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Ina Kersten* and Ulf Rehmann

In memory of Ernst Witt

Abstract. Generic conditions for the occurrence of a parabolic subgroup of given type in a reductive algebraic

group are described. Especially the notion of a generic splitting field of a reductive algebraic group is inves-

tigated. The given theory generalizes and unifies other investigations of various authors for special algebraic

structures such as Azumaya algebras and quadratic forms.

Introduction

The “degree of splitting” of a connected semisimple algebraic group G over a field k is essentially
determined by the types of parabolic k-subgroups of G. For example, G is anisotropic if G itself is the
only parabolic k-subgroup, G is quasi-split if it contains a Borel subgroup, and G is split if it contains
parabolic subgroups of every possible type.

We now assume that G is a connected reductive linear algebraic group over k. One of our main
goals is to describe generic conditions for a field extension K of k, which guarantee the existence of a
parabolic subgroup of GK of a prescribed type, where GK = G ×k K denotes the algebraic group over
K obtained from G by scalar extension.

Let k̄ denote an algebraic closure of k. It is known that Gk̄ splits and that the conjugacy classes
of parabolic subgroups of Gk̄ are in one-to-one correspondence with the subsets of the vertices ∆ of the
Dynkin diagram of Gk̄. The subset Θ ⊆ ∆ corresponding to the class of a parabolic subgroup P of Gk̄

is called the type of P . The set ∆ itself is the type of Gk̄ and the empty set ∅ is the type of a Borel
subgroup of Gk̄.

In §3 we show that the occurrence of parabolic subgroups of given type is preserved under k-
specializations. More precisely, in 3.9 we prove, for any field extension L of k: If there is a parabolic
subgroup of type Θ in GL, then there is a parabolic subgroup of type Θ in Gk′ for every k-specialization
k′ of L, that is, for every field extension k′ such that there is a k-place L → k′ ∪ {∞}.

This leads us to the definition of a generic Θ-splitting field of G for any subset Θ ⊆ ∆. A field K is
called a Θ-splitting field of G if GK contains a parabolic K-subgroup of type Θ, and a Θ-splitting field
F of G is called generic if every Θ-splitting field of G is a k-specialization of F . Especially a (generic)
quasi-splitting field of G is a (generic) ∅-splitting field of G.

In order to find a generic Θ-splitting field of G, we study, in §3, the quotient variety VΘ := Gk̄/P
for a parabolic subgroup P of Gk̄ of any type Θ. Since P is self-normalizing, VΘ can be identified with
the conjugacy class of P in Gk̄. It is known that the variety V∅ is always defined over k, and we will see
in 3.11 that its function field k(V∅) is a generic quasi-splitting field of G. We show, more generally, that
VΘ is defined over a “small” finite and separable field extension kΘ of k, which is the smallest extension
of k such that the so called ∗-action of the Galois group Gal (ks/kΘ) on ∆ leaves Θ invariant. (By ks we
denote the separable closure of k contained in k̄.) Hence kΘ = k in most cases. Especially this is always
true for groups of inner type. We will see in 3.16 that, for any Θ, the function field kΘ(VΘ) is a generic
Θ-splitting field of G. Any Θ-splitting field of G contains a copy of kΘ, and the Θ-splitting fields K of
G are – as field extensions of kΘ – characterized by the condition that K(VΘ) is a purely transcendental
extension of K (cf. 3.10, 3.16).

A Θ-splitting field K of G splits G “partially” in the sense that the rank of GK is greater than
or equal to the rank of G, but is not necessarily equal to the maximal possible value, in which case K
would be a splitting field of G (cf. 1.7 and 1.10 below). If K is a splitting field of G, then the semisimple
part of GK is a group of Chevalley type.

Another main goal of this paper is to exhibit subsets Θ of ∆ such that a corresponding generic
Θ-splitting field is a generic splitting field of G. Similarly as above, a splitting field F of G is called
generic if every splitting field of G is a k-specialization of F .
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Our theory of generic Θ-splitting fields of reductive groups unifies several other investigations of
similar kind for different special algebraic structures.

