O u—l ’ 21 ( 0 u
Moreover, we define, for u,v € D* and [u,v] := uvu-lv_l, the
matrices
a -1 [u,v] 0
dl([u,V] ) - d12 (u)dlg(v)dlz (V'U.) - ( O 1 ’
1 1 0
dz([u,v]) 1= dzl(u)d21(v)d21(vu) =
0 [u,v]

n

More generally, if § = T [uj,vj] € [D*,D*] is arbitrary
J=1

(uj,vy e D* for j =1,...,n,n € N), then, for i = 1,2, we

define
n

di(g) 1= jzl di(uj’vj)‘
There are many obvious relations between the elementary matrices
over D, and the definition of the Steinberg group mimics some of
them:
1.1 Definition: The Steinberg group of rank 2 over D 1is the
group Ste(D) defined by the following presentation: For
i,j € {1,2)}, i # j, we have the generators xij(u), u € D, and
w..(u), u e D and the relations

1J
Rl xij(u)xij(v) = xij(u+v) (u,v € D)
R2 Wij(u) = xij(u)xji(—u'l)xij(u) (u e D)
R3 wij(u.)x]._a.(v)wij(u)—l = xji(—u_lvu_l) (u,v € D¥).

By R2, the xij(u) are already a set of generators of Stg(D),
and by some computation one verifies that there is a group epi-

morphism w:Stg(D) > E2(D) defined by xij(u)~+ eij(u).

1.2 Theorem: ¢=St2(D) > EE(D) is a central extension of EE(D)’
i.e., kernel(¢) is central in StE(D). Moreover, if |D| # 2,3,
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then StE(D) and EQ(D) are perfect groups, and if the center
z(D) of D is not of order 2,3,4,9 then Stg(D) is the uni-
versal central extension of EE(D)'

1.3 Remark: If D is commutative, the assertions of 1.2 will
follow from [7, Théoréme 3] and [20; §4].

The proof of 1.2 will be given in several steps. By 1.3, we
may restrict our considerations to the non-commutative case,
which implies IDI = oo,

Let H denote the subgroup of Stg(D) generated by all
elements wij(u)-wij(v) (1< 1,5<2, 1 # 3, u,v € D*). Hence
9»(H) consists of diagonal matrices only.

1.4 Lemma: H normalizes the subgroups <xij(u)|u € D>, more

d 0
precisely: If h ¢ H and ¢o(h) = ( 1 ) » then
O d
2
-1 _ -1 -1 _ -1
hxlz(u)h = xlg(d1Ud2 ),hxgl(u)h = xgl(deudl ).

The proof is a straightforward application of R3.
1.5 Lemma: For every & ¢ Stg(D) there exist w,v,w e D, h ¢ H
such that € = xlz(u)xgl(v)xle(w)h.

Proof: It suffices to show: The set of all elements of this
typre is invariant under left multiplication by xij(a). But this
follows from Rl and

1.6 Lemma: Let 1< i, j <2, 1#j. For any wu,v,w ¢ D, heH
there exist u',v',w' ¢ D, h' € H such that

xij(u)x..(v)xij(w)h

ji xji(u')xij(v')xji(w')h' .

Proof: If w =0, take u' =0, v' = u, w' =v, h' =h.
Similarly, if w =0. If u # O # w, then, by R1-R3, there are
u',v",w" €D, a,b € D° such that

xij(u)xji(v)xij(w)h = xji(u')wij(a)xji(v")wij(b)xji(w")h.

An application of both R3 and 1.4 proves 1.6.
1.7 Corollary: w:Stg(D) > E2(D) 1s central, and Ker 9 c H.

Proof: Write E ¢ Ker ® as in 1.5, then u =v = w = O, hence
€ € H. By 1.4, E centralizes every xij(u), g.e.d.
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We now define hij(u) 1= wij(u)wij(—l) and ci(u,v)

. e -1
: hij(u)hij(v)hij(vu) .  Then we have

u 0 [u,v] ©
o(hy 5 (w)) = (o u‘l) » o(cy(u,v)) =( 5 1) ,
1 o0
9(c,(u,v)) - ( ) :
0 [u,v]

Then 1.4 implies:

1.8 Temma: If D is non-commutative and u,v € D such that
uv # vu, then in St2(D) the following relations hold for every

w € D:

xg 5 (0) = Loy (w,v),g 5 ((Tw,v]-1)7Ha) .

Here and in the following we use the notation [g,h] = ghg_lh‘1

for the commutator of two elements g, h of any group.

Hence if D 1is non-commutative Stz(D) is generated by
commutators. Together with 1.7 this proves the first two asser-
tions of 1l.2.

To prove the last one, we establish the more general result
(cf. [20; 4.2] for the commutative version):

1.9 Theorem: Suppose the center Z(D) of D is not of order
2,3,4,9. ILet w:E > G Dbe a central extension of any group G,
let E:Stz(D) > G be any group homomorphism. Then there exlsts
a unique group homomorphism o:Stz(D) > E such that o = Te0o .

This theorem obviously implies the last assertion of 1.2.
The proof of 1.9 is mutatis mutandis the same as the proof of 4,2
in [20]. Our assertions on the center of D guarantee the
existence of central c, v as in [20; 9.1, 9.2c] which is
necessary to mimic all arguments of the proof. I do not know
whether or not the assertion of 1.9 is also true under the weaker

condition [D| # 2,3,4,9.

2. Matsumoto's theorem and some generalizations.

Tt is known that a perfect group G always has a universal
central extension G which is unique up to isomorphism, and the
corresponding kernel is isomorphic to the "Schur multiplier"
HE(G,ZH of G. For the case that G is the group of K-rational
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points of a Chevalley group over an infinite field (these groups
are perfect, cf. [20]). Matsumoto describes HZ(G,ZQ in terms
of the underlying field K as follows [9; 5.11]: If G 1is
nonsymplectic, then HE(G,ZU is isomorphic to the group pre-
sented by generators c(u,v), u,v € K*, and relations

c(uv,w) = c(u,w)c(v,w),

c(u,v)e(u,w),

Il

c(u,vw)

c(u,l-u) = 1 (1-u e K¥) .

If G 1s symplectic, then HE(G,ZH is isomorphic to the
abelian group presented by generators c(u,v),u,v € K*, and
relations

clu,v)c(uv,w) = c(u,vw)e(v,w),

c(1,1) =1, c(u,v) =c(u ,v

c(u,v) = c(u, (1-u)v) (1-u e K¥).

E.g., SLn(K) is non-symplectic if n » 3 and symplectic if
n = 2. Both presentations, in general, define different groups.
If K=® or K =R, then c(-1,-1) is of order 2 in the non-
symplectic case, while it is of infinite order in the symplectic
case.
In case G = SLn(D), where n » 3 and D is a skew field,
there is the following generalization of Matsumoto's theorem [14]:
Let U be the group presented by generators c(u,v),
u,v € D*, and relations

u.

cluv,w) = ¢(%v, %)e(u,w),

c(u,vw) = c(u,v)e (Vu, Yw),

c(u,1-u) =1 (1-u e D¥).
{We use the notation Yv := uvu_l.) Then

c(u,v) ™ [u,v] := uvy Lyl

defines a central extension of the group D*1 = [D*,D*] with
kernel isomorphic to HE(G,ZH:

k k
Hy(G,2z) = { 1_c(ug,wy) eUIke]N,ui,wieD*s.th. R

[u.,w.] = 1}.
i=1 i=1 71

Obviously, if D 1is commutative, this gives Matsumoto's theorem
for G = SL (D), n> 3.
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The main purpose of the first part of this paper is to prove

the following SL2(D)—analog of this theorem, which similarly
generalizes the corresponding theorem of Matsumoto:

2.1 Theorem: Let D be a skew field such that SLE(D) is
perfect. Let U be the group presented by generators c(u,v),
u,v € D¥ and relations

a)  c(u,v)e(vu,w) = c(u,vw)c(v,w),

B) cl(u,v) = c(uvu,u'l),

(u,v)
v)  ey)e(uv)elxy) = c([x,ylu,v)e(v, [x,¥]),
(u,v)

§) c(u,v) = c(u,v(il-u)) (1-u e D¥).

*
Then c¢(u,v) ™ [u,v] defines a central extension ¢,: U > D 1

with kernel isomorphic to H2(SL2(D),ZH .
More precisely, the two correspondences

[u:V] "—-> dl([u,v] )’

¢ (u,v) —> hy,(why,(v)hy, (vu) ™t

define group embeddings

ple By E, (D) ,
i
y 8ty st, (D)

such that the following diagram commutes:

P
v —9 5 p*t
ist iE
st, (D) —2 E, (D)

Moreover, i_, induces an isomorphism of Ker(wo) onto Ker(g).

The proof of 2.1 will be given in the next two sections.
Here we will only give evidence for the centrality of Ker(¢o),
thereby also proving that 2.1 implies Matsumoto's result for
SLE(D) when D is commutative.

2.2 Lemma: If D, U, 9, is as in 2.1, then Ker(wo) is central

in TU.

Proof: For x =y =V =1, y) gives
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e(1,1)e(u,1)e(1,1)™F = e(u,1)e(1,1)

for every u € D'. Taking u = 1 yields c(1,1) = 1.

Again by y), with x =y =1, u, v arbitrary, one obtains
c(v,1) =1 for every v € D¥, hence by B) c(1l,v) =1 for every
v € D*.

Another application of y), with wu = 1, then gives

c([x,y1,v) = c(v,[x,y])_l .

Now again applying y) twice we get

c(x',y )e(x,y)e (u,v)e(x,y) te(x,y )7L

= c(x',y e[z, ylu,v)e ([x,¥],v) Te(x',y' )™t
= c([x',y' 1[xylu,v)e([x',y' 1[x,¥],v) T .
k
A straightforward induction on k shows: If 1 [ui,vi] =1,
k i=1

then 1 c(u
i=1

As a corollary to the preceding proof we state:

i’vi) is central in U.

2.3 Corollary: In U, the following relations hold:

c(u,1) = c(l,v) =1 for all u e D*, and
c(u,v) = c(v,u) for every u e [D*,D].

So far, we did not use relation 6§).

2.4 Proposition: In U, the following relations hold:

§') c(u,v) = c(u(l-v),v),

€) c(u,v) = c(u,-vu),

c(-uv,v).

e') c(u,v)
Proof: By 6), o) we find

c(u,v) = c(u,v(l-u)) = c(u,v)c(vu,l-u)c(v,l-u)_l

hence c(v,1-u) = c(vu,1-u) which gives 6').
Applying 6), B) and again 6), B) we get

c(u,v) = c(u,v(l-u)) = c(—uv(uz-u),u_l)

= c(—uvuz(l—u-l),u_l) = c(-uvuz,u'l) = c(u,-vu).

This is €), and ¢') follows from ¢) by an application of a).
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We now state some easy consequences of B), €):
2.5 Corollary: In U, the following relations hold:

_l,vuv) = c(u,—vu_l) = c(-uv,u_l)

-1 -1

c(v

c(u,v)

c(—uv_%v) =c(v 7,-vu) = c(v ,vuv—l).

]

Finally,

2.6 Remark: If D 1is commutative, then, in U, Matsumoto's
symplectic relations hold. Conversely, from the calculations in

[9] it is easy to verify relations a), B), Y), 6).
Proof: The only not completely obvious relation 1is
c(u,v) = c(u_l,v_l).
But by 2.5, commutativity and e) we have
cl(u,v) = c(v_l,uvz)

Applying this twice we find what we want.
For later use, we prove the following statements:

2.7 Proposition: In U, the following relation holds:
-1
y') c(x,y)e(u,v)e(x,y) " = c([x,y],u)e(u, [x,y]v).

Proof: By 2.1 y), the left hand side is
c([x,ylu,v)e (v, [x,¥])-

)7t )t

By 2.3, c([x,y]l,u) = c(u, [x,Y] and c(v,[x,y]) = c([x,y],v
Hence y') follows as an application of 2.1 a).

2.8 Proposition: The correspondence

c(u,v) > c(v,u)

defines an anti-automorphism A of U. For every § ¢ U, E-AE
is in Ker 92 hence central.
Moreover, in the definition of U, relation &) can be

replaced by

8") ' c(u,l-vu) = c(l-uv,v) (uv # 1).

Proof: Clearly for every c(u,v), c(u,v)e(v,u) € Ker 9y, since
Ker % is central, E:AE e Ker ®o for every € € U. The set of
relations 2.1 a) is reproduced under A, if 2.1 B) is rewritten

into an equivalent form
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c(u,vu_l) = c(uv,u_l),

the same becomes obvious for this set.
The image of 2.1 y) is 2.7 v'), the image of 2.1 6§) is
2.4 61).
To establish 6") we compute, using 2.5 and 2.1 6):
1
)

- - -1
c(l-uv,v) = c(l-uv,u luv) = c(1-uv,u =c(u,v-u )

c (u,l-vu).

Similarly, 2.1 6) is derived from 6").

3. Proof of Theorem 2.1. First part.

The goal of this paragraph is to show that
-1
c(u,v) r hlg(u)hle(v)hlg(vu)
defines a group homomorphism ist:U > Stg(D), which is by no
means obvious. In the next paragraph we then will see that iSt
is in fact injective, which is the hardest part of the proof.
For i = 1,2, define in Stg(D)

(v)

ci(u,v) = hi.(u)h (vu)—l (u,v € D),

. h,.
d 1id 1dJ

where j e {1,2}, j # i.

3.1 Proposition: In StQ(D), relations a), B), v), 8) from 2.1
hold with ¢ replaced by c, (i =1,2).
This of course shows that ist is a group homomorphism.

The proof of 3.1 will be given by a series of lemmata as
follows:

3.2 Lemma: In Stg(D), the following relations hold:

R4 wij(u) = wij(—u = wji(—u_l)

b

1

(uv u)wij(u) = wij(v)wij(vu_ v),

<
I

RS  w,.(u)w Wy 5

R6 hij(u)hij(v) = hij(uvu)hij(u_l) = hij(v_l)hij(vuv),

1 —1)

R7 hij(w)hij(v)_l = hy (w(w v w)hij(v-w)“l, if v £ w.

Proof: By R1l, R2, we have wj._J.(u)_l = wij('u)‘ By R3, we get
wij(u)wij(v)wij(u)_l = wij(—u-lvu—l). In case u = v this yields
_l)

wij(u) = wji(—u . This proves R4, R5. Now by R5:
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ij ij 1 iJ 1J 1J
= le(u)wij(v_l)wlj(-l)2
= wij(uvu)wij(u)wia(—l)2
= wij(uvu)wij(-l)le(u_l)wij(ul) = hij(uvu)hij(u_l).

This proves one half of R6, and similarly one proves the second.
To prove R7, we replace w by wvu. Then the right hand
side is

2 -1
hij(vu—vu )hij(v—vu)

- wij(vu—vug)wij(v—vu)_l by definition of hyy

= x5 (v )xg 4 (-vuP)wy g (vu(l-u))wy 5 (v(1-u)) ™" by R1

= xyy (vu? g g (va(1-u) g g (v (1-u)) "I 5 () by B3

= xiJ(vu)xji(-(1-u)'1u‘1v'1)wij(v(l-u))'1xji(-(1-u)'1uv'1)
-xij(-v) by R2, R3

= g g (v g (- (2mw) TR g ((u) T
-xji(—(l-u)'luv'l)xij(—v) by R4

= x44( u)xji(-u_lv—l)xij(vu—v)xji(v'l)xij(—v) by R2

- wij(vu)xij(v)_l - hij(vu)hij(v)_l, by R2 and definition

of hij

This proves 3.2.

3.3 Corollary: In Stg(D), the following relations hold:
-1 *
ci(u,v) = ci(uvu,u ) (u,v € D ),

ci(u,v(l—u)) (u,v,1-v € D*) .

l

ci(u,v)

Proof: The first relations follow immediately from R6, for the
second, we replace w = vu and find
-1 2 _ -1
hij(vu)hij(v) = hij(vu vu )hij(v vu)
which obviously implies
ci(u,v) = ci(u,v(l—u)).
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Hence to verify 3.1, we need to prove relations a), y). We will
do this in a slightly more general context, since this will be

needed in the next paragraph.
Let ﬁ be the group presented by generators h(u), u € D*,

and relations
A -~

H1l h(u)h(v) = ﬁ(uvu)ﬁ(u_l).

Replacing wuvu by u' and ut by v' we find

h(ut)h(v') = h(v' Dh(viurvt),

hence H1 is essentially R6 for a given pair i, j. We also

define
a(u,v):= ﬁ(u)ﬁ(v)ﬁ(vu)_l.

We have a surjective group homomorphism

- oa u 0 *
¢:H > EDiag, (D) = <K _l)lu €D
O u

of H onto the subgroup of elementary diagonal matrices in

E2(D) with
n oA [u,v] ©
(& (wv)) = ( )
(0] 1

It will turn out that this homomorphism is a central group exten-

sion.

3.4 Lemma: In H, the following relations hold:

H2  c(u,v) = ﬁ(v_lu_l)_lﬁ(u_l)ﬁ(v_l):

-1

H3 c(u,v) = c(uvu,u_l) = E(V svuv),

B c(u,v)e (vu,w) = c(u, vw)é (v,w)
= ﬁ(u)a(v,w)ﬁ(u)_la(u,wv),

B & (x,y)h(w)e(x,y)

h([x,ylw)h([x,y])"t

B([y,x]) ™ h(ulx,v])

H6  c(x,y)e (u,v)e (x,y) "t

¢ (w [x,y]) " h(u)
h(u)e ([x,y1),u" 1)L,

Il
1l

e (u, [x,51) 726 (u, [x,5]v)

e ([x,y]u,v)e ([x,5],v) L .
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Moreover, @:ﬁ > EDiagg(D) defines a central extension of
groups with kernel contained in the subgroup generated by the

elements ¢ (u,v).