The earliest example of a generic splitting field has been given by Witt [37, 1935], who constructed
a generic splitting field for a quaternion skew field D over k. Here splitting of course means the splitting
of D into a full 2 × 2 matrix ring. We will show that the generic splitting field constructed by Witt
is precisely the function field k(V∅) for the algebraic k-group G = SL1(D) (cf. 3.20). Witt’s result has
been generalized to central simple k-algebras by Amitsur [2, 1955]. The varieties which occur in this
context are the Severi-Brauer varieties over k which can be described as the k-forms of projective space.
A different approach to this construction making use of non-abelian Galois cohomology has been given
by Roquette [23, 1963], [24, 1964]. These results occur as particular cases in our discussion of the partial
generic splitting of the algebraic group G = SLr+1(D) for a finite dimensional central skew field D over
k and r ≥ 0 (cf. 4.9 below). Moreover, Roquette proved [23, Th. 4, p. 413] that the function field of the
Severi-Brauer variety related to the full matrix ring Mr+1(D) over D is a purely transcendental extension
of that of the Severi-Brauer variety of D. Translated into our theory, this becomes a particular case of
the fact (cf. 3.18, 3.19 below) that the generic Θ-splitting field k(VΘ) of G is a purely transcendental
extension of a certain corresponding Θan-splitting field of the semisimple anisotropic kernel Gan of G
(cf. 1.8 below).

To the best of our knowledge the first who had the idea of studying partial generic splitting instead
of just total generic splitting was Knebusch in the 70’s. He investigated partial generic splitting of
quadratic forms [16, 1976], [17, 1977], thereby introducing his generic splitting towers. Then his student
Heuser [12, 1976] studied partial generic splitting of central simple algebras, using the function fields
of generalized Severi-Brauer varieties of prescribed level. It turned out that the splitting behavior of
central simple algebras is much more uniform than that of quadratic forms (cf. 4.8 ii) and 5.8 below). As
we were told, Knebusch, puzzled by this phenomenon, suggested already then to study partial generic
splitting of linear algebraic groups.

Recently, also Blanchet [4, 1991] and Schofield/v. d. Bergh [26, 1991], [27, 1991] studied the partial
generic splitting of central simple algebras by means of generalized Severi-Brauer varieties. As we point
out in §4 these generalized Severi-Brauer varieties are the quotients of G by arbitrary maximal proper
parabolic subgroups of G = SLr+1(D) (here Θ consists of ∆ minus one element).

Similarly, the layers of a generic splitting tower of a quadratic form q are, in our theory, achieved
by the function fields of the quotients of G = SO(q) modulo its various maximal proper parabolic
subgroups. This is discussed in §5.

Another uniformizing approach which establishes and generalizes the results of Amitsur and Kneb-
usch above and which uses the techniques and terminologies of Jordan algebras and Jordan pairs has
been given independently by Petersson [21, 1984] and by Jacobson [14, 1985] (for a survey, see [15,
1989]). Especially [14, §7, p. 591] gives results on generic splitting of involutorial simple associative
algebras which can be transformed into special cases of our Theorem 6.1.

The authors want to express their gratitude to Manfred Knebusch who enthusiastically encouraged
them to investigate partial generic splitting of algebraic groups.

We now briefly describe the contents of the various sections of this paper.
In §1 we collect some facts about varieties, splitting fields, reductive linear algebraic groups and

their anisotropic kernels.
In §2 the generic splitting of algebraic tori is discussed.
In §3 we set up the framework of reductive groups and the rational theory of parabolic subgroups

in order to prove the main results: Theorem 3.6 describes how to obtain a generic splitting field from
a generic quasi-splitting field, Theorem 3.10 describes the fundamental properties of the varieties VΘ

(becoming rational exactly over specializations of their function fields). 3.11 – 3.17 prove the existence
and describe the properties of generic Θ-splitting fields, 3.18 – 3.19 relate the general results to the
respective anisotropic kernel. We conclude this chapter with the discussion of Witt’s first example
(3.20) of generic splitting, namely the generic splitting of quaternion algebras.

In §4 we describe the generic Θ-splitting of groups of type 1An. We show how several essential results
on generic splitting fields obtained by Amitsur, Roquette, Heuser, Blanchet and Schofield/v. d. Bergh
can be deduced from our theory by taking proper maximal subsets Θ of ∆.