Proof: H2, H3 are straightforward consequences of Hl. HA4
requires some computation:
On the one hand, we have

E(u,v)E(vu,w) = ﬁ(u)ﬂ(v)ﬁ(w)ﬁ(wvu)_l,

on the other hand, by H2, H1l, HI1:

3 (w,vw)e (v, w) = h(w) (B (vw)h(vwn) Sy ) DA TR W™
ﬁ(u)ﬁ(uw_lv—l)_lﬂ(v—l)ﬁ(w_l)

B (w)h (v)h (w)h (wvu) L.

This is the first half of H4. The second follows easlly:

- ~

& () (vayw) = B(w) (B ()R (w)h ev) ™ 1h (w) 7 (W (v )R (wvw)

o

= B(w)e (v, w)h () 71e (u, vw).
To prove H5, we use H1 to see, with v = 1:

hw) = hdh™) = hHnE?),

hence

This gives, again with HIl:

-~

B x)h(h(x)™t = hxux)h(x®)™t

and
B ) Hhwh(x) = h(x tux D"t

A repeated application of these formulae will prove H5, first
half (together with the definition of E(u,[x,y]). The second
half is another application of HI. H6 is a consequences of H5,
H4.

To prove the last statement of 3.4, we first observe that
every element in H can be written in the form %h(w), where §

is a product of E(u,v) s, and where W € D is uniquely deter-
N w! 0 n N
mined by w(% (w)) = ( w—l) . Hence if Eh(w) e Ker ¢, then

~

w = 1, hence h(w) =
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A

Moreover, if § = c(ui,vi), then we find by induction on

k
jul
k from H5: 1=

1

eh(u)e™t = h(p(e)u)h(e(g)) !

Hence & is central if o(§) = 1.

This finishes the proof of 3.4. But also the proof of 3.1
is now complete:

Because of R7, we have a homomorphism H - Stz(D), defined

by h(u) - hle(u), sending c(u,v) onto cl(u,v). By H4, H6, we
find relations B), 6 ) holding for cl(u,v), and similarly for

cz(u,v). . .
3.5 Corollary: If h ¢ H 1is such that &(h) = (é} ug) , then
. -1 a “1yp ~14y-1
hh(v)h™ — = h(ulvu2 )h(ulu2 ) .

Proof: By a repeated application of H5, this is true if U, = 1.
In the proof of 3.4 we have seen

n(x)h(v)h(x)™L = h(xux)h(x

Together this gives

>

hh (v)h ™t = h(uzh) (B(uyh) nh (v)R” Buyt )b st ™t

ﬁ(uél)(ﬁ(uguIV)ﬁ(ugul)_l)ﬁ(uél)_l

1l

_1)

s 1,-1
= h(ulvu2 )

h(ulu2
For later use in paragraph 4, we prove some more properties

of H:

3.6 Proposition: H has an automorphism of order 2, defined by

h(u) = h'(u) := h(u_l). Under this automorphism, Ker ® is

pointwise fixed. If c¢'(u,v) denotes the image of c(u,v), the

following relations hold in f:

1
)

H7  h'(u) = h(u” = ﬁ(u)_la(u,u_l),

B8 &' (u,v) = A(u HA(v A v 1)1
(
(

uv)_lﬂ(u)ﬁ(v)

oz

h uv)_le(u,v)ﬁ(vu),
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A A

{C(x,y)
H { .

(u) = h{[x,ylu)e' (x,¥)
&' (x,y)h(u) =h

(uly,x])e(x,y)
RS B | * %
H10 h(w)"~ =h(w =) for every w e [D ,D ],

H11 [h([x,¥]),c(x,y)] = 1,

H12 e(x,Y)e'(XJY)E(u,V) = A([X,y]u, [X:Y]V).

Especially the relation
(*) [e(x,y)sc(u,v)] = e([x,¥], [u,v])

is true if and only 1if

[C(x,¥),c' (u,v)] =1
holds.

Remark: The corresponding relations of course hold in StQ(D),
but the associated relations in Stn(D), n 2_3, seem to be much
stronger. For example, (*) does always hold if n > 3 [14; 81,
§2]. On the other hand, for Ste(D), I do not know any example
for which this equation fails. It would be very interesting to
know whether such "noncommutative" contributions to H2(E2(D),Zﬁ
exist.

Proof of 3.6: Relations H1 are kept invariant under

h(u) - ﬁ(u_l), nence h(u)~ h'(u) defines an automorphism of H
of order §.2. The invariance of Ker $ will follow from HO:

A

If 1 c(ui,vi) € Ker @, then (by induction on k) we get from

i=1 .
H9 for every u € D :
k ) A ~ k ~
1 c(ui,vi)h(u) = h(u) 1 c'(u.,vl)
i=1 i=1
Taking u = 1 this yields
K | Kk
— 1
iElc(ui,vi) = iglc (ui,vi).

Hence we only have to prove the relations.

H7 is obvious by the definition of E(u,u_l).

H8 follows
immediately.

To verify each of H9, one has to apply Rl three times:
We do only the first equation:
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h([xylwhx Hh(y HaE 1y ™)t

(x~
= h(x)h(y)h () h(Ex)y % (x ylw)x "y " gx))
= ¢ (x,y)h(u).

An application of H8 gives the result.
To prove H10, we use HO (for u = 1):

'(u,V)a(u,V)-l
—l)l

A(fu,v])™t

¢
(¢ (u,v)e' (u,v)
h' ([u,v]) = h([v,ul).

Repeating this argument we find H1O0.

From H5 we deduce
¢ (x,y)R([y,x]) = h([x,y]) e (x,y).

With H10 this yields H11.
H12 now results from R15 and the definition of c¢(u,v) if

one observes that

A

S, y)e (o y)hm) = AT VW)E(x,y)e (x,y).

We can now prove the last statement of 3.6: By H9 (u = 1)

and H11l we have

¢! (x,y) = h([y,x])e(x,y) = ¢(x,7)R([y,x]),

hence by H4, H5:

' (5903 (u,v) = SO (3 1y, %1, [uyv])E (1, v))
= 6([u’V],[X:Y])[a(X’Y):a(u:V)]a(u:V)-

This concludes the proof of 3.6.

Remark: In StE(D), the automorphism of H described in 3.6 is

induced by conjugation with wij(l)'
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4, Proof of Theorem 2.1. Second part.

In this paragraph we will show that the homomorphism
i,4:0 > StQ(D), c(u,v) cl(u,v)

is a monomorphism. We will do this by embedding the central
extension wO:U > D'(c(u,v)r» [u,v]) into a central extension of
EE(D) via the embedding D' = E2(D)([u,v] > dl([u,v])). We use
the ideas of [9; 14].

The first step is the construction of an appropriate exten-
sion of the diagonal matrices in EQ(D).

We denote by M the associative monoid of words of elements
h(u) (u e D) and g (8 € U). The empty word is the unit ele-
ment, denoted by 4.

If, for A,A' € M, we have decompositions

— — t
A = AOA1A2’ A" = AOA1A2

in M, we say A' 1is obtained from A by the substitution

Ay > Al . For A,BeM we define A > B, if B 1is obtained
from A by an'édmissiblé'substitution, which i1s the composition
of a finite sequence of positive length of one of the following

"elementary" substitutions:

(1) n(l) » 1 1 ¢ D¥

(2) 1 =1 leU

(3) En > &n E,meU

(4) h(u)g - c(u,woﬁ)ﬁh(u) EeU uebD
(5) h(u)h(v) » c(u,v)h(vu) u,v € DY

Here we have written c(u,v) for c(u,v) for simplicity. The
number (*) (* ¢ {1,...,5}) is the type of the elementary sub-

stitution.
4.1 Lemma: i) (M,>) 1is a partially ordered set.
ii) For A e M, {B e M|AD> B} is a finite set.

iii) The subset H of M of minimal elements consists of
the words of the form 1, §(§ e U\{1}), and ah(u) with wu € D*
and a =1 or a =§ for some & e U\{1l}.
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iv) For every A € M\H there exists exactly one B e H
with A > B.

Proof: To every A € M, a unique natural numﬁér r(A) 1is assoc-

iated by the following definition: If A = a; where

i=1
a; € {h(u),Elu e D*,& ¢ U}, then (al,...,ak) is uniquely deter-
mined by A. We set r(A) := k+r'(A), where r'(A) is the num-

ber of pairs (ai,aj) with 1< j and a; = h(u) for some
ueD and a. = g€ for some § e U. Clearly r(1) = 0, and if
B e M is obtained from A by an admissible substitution then
r(B) { r(A). Hence A > B and B> A cannot hold at the same
time, which proves i). Also we have H = {A ¢ M|r(A) < 1}, and
for every A £ H, there i1s a finite number of B € M such that
A> B. This proves ii) and iii).

To prove iv), we write A D> B if A =B or A > B. We
show: For every A,B,C ¢ M with A » B, A > C there exists
A" €M with B A', C> A'. This will imply iv).

Of course i1t suffices to prove the existence of A' only
for all cases in which B and C are obtained from A by an
elementary substitution. The existence of A' is obvious if B
and C are obtained from A by substitutions of disjoint words,
or if at least one of them is obtained by a substitution of type
(1) or (2).

Hence we may assume that both B and C are obtained from
A by elementary substitutions of type (3), (4), (5) inside the
same three-letter-subword of A, and the only nontrivial cases
are those with A > B, A> C, B # C.

There are three cases which we have to consider:

1. Case: A =h(u)E m, u e D*, E,n e U.

We may assume: B = h(u)Eﬂ, c = c(u,wog)gh(u)ﬂ. To verify the
existence of A', it suffices to establish the relation
c(u,9,En)8n = C(u,¢O§)§c(u,¢on)ﬂ in U. A repeated application
of 2.1 v), 2.3 gives

-1
Sc(u,vgn) = c(pg8 uspn)e (958, 95m) 78,
and we have to show (with v = woi, w = won):
c(u,vw) = c(u,v)c(vu,w)c(v,w)_1

which is simply 2.1 a).
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2. Case: A = h(u)h(v)g, u,v e D', € ¢ U.

We may assume: B = h(u)c(v,mog)gh(v), C = c(u,v)h(vu)Eg.

ing suitable admissible Transformations we find
B = c(u, [v,981958)c (v, 9,8)8c (u,v)h(vu),
c > g(u,v)g(vu,¢0§)5h(vu).
We set w = 9,8 and recall (from 2.1 v)) that
Ec(u,v) = c(wu,v)c(v,w)
hence we are done in this case if we can prove
c(u,vwv_l)c(v,w)c(wu,v)c(v,w) = c(u,v)e{vu,w).
By 2.1 a), this is equivalent to
(%) c(u,vwv_l)c(v,w)c(wu,v) = c(u,vw).
Since w € [D,D ], we find, by 2.3 and 2.1 y)

c(u,vwv_l)c(v,w)
: 1

(c(w,v)e (vwv™d,u))”

(e (wou)e (u, [w,v])e (w,v)) T

c(v,w)c([w,v],u)c(u,w).

Apply-

An application of 2.1 a) gives for the left hand side of (¥*)

c(u,vwv_l)c(v,w)c(wu,v)

c(v,w)e([w,v],u)c(u,wv)c(w,v)

-1
c(vyw)e([w,v],u)e(u,wv)e (w,v)
We apply 2.1 y) and 2.7 v') to get

c(V,W)(C([w,v],u)c(u,wv))

c(u, [v,w])e([v,w],u)c(u,vw)

= c(u,vw),
which proves (*).

3. Case: A = h(u)h(v)h{w), u,v,w € D"

We may assume: B = h(u)c(v,w)h(wv), C = c(u,v)h(vu)h(w).
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Appropriate admissible substitutions give
B > c(v,w)c([w,v],u)e(u,wv)h(wvu)
C = c(uvle(vu,w)h(wvu).

Hence, we have to establish in U:
c(v,w)c([w,v],u)e(u,wv) = c(u,v)c(vu,w).

By 2.1 v), the right hand side equals c(u,vw)c(v,w). But then
everything follows from the last equation of the previous case.
This proves 4.1. We deduce

4.2 Corollary: H 1is a group under the following composition:
For a,b € H, a-b 1is the unique element of H below ab ¢ M.
1 is the unit element of H, and H contains an isomorphic

image of the group U.

Proof: Obviously the composition is associative.
The inverse of Eh(u) is the minimal element lying under
cuhu) et e m

Everything else is obvious.

4.3 Corollary: In H, the following relations hold for all
u,v € D*:
h(u)h(v) = h(uvu)h(u”

h(v)h(vu)_l = h(v-vu)h(vu-vu

1
)s

2"l (1-u e D).

Proof: This is obvious from the definition of the composition
law in H and from the defining relations 2.1 B8), 8) of U.

4.4 Corollary: The correspondence h(u) hlg(u) defines a
group homomorphism
i:H > Stg(D) .

Remark: The image of H in StE(D) is easily seen to be the
subgroup of St,(D) which has been denoted by H in §1. It is
our goal here to show that i is injective, which finally will
prove our main theorem and will justify the notation. In this
paragraph, however, H will always mean the group described in
4.2,

By 4.3, H is a homomorphic image of the group ﬁ defined
in §3 (under h{(u)= h(u)). By 4.4, it is a central extension of
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EDiagg(D), hence, by 3.6, it has an automorphism H - H (h = h')
of order ¢ 2 defined by h(u) = h(u_l).

We denote by W' the semidirect product < X H, where
(w>Z Z is a cyclic group of infinite order, operating on H
by UJh := h'. The subgroup N of w* generated by the element
(wg,h(—l)) 1s normal in w*, as it is easily verified. Let
W =W /N denote the quotient, let w, = uN be the canonical
image of @ in W. Clearly H embeds into W, we denote its
image by H also, similarly for its elements.

Then we have w° = h(—l)_l in W. Since, by definition,

By, (-1) 1)? 1)72 and, by B5, w, (1), (w)wy,(1)7"

= Wy,

, we find:

= Wl2(_
_l)

12(

= h,,(u

12
.5 Lemma: i) The homomorphism 1:H - Stg(D) extends, by
Wy ng('l)’ to a homomorphism, also denoted by i:

W - StE(D).
u1 0
i1) If h e H is such that ¢i(h) = ( ) , then
0 u2»
-1 -1
hw,h "~ = h(u1u2 )wl

Proof: i) is obvious. "
ii) Assume first u, = 1. Then n~l = 1 c(yi,xi), for
k i=
3 * = —_
certain X35V € D, with izl[xi,yi] = uy.
A repeated application of 3.6, H9 gives (if we observe

c' (v5,%5) = wic(yg,xg)wyT):

-1 -1 _ -1
wih Twy h(ul)h
By 3.6, H1l this gives
-1.-1 _ -1
wlh wyo =h h(ul)
which is ii) in this case.
We also have
-1 -1 -1,-1
wlh(u) Wyt o= h( ) s

hence by 3.4, H3:
h(u)wlh(u)_l - h(u)h(u~

= c(ug,u_l)_lh(ug)wl = h(ug)w
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which proves ii) in case h = h(u). Writing h = h(u2 )*h' and
applying 3.5 we find
-1 -1,-1
hw,h = h(u2 )(h(ugul)wl)h(ug )
-1
= h(ulu2 )wl
We now proceed like Matsumoto to prove the injectivity of i.
Cf. [9, 14], see also [11].
Let T denote the group of strictly upper triangular
matrices, and let M denote the group of monomial matrices in

E,(D). Thereis a Bruhat decomposition of E2(D)

5

EZ(D) =TMT = U TmT
meM

into pairwise disjoint double cosets, hence a map p:EQ(D) > M
(p(t'mt) :=m for t,t' € T, m € M). We determine the value of
p after multiplying a double coset by ml2(tl) = w(wlg(il)). We

u 0
write me M as m = ( 1 ) if it is diagonal and as

0 ug 0] u,
m = ( if not. Then:
u, O
-1 -1 ij if m is diagonal,
mei.(v)m = ekL(uivu. )} where kt =
J J ji otherwise .

L.6 Lemma: For s e E (D) let p(s) =m be as above, assume

(
2
e12(—u)me12(v). Then the following is true:

i) If u =0 or m diagonal then

_ -1
mlz(l)s = mlg(l)melz(—ul uu2+v)

and
p(mlg(l)s) = mlg(l)m .
ii) If u #0 and m not diagonal then
-1 -1 -1 -1
mlz(l)s = elz(u )dlz(u) melg(—ul u u2+v)
and

p(m5(1)s) = dj,(u) tm.
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iii) If v =0 or m diagonal then

_ -1
smlg(-l) = elg(—u+-ulvu2 )mmlg(—l)

and
p(sm12(-1)) = n’lm.l2(—l)
iv) If v #0 and m not diagonal, then
-1 -1 -1
smlg(-l) = 912(—u+u2v uy )mdlg(v)elg(—v )
and

p(Smlz(—l)) = mdl2(v)'

Proof: Straightforward computation.

On the set

X = {(s,w) e By(D) xWp(s) = wi(w)]

we now define permutations

Ah),u(t),n (resp. A¥(h),u*(t),n*) where h e H, t e T,
by

A(n)(s,w) := (oi(h)s,hw) }
h € H,

(s,w)A\¥(h) := (soi(h),wh)
u(t)(s,w) = (ts,w)
t e T,
(SJW)U*(t) = (St:w)
(m(1)s,wqw) _ ) m5(1)m
ﬂ(s,W) (m(l)s,h(u)_lw) if p(mle(l)s) = dlg(u)_lm »
(sm —1),ww—l) mm, , (=1)
(s,w)n := ( 1 if p(smlg(—l)) = 12 .
(Sm('l),Wh(V)) mdlE(v)

et G (resp. G¥) be the group of automorphisms of X
generated by

Ah),u(t),n (resp. by A¥(h),u* (t),n").
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*

4.7 Lemma: For all (s,w) e X, g € G, g € G° we have

(*) (g(s,w))g” = g((s,w)g).