In §§5 and 6 we assume char (k) 6= 2. In §5 we discuss the partial and total generic splitting of
quadratic forms including its relations to the work of Knebusch. In §6 we describe the generic Θ-splitting
of the classical groups of types 2An, Bn, Cn, 1Dn and 2Dn.
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In §7 we give, for all characteristics, generic splitting and quasi-splitting fields of arbitrary almost
simple groups including the groups of exceptional types.

1. Some basic definitions and lemmas

Let k be field and k̄ an algebraic closure of k.
In this paper, a k-variety V is an absolutely reduced quasi-projective scheme over k. Any algebraic

k-group is supposed to have a k-variety structure in this sense. For any field extension k′ of k, we denote
the set of k′-rational points of V by V (k′) = Hom k−scheme(Spec k′, V ) and we write Vk′ := V ×k k′ for
the k′-scheme obtained from V by base extension with k′.

1.1 Lemma. If V is an absolutely irreducible k-variety, then k is algebraically closed in the function
field k(V ) and k(V ) is separably generated over k.

For the proof see [20, Chap. II, §4, Prop. 4, p. 142].

Recall that a finitely generated field extension k′ of k is said to be regular if k̄ and k′ are linearly
disjoint or, equivalently, if k is algebraically closed in k′, and k′ is separably generated over k, cf. [36,
Chap. I.7, Th. 5, p. 18]. If V is an absolutely irreducible k-variety, then, by 1.1, for any field extension
k′ of k, the free composite k′k(V ) is uniquely determined up to k-isomorphism [13, Chap. IV, Cor. 1,
p. 203, Th. 26, p. 209] and is isomorphic to k′(Vk′) [36, Chap. I.7, Th. 5, p. 18].

1.2 Definition. A field extension k′ of k is a k-specialization of an extension L of k if there is a k-place
L → k′ ∪ {∞}.
1.3 Lemma. Let V be an absolutely irreducible projective k-variety. Let L, k′ be field extensions of k
such that k′ is a k-specialization of L. Then V (L) 6= ∅ implies V (k′) 6= ∅.
Proof. There is a homogeneous ideal I in the polynomial ring k[X0, . . . ,Xn] for a suitable n together
with a bijection of sets

V (K)
∼→ {(x0 : . . . : xn) ∈ P

n(K) | f(x0, . . . , xn) = 0, ∀f ∈ I}
for every field extension K of k.

Let ϕ:L → k′ ∪ {∞} be the k-place describing k′ as a k-specialization of L, and let Oϕ denote the
valuation ring of ϕ.

Let x = (x0 : . . . : xn) ∈ V (L). We choose j ∈ {0, . . . , n} such that the principal ideal xjOϕ is
maximal among the ideals xiOϕ. This is possible because Oϕ is a valuation ring, cf. [9, Chap. VI, §1,
No. 2, Th. 1d].

Clearly, we have xj 6= 0, whence x = (x′
0 : . . . : x′

n) with x′
i := xi/xj ∈ Oϕ for all i = 0, . . . , n and

x′
j = 1, and it follows that (ϕ(x′

0) : . . . : ϕ(x′
n)) ∈ V (k′).

Let G be a connected affine algebraic k-group. This implies that Gk̄ is k̄-connected [11 I, Exp. VI2,
Prop. 2.1.1, p. 296].

1.4 Theorem. G has a maximal k-torus.

For the proof see [11 II, Exp. XIV, Th. 1.1, p. 296] or [6, Th. 18.2, p. 218].

We assume for the rest of this paragraph that G is reductive.

1.5 Definition. Let K be a field extension of k.
i) K is a splitting field of G if GK has a maximal K-torus which splits over K.
ii) K is a quasi-splitting field of G if GK has a Borel subgroup defined over K.
iii) A splitting field (resp. quasi-splitting field) K of G is said to be generic if every splitting field (resp.

quasi-splitting field) of G is a k-specialization of K.

For the notion of a split connected reductive affine algebraic group compare [6, 18.6, 18.7, p. 220ff]
and [7, 8.1, 8.2, p. 481ff].