Proof: It suffices to show this for the generators of G and G*.

The only nontrivial case is g = n, g* = n*, and one only

has to compare the second components.

uy 0 0 u2
We write s = elg(-u)melg(v), m = (O u, or m = . .

as in 4.6. 1

1. Case: m 1is diagonal.
We set u' = u—ulvu;l. If u' = 0, then (*) is obvious. Other-
wise, by 4.6, we have to show:
! —l -l _ - —l 1
hiu' ) Wy = wlwh( u;u u2).

For this we remember

1 =c(-x,x %) = h(-x)h(x H)n(-1)7%,
hence
(%) wih(x)wt = n(x™) = n(-x)ta(-1)
We compute
-1, _ 1 -1,-1
wlwh(-ul u u2) = wlh(-u )h(ulu2 ) w (3.5)
- h(u')_lh(—uluél)wlw ((*))
= n(u") " h(-upuyhupupt) hee, (4.5 11))
= h(u") " (-upusHnluyush) e (-1) et
= h(u')_lww]—_l (3.5)
Hence this case is settled.
2. Case: m 1is non-diagonal.

Since u =v =0 1is trivial, we may assume that at least one of
both 1is not zero.
If u #0 = v, we have to show (by 4.6):

-1 -1 -1.. -1
wyww, T = h(u) wh(—ul u ue).
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If u =0 # v, we have to show:

1,71y-1
uy

h(-u2V wh(v) = Wy WW,

If u A0 #v, but u' = u—ugv_lu]__1 = 0, we have to show

-1

wowh(v) = h(u)—lwwl

1

All these three cases are easily done by 3.5 and 4.5 ii).
If uw #0 #Zv, u' #0, then also v' = v—uilu_lu2 # 0, and
we have to show:

-1

h(u') “wh(v) = h(u)_lwh(v').

By 3.5, this is equivalent to

-1 -1,-1 -1 -1
wlh(—ulv'u2 )h(—ulvu2 ) Wyt o= h(u)h(u') .
Using (*) we find equivalently
h(w,v'u;") Th(ugvuzt) = h(u)h(a) ™,

which means that we have to show

n(uvuzt)n(u’) = hluv'uzHn(w).

We replace x := ulvu_l, vy = u and find

2
n(x)h(y-x"1) = h(x-y 1)n(y)

to show.
This means that we have to establish:

1

c(x,y-x1) = c(x-y L,y).

But this is an easy consequence of 2.8 6").

4.8 Proposition: G (resp. G') operates simply transitive on X
and is a central extension of EE(D) with kernel 9g- Moreover,
there is exactly one epimorphism StZ(D) > EE(D) over E2(D).

Proof: For the transitivity, see the arguments in [9]. The fact
that G operates simply transitive follows from 4.7. For the
rest of the arguments see [14, p.l100].

Hence we have proved:



CENTRAL EXTENSIONS OF SL2 587

4.9 Theorem: The central extensions of E2(D) below StE(D)
are classified by central extensions mO:U > [D*,D*] of the
following type: U has a set of generators c(u,v) such that
moc(u,v) = [u,v], for u,v € D¥, and among these generators rela-
tions a), B), y), &) from 2.1 are valid.

If U 1is such an extension of [D*,D*], then there is a
central extension p:G - E2(D) and exactly one homomorphism
w:Stg(D) > @, lying over EE(D)’ such that

c(u,v) = ¥ (hy (W), (v)hy 5 (vu) )

defines an isomorphism of U onto a subgroup of G and such that
Ker(wo) is mapped isomorphically onto Ker(p). Conversely, every
central extension of EQ(D) which is a quotient of Stn(D) is
obtained in this way.

By the well-known properties of universal central extensions

of perfect groups all the statements of 2.1 will follow.

Part II: Local Division Algebras

5. The tame symbol of SL2 of a local division algebra.

Let K be a non-archimedean local field with integers .#, prime
T and prime ideal £ Let v:K »> Z denote its discrete valua-
tion, hence v(m) =1, v(¢) = NU {03, v(p) = N. Let D be a
finite dimensional central K-algebra. The structure of D as a
K-algebra is as follows (c¢f. [17]): There is an n € N such
that n2 = dimKD, and D contains an unramified extension L of
K of degree n as a maximal commutative subfield. Let
q = [#/p|. L is a cyclotomic extension L = K(w) of K, where
w 1is a (qn—l)—th root of unity, hence cyclic over K. There is
an element T € D with 0™ =7 and a generator o of the Galois

group of L:K such that 0w = Uwﬂ, hence

D=LeILle® ...e L™ L.

We define
,oD =.0L @a&L ne ... ® .0 s

where 47 C L is the ring of integers of L. is the ring of

D
integers of D. In fact -Ob is a valuation ring which is, as an

extension of .o (or « ramified of index n. Its residue class

By
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skew field 4?D/n p 1s canonically isomorphic to -Ai/moL which,
as a finite extension of «/p , is generated by the canonical
image of w, which we denote by the same letter. Hence 4VD/n06
is commutative.

Let N:D > K denote the reduced norm of D over K. This
has the property that its restriction to any maximal commutative
sub-K-algebra of D 1is the usual field norm. Obviously then
N(T) = (-l)n'lw, and together with the well-known fact that, in
any unramified extension of local fields, every unit of the
ground field is a norm [19; p. 89], this shows the surjectivity
of N. We also have Nﬁob) =4 and for k > 1

k

N(1+nk.o— = 1+7r[k/n}o' = (1+1 ""D) n.o

)

where {k/n} is the smallest integer > k/n [19; p. 89].
As in the commutative case and in the case of SLT(D) (r > 3)
there is a tame symbol

t:U »-0b/H45

for the group U defined in 2.1 with respect to D. This is
defined as follows (cf. [1; 4.2]). Let, for i € WU {0},

p, 6% > #h/) = (/1)

be obtained recursively as follows: For u 6_0;,

Po(u) 1= 1, py,;(u) = Tp, (nun™).

(Here, for u € By, we write u := u+nob.)
5.1 Proposition: Let U be as in 2.1. If x,y € D', let
X = unl, y = vHJ, where u,v € J% and i,J € Z. Then

e (x,¥) = (-1)Mp (w)p,; (v)7F

induces a surjective homomorphism (the "tame symbol")

t:U > (o7/0g)" = G&L/néi)*-

Proof: A straightforward verification shows that U maps onto
U(D) as it is defined in [1; 4.1]. The same reference then shows
the truth of 5.1.
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5.2 Theorem: The tame symbol has a splitting s given by
k k
Y i=c(w,1).
The proof of this theorem is much more complicated than the
proof of the corresponding statement for SL_ (n> 3) in [1].
In 5.6 we will show more precisely that U is a semidirect

s(w

product, where c(w,lI) generates the non-normal factor.

Proof: It is straightforward to verify ps = id. The theorem

now will follow if we show:
s(wk) = s(w)k.
We do this in several steps:

5.3 Proposition: If K is a local field, g the order of its

residue class field and w a primitive (g-1)-th root of unity

in K, then in K.(2,K) = H (SLE(K),ZZ),

2 2

holds for all k, 1.

Remark: The corresponding statement for K2(n,K), n > 3, is due
to Carroll [6; Thm. 1].

Proof of 5.3: By 2.1 (or by Matsumoto's theorem), K2(2,K) is
just the group U of Theorem 2.1 for the division algebra K.

We use the relations

i) c(u,v)e(vu,w) = c(u,vw)e(v,w) (2.1 a))
ii) e(u,v) = c(u,-vu_l) = c(—uv'l,v) = c(uvu,u_l) (2.1 B8),2.5)
iii) e(u,v) = c¢(u,v(1-u)) (2.158))

By ii), we find
c(wS,w) = c(wh, -t ®) = c(-u®t,ut).
Euclid's algorithm then yields
c(wk,wL) = c(w(k’L),(—l)e), e =0 or e = 1.

Especially we have

c(w, ) = c(w, (-1)¥).

By i), we get

e (™, -1) = e(w, ™) e (w, —o®)e (WF, -1)

cw, (1)) e (w, - (-1)9) e (¥, -1).
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Induction on k gives

c(w2é+l’

iv) -1) = c(w,-1),

v) c(wg&,—l) =c(1,-1) = 1.

Hence it remains to show: c(w,-1) = 1.
If 2| a, then w is of odd order, and this follows from iv).
We may henceforth assume that 2/} q.

If -1 = w2t for some 4, then by v)

24

c(-1,-1) = c(w=™,-1) = 1,
hence by ii)
clw,-1) = c(w,ng) = c{w,+1) = 1.
24 — .
If -1 # w for every 2, then q = 3 mod 4, and -1 is an odd

power of w. By iv), we find
C(UJ, _1) = C(—l, '1)’

and in this case we must only show that c(-1,-1) = 1,

To do this we show first:

5.4 TLemma: Under the assumptions of 2.1, let x,y € D° be such
that xy = yx. Then

2 2)

e(-1,-1)c(x%, -y 2,-v%).

= C(—X y =y

Proof of 5.4: By 2.1 a), B), 6), we have

e(-1,5%) = c(-Ly)e(-y,y)e(y,y) F =1

and
2) 2.

c(-1,%)c(x%, -y°7) = c(-1, (xy)2)e(-x%, -y

Hence (x = 1):
c(-1,-1) = c(—l,—yg) for every y € D .

Putting these observations together proves the Lemma.

To finish the proof of 5.3 we write w® = -1, with 2 [fs
since we have q = 3 mod 4.

Because -1 1is a sum of two squares in the residue class
field of K, an application of Hensel's Lemma shows the existence
of ke W and v e K* such that w°fve = -1.

By 5.4 (x = 1) we find
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¢(-1,-1) = c(-1,-v?) = c((-w"D)%, -v7) = c((1+v?)%, -v2).

This is 1 by iii).
We now return to the proof of 5.2.
Applying relation 2.1 a) and 5.3 we find

(%) c(wk+1,n) = c(w,wkﬂ)c(wk,n).

v
We use nw = %wl = w¥ 1 for some v with (n,v) = 1 and 2.5 to

deduce, for every 4 € IN:

'I_.v
¢ (w,w5m) = c(w, (1)t 2 ).

If 4 1is a solution of k-4q’ = 0 mod g"~1 (which obviously
always exists) this yields

c(w,wkﬂ) = C(ws(—l)iﬂ)-

It 2|q then we can always find an even solution 4 for any Kk,
hence in this case we have, for any k

e (w,051) = e(w, ).

If 4|g™-1, then -1 = w”% nolds for some natural k, and

v
c(w,-1) = c(w,w 524 m)

holds for every 4 € . Taking 4 such that k = qu mod qn—l
yields
c(w,-1) = c(w, ).

An induction on k wusing (*) now shows:
If 2|q or 4|d™-1 then

c(wk,n) = c(w,n)k

Hence in these cases 5.2 is shown.
We now assume: q odd and 4 fq™-1.
Again by 2.1 a) and 5.3 we obtain:

C(UJ,H) = C(—U), —H)C(—l, H)’

C(U.), 'H) = C(-LD,H(C(—]., _H)'

Another application of 2.5 gives

c(-w,-m) = c(-w,—(-l)L(—w)_LqVH).
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The order of -~w 1is s := (qn—l)/e which is odd by assumption,
hence any odd solution 4 of 4gq’ = 0 mod (q"-1)/2 yields

c(-w,-1) = c(-w,1).

It remains to show c(-1,1) = c(-1,-1).
By Hensel's Lemma, we may find k € N, v € K*, hence v

central in D, with w2k+v2 = -1. Using 2.1 6) we find:

e (-1, -v2) = c((-w7®)5m, -v2) = e ((1+v2)°n, -v°) = c(T, -v

By 2.1 a) we get

2

c(-vZ,0) = clv ,-M)e(-1,1),

e(-v2, -1) = e(v3, -1)"Te(ve, n)e(-1, -1).

By Matsumoto [9, Prop. 5.7] the pairing (x,y) = c(xg,y)

is bimultiplicative when restricted to a commutative subfield of

D, hence c(v2,—n) = c(v2,-1)c(v2,n). By 5.3, 5.4, c(vg,-l) = 1.

Putting together these equations we obtain c¢(-1,1) = e(-1,-0),
as desired. This proves Theorem 5.2.

In the following we use the notation % .= aba.-l

for ele-

ments a, b of any group.

5.5 Lemma: Let 1,j € NU {0}, i+j > 0, and a,pB € 4,. Assume
that B # 0, l-all’, 1-g,19 esy for By := 819 (1-an?)"L. Then
ni Hi+,j' )_1

if a :=a B (1-g;19)77, the following relation holds in U:

i+J

c(l-an*,1-p19) = c(1-0qm "9, B 1Y).

(It is useful to remark that, for every pair a,, B, €4y, not
both = 1 mod I in case i = 0, with B, 1-plnj € #f ‘there
exist o, e.ob such that the above assumptions hold.)

Proof: We apply relations 5), 6'), 6") from §2 (2.1, 2.4, 2.8):

5) C(X)Y) = C(X,Y(I—X)),
5') c(x,y) = c(x(1-y),¥),
5”) C(l'XY: Y) = c(x, l—yx) .

with x := l—ani we have
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o(x,1-1%) = c(x,1-p,1%x)

c(l—xﬁlnj,ﬁlnj) (by 6"))

o ((1-gyn9+al g n ) (1-p,19) L nd) vy 6))

i+J

c(l-aln ,BlHJ).

5.6 Theorem: Let U, be the subgroup of U generated by all
c(x,y), where X,y e.o; and at least one congruent to 1 modulo
M. Then Ul is a normal subgroup of U, and U is & semidirect

product of a cyclic subgroup of order qn-l and U1 as follows:

U = <c(w,0)> x Uy

Hence U is the kernel of the tame symbol.

1
Proof: Normality follows from 2.1 y) respective 2.7 y'): If
u,v € D¥, then [u, V] e.&%, hence e.g.:

(W) (1ran,y) = e([u,v] ,1+an)e(Lral, [u, v]y).

It remains to show: Every c(x,y) can be written as a product
of an element in U; and a power of c(w, ).

If x =10 y=10dv, i,j € Z, u,v e,oﬁ, an application of
2.7 together with Euclid's algorithm gives

c(x,y) = c(nku',v') or = c(u',nkv')

for some k € N, u',v' EA’B . Hence we may assume that both

entries of ¢ are in 42b and at most one is divisible by 1.
By using 2.1 a), 2.7, we will show that we may assume that

I occurs only in the first power:

k

c(u, I v) = c(u,m)e(mu, 1¥v)e(n, 0¥v) 1

c(u, m)e(nu, (-1)%v" Ye(m, (-1)5" )"t

>

for u,v ea&B and suitable v',v' e.e% .

We now may write u = ulwl, v = vle with i,J € W,
u;,vy = 1 modulo 0. 2.1 a) gives

c(u,nv) = c(wl,ul)_lc(wl,ulnv)c(ul,nv),
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where the first and the last factor are in Ul by definition

resp. by 5.5.
For the second factor we obtain, by 2.1 a):
i _ i J
c(w ,ule) = c(w yuqlvyw )

= c(wl,wJle) for some w, € 1+[.o7,

1

= c(wl,wJH)c(wJle,wl)c(an,wl)_l.

Again, by 5.5 (using the antiautomorphism A of U), the
last two factors are in U;, while, by 2.1 a), we find for the
first, using 5.2, 5.3,

e (ol wln) = c(w¥ I, me(wd,n)"t = c(w,m)t.

This proves 5.6.
5.7 Corollary: The Schur multiplier of 812(D) has a splitting

Hy(SL,(D),Z2) = <el(wg,M)> x (U; M Hy(SL,(D),Z),

where Wo is a generator of the subgroup of the (g-1)-th roots
of unity of the center K of D. Moreover, c(wo,H) = c(w,m),
where wT = Hn € K, and w is the reduced norm of w.

0
The only non-obvious part of this statement 1s the last re-

lation, which is a special case of

5.8 Proposition: In U, the following is true for any k e IN:

k-1 3
c(w, ) = (1 "uw,m).
Jj=0
Proof': We have
c(w,nk+l) = c(m,nk)c(nkw,n)c(nk‘,n)'1

= c(w,Hk)c(ka'(—l)k,ﬂ)c((‘l)kﬁﬂ)—l

nk

= c(w,nk)c( w, 1) .

An induction on k gives the result.
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6. Continuous central extensions of SLQ(D).

We keep the notations of the preceding paragraph.
Every u € D*¥ can be written uniquely as

u = le3(1+aﬁL),

where i e Z, j e Z/(a-1)Z, « e&«B and 14 € W.

For m € W we define the subgroup Um of U to be gener-
ated by c(u,v) with u,v e.oé and at least one of the two argu-
ments in 1+nm46. Hence, by §5, U; 1is exactly the kernel of the
tame symbol. Moreover, the first argument in the proof of 5.6
shows that Um is normal in U.