1.6 Remark. Obviously two generic splitting fields of G are k-equivalent to each other in the sense
that they are k-specializations of each other. We shall show in 3.9 iii) that every k-specialization of
a splitting field of G is also a splitting field of G. So we have the following result: If K and K ′ are
k-equivalent field extensions of k and if one of them is a generic splitting field of G, so is the other.
In particular, K is a generic splitting field of G if this is true for some purely transcendental extension
K({xi}i∈I) of K.

1.7 Remark.
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i) A field extension K of k is a splitting field of G if and only if rank (GK) = rank (Gk̄) holds. We
write rank(G) for the k-rank of the k-group G, that is, the dimension of a maximal k-split k-torus
of G (cf. [8, 4.21, p. 93]).

ii) If k is finite then G is quasi-split (cf. [6, 16.6, p. 211]), and the semi-simple groups over k are
completely classified (cf. [30], [31]). Therefore we will always assume that the base field k is infinite
except in §§1 and 2.

iii) It is known that G has a splitting field which is finite and separable over k. This follows from 1.4
and the fact that any k-torus has such a splitting field [6, 8.11, p. 117]. However, if K is a generic
quasi-splitting field of G, then K does not split any nontrivial anisotropic k-torus of G (cf. Cor.
3.12 below).

1.8 Definition.

i) G is isotropic if it contains a non-trivial k-split k-torus and is anisotropic if rank (G) = 0.
ii) If S is a maximal k-split k-torus of G and Z(S) its centralizer in G, then the derived group DZ(S)

is called a semisimple anisotropic kernel of G. If Zan is the maximal anisotropic k-subtorus of the
center of Z(S), then DZ(S) · Zan is called a reductive anisotropic kernel of G.

Our notion of an (an-)isotropic group seems to be standard now, as it is used in [5, 6.4, p. 13], [32,
2.2, p. 39], [8, 4.23, p. 93] and [6, 20.1, p. 224]. It differs, however, from the definition in [29, 6.5, p. 476],
where G is said to be anisotropic if its split k-subtori all are central.

1.9 Proposition.

i) The semisimple anisotropic kernels of G are precisely the subgroups occurring as derived groups of
Levi k-subgroups of minimal parabolic k-subgroups of G. Any two such are conjugate under G(k).

ii) The anisotropic kernels of G are anisotropic k-groups.
iii) G is quasi-split if and only if its semisimple anisotropic kernel is trivial.

Proof. i) If S is a maximal k-split k-subtorus of G, then Z(S) is a Levi k-subgroup of a minimal parabolic
k-subgroup P of G by [8, 4.15, 4.16, p. 91]. Conversely, if P is a minimal parabolic k-subgroup, then
the Levi k-subgroups of P are the centralizers of maximal k-split k-tori of G (contained in the radical
of P ), [8, 4.16, p. 91]. This proves the first assertion of i). The second follows from the fact that all
maximal k-split k-tori are conjugate over k by [8, 4.21, p. 93] or [6, 20.9, p. 228].

ii) It suffices to prove the statement for semisimple anisotropic kernels. Let S be a maximal k-split
k-torus of G. Being reductive, Z(S) is an almost direct product of its maximal semisimple subgroup
DZ(S) and the identity component of its center which contains S (cf. [8, 2.2, p. 64]). The maximality
of S now asserts that DZ(S) does not contain any nontrivial k-split k-torus.

iii) By definition, G is quasi-split if and only if it contains a Borel k-subgroup. Hence the statement
follows from i).

1.10 Corollary (cf. [8, 4.17, p. 92]). G contains a non-central k-split k-torus if and only if it contains
a proper parabolic k-subgroup.

2. Generic splitting of algebraic tori

Let k be a field and let T be an algebraic k-torus (i.e., there is a field extension K of k such that
TK

∼= Gm ×K · · · ×K Gm, where the multiplicative K-group Gm is defined by Gm(K) = K∗).

2.1 Lemma. Let L be a field extension of k which splits T . Then the subfield k̃ of L of elements which
are separable algebraic over k also splits T .