We will investigate the quotients Um/Um+l'

6.1 Lemma: If u,v €, then c(u,v) € U;, and its value in

1’
U/u depends only on the classes of u and v in

m+1

* m+1
45D/1+H 45

Proof: The first statement follows from the properties of the

tame symbol. For the second, we write v = vl(l+ynm+l) (with
Y e.ob) and apply 2.1 a):
c(u,v) = c(u,vl)c(vlu,l+ynm+l)c(vl,l+ynm+l)
6.2 Lemma: If 1i,J > 1 then for o,p € .45 we have
€ := c(Ll+al®, 148MY) ¢ c(lhﬁbﬂi+j—l,lf55H)Ui+J ,
and the value of € modulo U,.,. depends only on the classes

i+J
of a, B module HJB.

Proof: Obviously, c(lxall’,1+p0Y) e U, for all a,B €87. We

write m := i+j. By 5.5, 2.1 a) we obtain, for a,pB € s, and
suitable al,ﬁl E.Ob,
1) c(l-an’,1-g1Y) = c(1-0q0", g 1Y)

1

= c(py (1-0qm™),19)e (B, 19) " moqulo U,

We also have, in case j > 1, with u := 1l-q,I
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11) c(u,g19) = c(u,pnd™)e(p 19w, me(pndt, )7t
(by 2.1 a))
= (w09 e (gu'  m)e(py,m) 7 (by 2.5)
= c(u,Blnj‘l)c(u',ﬁzn) modulo U ,
: j-1
with B, = (—1)J_1Bl, u' =0 u; for the last congruence we used

i) (in the case j = 1) backwards. An induction on j proves
the first statement of the lemma. To prove the second, we first
assume n}f j. We then can write

1-809 = [w,1-0"19]v, v e, v =1mod 1™, k € I .

(This simply requires to solve the congruence

J _
-B = wk(wn w 1—1) mod 1l

which is possible if n /) j.)
By 2.7 y') we have

k_j .
w, l-w I )C(l—BHJ,V)-

c(1-ant,1-pn9) = c(1-oni, [w, 1-w¥nd])C!
The last factor is in Um by the first part of this lemma,
hence the second statement is true in case n/f j.

Using the antiautomorphism A, we obtain the corresponding
result in case n|i for the first variable of c. To prove the
statement in general we use ii) above together with 5.5 which
yields, in case nlj, say, a congruence module Um
i+l

c(1-ant, 1-p09) = c(1-a'nt Y 1 0 Yy (1-amnitITL, 1 g )

where the class of B', B" modulo 0 are uniquely determined
by the class of B modulo T1I. This and the corresponding
symmetric result proves 6.2.

and B' = B(l-al™1) € .&*

D’ then for any

6.3 Lemma: If o €.

Y e.ob the following is true:

c(B',yl) = c(B,yl) modulo U, -

This follows from i) in the proof of 6.2, with m replaced by
ml, j =1, i = m.
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6.4 Lemma: If i, j > 0, nj)i+j, then we have

i J
c(l+op07, 1+agl”) Ujyye
Proof: We may assume 1i,J Z 1 and, by 6.2, j = 1. We write
m := i+j = i+l. According to 5.5 and to step i) in the proof of
6.2 we have, for a,pB,Yy exxB:

c(1-an’,1-gynd) = c(1-a 0", By 19)

1 modulo U

= c(p(1-0y1™), vy1%)e (B, v,19)" -

. j 1 .=1 i m s
with By = gy" (1-an™)™F, a) = o (gyy)? (1-py,19)"" . Using

nfm, we find ' e.ﬁ%, B! e.&%, B! £ B mod lfﬁbnm+l, such that

B(1-a,1™) = [w,1+y'0"™]p"

similarly as in the proof of 6.2.
Hence we obtain modulo Um:

c(B(1-a,1™),y,19) = e ([w, L+y'n™1p", yy19)

= c(p',v,19)e ([u, Loy 1, v, 19) (by 2.1 v))
= c(B,v,19)e ([w, 1+y' 1™, v, 1) (by 6.3)
= c([w, 24y 1™, [8, v, 191y, 19)e (8, v, 1) (by 2.7 v'))
= o (P(1-ay1™), Ay 19))c (8, v,17) (by 6.3)

This yields

m . .
¢(1-0,17, By, 1) = e(P(1-0,1™),B(v,19)) moa v,
equivalently:
m 3y = M-l m ., md, -1 _j
c(l-alH ’BYln ) = c(l—Bal B ~-u ,BY]_ B -l ) mod Um'
Since B was arbitrary (in 4&%), we may write this as

s m J .
m = o -1 nY -1
(*) c(l—aln ,Ban) = c(l-ea1 € -nm,ﬁl e "-1Y) mod u,-
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We now use 5.5 and 6.2 several times:

J

¢(1-eant,1-81 ¢ 1nd)
= c(1—eani(ﬁlnj€-l)ﬂm,Blﬂje_lﬂj) (5.5, 6.2)
- c(l—eanlﬁlnme—lﬂm,Blnje_lﬁj) (trivially)
- c(l—aniﬁlﬂm,ﬁlﬂj) (by (*) above)
= ¢(1-ant, 1-p19) (by 5.5)

This yields the two relations modulo U (e e.v% arbitrary):

c(l-eant, 1-pn¢) = c(l-an®, 1-gn%),

c(l-ante,1-p0Y) = c(l-an™,1-¢pnd),

the second being obtained from the first by means of the anti-
automorphism A and by interchanging i and Jj. We apply this
to the special case 1 = m-1, j =1 to obtain

n-l

c(l-aHi,l—ﬁH) = c(l—ni,l—BHaH) = C(l—Hi,l— a-B0)

-1
With vy = a this implies, for every B e.of,

. . m
e(1-1t,1-pyn) = c(1-1n%,1-1 ypm).

Now, by 6.2, we may replace all entries by powers of w,

m

hence B, v, I v commute with each other.

We write [w,1+el] = L+pyl mod 1+61° with suitable ¢ .67
and obtain, using the above relation, 6.2, and relations 2.1 v),
2.7 v'): m

c(1-n, 1+8(v-1 y)m)

. . m
c(l—nl,l+ByH)c(w’1+€H)c(l-ﬂl,l-ﬁn Y1)

1

)c(m,l+eﬂ)

c(1-n%, 1+yT c(1-1%, 1-By1)

e (1-nt, 14pym) ¢ (W T eM o1t (14pyn) 1)

1 modulo Um.
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Since this is true for arbitrary B, this concludes the proof of

Lemma 6.4.
6.5 Lemma: Let U% be the subgroup of U generated by U

and by all c(l+49'D1’Il, 1+%HJ)’ ity =m. (By 6.4: Ul =U  if

nj’m.) Then we have: Every element of Um can be represented,

modulo U' by c(w,l+al™), o € L.

m+1’
Proof: Up to A-symmetry, we may write an arbitrary generator of

Um in the form

c(wku,v), k € N, u,v €4+, u=1mod I, v =1 mod 1.

D

Up to an element of norm one in lhdbn, which is a product of
commutators, u can be replaced by an element w in JEJWl+Abn
[19; p.89], [12]. Hence we may write

wfu = ulwkw, N(ul) =1, w €.

c
]

1 w =1 mod 1.
If €& 1is a preimage of uy in Ul we obtain by

c(wku,v) = gc(wkul,v)c(ul,v) (by 2.1 v))

= € k 1
= e (w ul,v) modulo U? .
. 1 1 . . 1
Now 2.1 y) and 2.7 y') show that Um/Um+l is central in Ul/Um+1’
hence we obtain modulo U' .:
m+1
k _ k k *
clw u,v) = c(w ul,v), R )

If n|m, then v may be replaced by l+al™ with o € 67, hence
1+am™ e.di. But then c(wkul,l+anm) lies in the natural image
of H2(SL2(L),Z) s> which is, by [9; 11.1], bimultiplicative when

evaluated modulo U

mel This gives

k myk
c(wu,v) c(w, (1+all™)") mod Upi1

Hence we may assume n fm. Then we may choose B 6.65 such that

-1 _ m +1
u vy, T = [w, 1+B801" ] mod 1+4bnm .

. 1
We then obtain by 2.1 a), modulo U
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c(mku,v) = c(wkul,v)

¢ (uy, o) Fe (05, [w, 1481" 0, )

o (uy, o) Lo (w5, [w, 1+pn™]) (0 1T ¢ (W, )

the last result is due to the centrality of c(ul,wk) in TU.
By 2.1 v), c(wk,[x,y])'l = c([x,y],wk), hence we have proved that
every generating element is represented by some c(wk,u), u=1
mod Hm+l.

We use induction together with 2.1 a) and 5.3 to reduce to
k = 1:

k+1 -
c (0L, K u)t

u) = c(w,wku)c(w

since wkuw'k can be written as a commutator, we find by 2.1 y):

k

c{w,wu) = c(w,u).

Now if wu,v € lhd%ﬂm, we may write u = [w,1+yI™] with some
y €47 to obtain from 2.1 v):

)c(w,l+yﬂm)c(

¢(w,u W, V)

c(w,uv)

c(w,u)e(w,v) modulo Uﬁ+l’
the latter argument using again the centrality of Um/UI'n+l in
Ul/U$+l’ which follows from 2.1 y), 2.7 v').

Hence c(w,u) is multiplicative in u and Lemma 6.5 is

proved.
6.6 TLemma: If n|m, then every element of U% can be represent-
ed, modulo Um’ by

c (1, 1+ai™), o € 4.

Proof: Let c(l-al’,1-gn’) e U}, @,B € o7, i+j = m. Then, by
6.2, we may assume that a,B € {w) E-&i . We first assume that

.

the reduced trace S(al) of o, := al B is congruent O mod T.

Then

1o ™ = [141, 1+yI™ 1] mod 1+obnm+l

1
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for some ¥y e.éi. We write B =6¢ for some 6,¢ € {wy> and

obtain, modulo Um:

¢(1l-ant,1-pnd) = C(l—alﬂm,éeﬂj) (5.5)
= c([1+1, 1+y™ s, end)e (s, end)t (2.1 a))
= c(5,end)e([1+m, 14y1™ 1, end)e (s, end)~t (2.1 v))
= c(1-alnm,“ja'1(5e)nj) (2.7 v'))
= c(1-asni,1-nja'1ﬁnj). (5.5)

We may state this result as follows: 5
i) If a,B,Y € <w> are such that o (By) has reduced
trace 0, then we have, modulo Um:

: : i,
¢(l-ant, 1-gynd) = c(1-o® gnt, 1-yn).

We now denote by V the subgroup of U& generated by Um and by
all elements c(l-al™,1-T). We claim that V = U!. By 6.2,
we have to show that every element d(o,B) := c(}-anm‘l,l-ﬁn)
nlﬁ) = 0, hence
we may assume S(Ha-ﬁ) # 0 (S denoting the reduced trace).
From 2.1 a) it follows immediately that d(a,B+y) = d(a,B)d(a,v),
d(a+B,y) = d(a,v)d(B,y) modulo Uy
If B e KN (w> then we may find a B' € (wp, B' £ K such
that S(Tag') = 0, hence s(Ta(p+g')) = s("ag) and

is in V. This is obvious from i) in case S(a

d(asﬁ”'ﬁ') = d(a:ﬁ)d(a:ﬁ') d(a:B) mod Um (by 1i)).

Hence we may assume S(na-ﬂ) #0 and B e (wp, B £ K. Comparing
dimensions of vector spaces over -dk/fk and using the non-
degeneracy of the bilinear form defined by the trace of separate
extensions, we find that there exists a & e {(w> such that

s("e-p) = 0, s(g) # 0.
Hence we find a A € {w» N K such that

as(e) = s(Ma-(8-1)),
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which implies
-1
i1) s((a+rg)™  (1-8)) = o.

Therefore we may compute, modulo V, using i) several times:

n—l

11

d(a,p) = d(a+AE,B) (since 8S(ng

d(a+Ag, p+(1-B)) (since ii) holds)

i

d(a+AE, 1).

This proves V = UA, and moreover, by the bilinearity of d,
that every element of U; is of the shape
c(1+an™ Y, 14m) 7t = c(14m, 1+an™ 1)

An application of the symmetric version of 5.5 gives Lemma 6.6.

6.7 Corollary: If n|m, then every element of U& N Ker g, is,
modulo Um’ of the form
pit}
C(H,l+awn), o € JE.

(Recall m = 07 e.AE.)

Proof: If c(H,l+aHm) € UA N Ker vg then

m+1
1 = [0, 1+am™ = 1+ (fo-a) ™ moa T,

hence (since we may take a € <{w)) a € Y. On the other hand,

. 1 .
we have, in Um/Um'

C( m k+1)

1+ym, 1

= c(1yr™, 1) e (S (1eyr™), e (0, 1) 7t (2.1 a))
- ey, e (1R ™), me (-5 1)L (2.5)

- c(l+yHm,Hk)c(l+nkynm,(—l)kn). (2.1 a))

By 5.5, the second factor is independent from the sign of T,
hence we obtain, by induction on k:
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k-1 _i
e (L4yn%, 1) = c(1+ ¢ U
i=0

m
vy, 1).

Since the trace of finite extensions of finite field 1s surjec-
tive, the case k = n yields the corollary.

6.8 Theorem: TLet D be a non-archimedean local division
algebra with center K. ILet r e W, r > 2 and

1—> A —> ¢ 2> sL,(D) —> 1

be the universal topological central extension of SLr(D).
Then A is isomorphic to the group u(K) of roots of unity
of K.

Remark: The existence of a universal topological central exten-
sion follows from the work of Moore [10]. G is a second countable
locally compact group, A is central and closed in G, and ¢ is

continuous.

Proof: We first consider the case r = 2.

We identify G with a quotient of St (D), hence A becomes
a quotient of H2(SL2(D),ZH . The natural 1mages of various ele-
ments of StE(D) defined in §1 will be denoted by the same
symbols as their corresponding preimages, hence we consider
x5 (), nys(w), elu,v) = hlg(u)hlg(v)hle(vu)'l
G. Since ¢ restricted to the subgroup {x..(u)|u € D} 1is

1]
injective one obtains, using the usual Bruhat-decomposition of

to be elements of

St2(D), that u + Xij(u) is a continuous map, hence the pairing
c:D*x D* > U = (c(u,v) € Glu,v € D*>

is continuous.
If € € Ker o, then, by Theorem 2.1, € € U, and it follows
from 5.7, 6.5 and 6.7 that

g = c(ma)c(w,B)n

where m,0,p € 4., T a prime of K, and n € N U . Since the
meIN
Um form a system of closed normal subgroups which is cofinal in

the topology of U their intersection is trivial since G 1is
Hausdorff. Hence E 1is in the canonical image of HE(SLE(L),ZU.
Since the Galois operation of the cyclic extension IL:K 1is - in
D - induced by inner automorphisms, the centrality of A 1implies
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that the kernel of the canonical map
H2(SL2(L), Z) - A

1, o € G(L:K). Clearly it also
factors through the topological fundamental group of SLQ(L),

which is, by Matsumoto [9; 11.1] or by Moore [11l], isomorphic to

vanishes on all elements Cg.g~

u(L). Hence A is a quotient of u(L)/c'lp(L) Z u(K).
On the other hand, say by 2.1 and by [14], the canonical map

H, (SL,(D), Z) > H,(SL (D), Z)

is surjective for arbitrary skew fields, and the groups on the
right are known to be independent from n and isomorphic to
K2(D). An analogues observation holds for the corresponding
topological fundamental groups in case of a topological D, which,

for n > 3, are KZOP(D). Hence we get the composite map

u() /() > a > k5P (p),

and it can be deduced from [15; Theorem 3.1 ii)] that the image
of this map contains a subgroup isomorphic to u(K) except if
char(K) = 0, the residue characteristic of K is 2, u(K) = {1}
and D has no algebraic splitting field such that -1 is a norm
of a root of unity from that field. (The latter condition
requires that D is of even index.) In the exceptional case
(as well as in all other cases also) the proof now can be con-
cluded using a theorem of Suslin [21] and results of [15] as
follows:

By [15; 2.4] there exists a homomorphism

y:K,.(K) > KE(D)

A
defined by +¥(c(a,B)) := c(a,b), where a,8 € K¥ and b e D*
such that Nb = B, such that, for every splitting field E of D,

the diagram
K(D)

¥ U PplE
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2

is the natural transfer map (factoring

commutes, where PplE
D®, E)).

through KE( X

By [21; 3.6], the natural map K2(K) > KE(
if K 1is algebraically closed in E. This property holds for
the generic splitting field of E (which is characterized by the

E) is injective

property that every splitting field of D contains a specializa-
tion of E and which always exists, cf. [18]). Since the topo-
logical fundamental group of SLr(K), r > 2, is a factor (iso-
morphic to u(K)) of KQ(K) [9, 10], which can be generated by a
symbol c(m,e), where 7 is a prime and e a unit of K [11],
and since L/K is unramified, there is a unit e e€ L with
Ne = €, hence it follows now that the natural image of
HE(SL2(L),ZU in A is of order at least |u(K)]|, which con-
cludes the proof.

The theory of fundamental groups of SLn(D) (n 2 2) for local
non-archimedean D now can be described in a completely satis-
factory and uniform way in terms of the norm residue symbol

(5 ):K*xK* » u(K)

of the center K of D:

6.9 Corollary: For any D as in 6.8, and any r > 2, the topo-
logical fundamental group of SLr(D) is isomorphic to the group
u(K) of roots of unity of K. More precisely:

If ¢ -2 SLr(D) is a univeral topological extension and if
hlz(u) € G is defined as in §1 (r = 2) resp. as in [14] (r > 3),
then there is an isomorphism

itn(K) —> Ker o

such that

1((a,8)) = e(a,b) = hy,(a)h ,(b)hy ,(ba) ™t

b

where b € D* is any element of reduced norm 8.

Proof: This follows from the last part of the proof of 6.8.
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