Proof. Let %:T → GL(W ) be a faithful k-rational representation on a finite dimensional linear k-space
W. By assumption there is an L-basis of W ⊗k L such that every t ∈ T (L) is described by a diagonal

matrix with respect to this basis [6, 8.2 Prop. (d), p. 112]. Hence, for every t ∈ T (k̃), the minimal

polynomial mt(X) ∈ k̃[X] decomposes into pairwise distinct linear factors

mt(X) =
∏

i

(X − α
(t)
i ), with α

(t)
i ∈ L.

It follows that the α
(t)
i are separable over k̃, hence over k. Therefore every t ∈ T (k̃) is diagonizable over

k̃. Since T (k̃) is commutative, there is a k̃-basis of W ⊗k k̃ which diagonalizes T (k̃).
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2.2 Proposition. Let L be a splitting field of T . Then any k-specialization k′ of L is a splitting field
of T .

Proof. Let ϕ:L → k′∪{∞} be the place describing k′ as a k-specialization of L. By 2.1, the subfield

k̃ of separable algebraic elements of L over k splits T . By [38, Cor. 1, p. 13], the restriction of ϕ to k̃ is
injective, hence k′ splits T .

2.3 Theorem. An algebraic k-torus T has an algebraic generic splitting field, say F , which is unique
up to k-isomorphism and is a finite Galois extension of k. Every splitting field of T contains a subfield
isomorphic to F .

Proof. Let k̄ denote an algebraic closure of k, and define

F :=
⋂

{ L | k ⊆ L ⊆ k̄, L splitting field of T}.

Then F is a finite separable field extension of k because T has a finite separable splitting field (cf. [6,
8.11, p. 117], [7, Cor. 8.3, p. 482]).

Let K be a splitting field of T . By 2.1, the subfield k̃ ⊆ K of elements separable over k splits T .
Then k̃ contains a subfield isomorphic to F by the definition of F .

We have to show that F splits T . Then it will follow from the above that F is a generic splitting field
of T . Let A = k[T ] be the affine coordinate ring of T . Let k1 be any extension of k. Then the set X (Tk1

)
of characters of T defined over k1 are the k1-group homomorphisms Tk1

→ Gm. These are in one-to-one
correspondence with the set of k1-algebra homomorphisms k1[X,X−1] → A⊗k k1 with an indeterminate
X or equivalently, using restrictions, to the k-algebra homomorphisms k[X,X−1] → A ⊗k k1. Let now
k1, k2 be extensions of k both contained in a field k3. Then any character defined over k3 which, by
restriction, gives a character defined over both k1 and k2, will also give a character over k1 ∩ k2, as its
associated k-homomorphisms k[X,X−1] → A⊗k ki will map X into both A⊗k ki for i = 1, 2 and hence
into A ⊗k (k1 ∩ k2).

Now since any extension L ⊆ k̄ of k is a splitting field of T if and only if X (TL) = X (Tk̄) [6, 8.2,
Cor., p. 112], it follows that the intersection of two splitting fields of T which are contained in k̄ is also
a splitting field of T . Hence F splits T . Since the same then is true for all the conjugates of F it follows
from the definition of F that it is a Galois extension of k.

2.4 Example. Let char(k) 6= 2 and a ∈ k∗. Define a k-torus by

T (k) :=

{(
α β
aβ α

)
∈ M2(k) | α2 − aβ2 = 1

}
.

Then it is easily checked that T splits over some field extension K of k if and only if a ∈ (K∗)2 and that
k(
√

a) is a splitting field of T . In fact, it is just the generic splitting field F of T described in 2.3.

Let G be a connected affine algebraic k-group.

2.5 Corollary. Suppose G is reductive and quasi-split, and T is a maximal k-torus of G contained in
a Borel k-subgroup B of G. Then the generic splitting field F of T is a generic splitting field of G, and
every splitting field of G contains a field isomorphic to F .

Proof. Clearly F is a splitting field of G, since it splits one of its maximal tori. Let k′ be a splitting field
of G. Then Gk′ contains a maximal k′-torus which splits. This is contained in some Borel k′-subgroup
of Gk′ and since this is conjugate in Gk′ to Bk′ , the torus Tk′ splits. Hence k′ is a splitting field of T
and therefore contains F , by 2.3. This clearly implies that F is a generic splitting field of G.

3. Parabolic subgroups

In this section k is an infinite field, ks is the separable closure in an algebraic closure k̄ of k, and G is a
connected reductive affine algebraic k-group.

Let K be a splitting field of G (for example K = k̄). Choose a maximal K-torus T of GK which
splits over K (cf. Definition 1.5). We denote by X (T ) the character group Hom (T, Gm).

Let ΦK = Φ(GK , T ) ⊆ X (T ) be the set of roots of GK with respect to T . For every α ∈ ΦK there
is a connected unipotent subgroup Uα of GK such that TUα = UαT . Also, there is a K-isomorphism
xα: Ga → Uα, where the additive K-group Ga is defined by Ga(K) = K+), such that

t xα(u) t−1 = xα(tα u) (∀u ∈ K, t ∈ T (K))



6 Kersten/Rehmann: Generic splitting of reductive groups

(cf. [8, 2.3, p. 64] or [6, 18.6, p. 221]).
We choose an ordering of ΦK , denote the set of positive roots by Φ+

K , and let ∆K ⊂ Φ+
K be the

basis (or the set of simple roots) of ΦK with respect to that ordering.
For every subset Θ ⊆ ∆K we have the so-called standard parabolic subgroup PΘ of GK (with

respect to T ) defined by
PΘ := 〈T,Uα | α ∈ ∆K or − α ∈ Θ〉.

It is known that the standard parabolic subgroups are in one-to-one correspondence with the conjugacy
classes of parabolic subgroups of GK [8, 4.6, p. 87]. Obviously we have P∆K

= GK , and B := P∅ is the
standard Borel subgroup of GK . More generally, there is the following description of PΘ, cf. [8, 4.2,
p. 85f] or [6, Prop. 14.18, p. 197].

3.1 Remark. We denote by H◦ the connected component of the identity element in an algebraic group
H. Let TΘ =

(⋂
α∈Θ Ker (α)

)◦
, let Z(TΘ) be its centralizer in GK and UΘ = 〈Uα | α ∈ uΘ〉 where uΘ

is the set of all α ∈ Φ+
K which are not linear combinations of elements of Θ. Then PΘ = Z(TΘ)UΘ

is the Levi decomposition of PΘ with reductive part Z(TΘ) and unipotent radical Ru(PΘ) = UΘ. If
U−

Θ = 〈Uα | α ∈ u−
Θ〉 where u−

Θ is the set of all α ∈ ΦK \ Φ+
K which are not linear combinations of

elements of Θ, then P−
Θ = Z(TΘ)U−

Θ is, analogously, the Levi decomposition of the parabolic subgroup
of GK containig T which is opposite to PΘ.

3.2 Lemma. Let P be a parabolic k-subgroup of G. Then the unipotent radical Ru(P ) is, as a k-
variety, isomorphic to an affine k-space, and G/P is a rational variety over k. If PK is conjugate to PΘ

for Θ ⊆ ∆K , then the dimension of G/P equals that of Ru(P ) which is given by the number of elements
of uΘ.

Proof. Let P− be a parabolic k-subgroup of G which is opposite to P . From [6, 14.21 (iii), p. 198f] we
deduce that the product map in G induces a k̄-rational map Ru(P−)k̄ ×k̄ Pk̄ onto a k̄-open subvariety
of Gk̄. By [6, 21.11, p. 233f and 21.20, p. 240] we find that Ru(P ) and Ru(P−) are affine k-spaces, and
that G/P is a rational k-variety. It follows that dim G/P = dim Ru(P−) which equals the cardinality
of u−

Θ and hence of uΘ.

Let ∆ denote the set of vertices of the Dynkin diagram of Gk̄ and let ι = ιK :∆ → ∆K denote the
natural one-to-one correspondence.

3.3 Definition. Let k′ be a field extension of k contained in K and Θ ⊆ ∆. A parabolic subgroup P
of Gk′ is said to be of type Θ if PK is conjugate to Pι(Θ) in GK .

3.4 Remark.

i) The type of a parabolic subgroup is independent of the choice of the splitting field K. To see this,

let K1 be another splitting field of G which contains k′. Then any free composite K̃ of K,K1

over k′ is a splitting field of G as well. Hence, if T1 is a maximal split K1-torus of GK1
, then T

K̃

and (T1)K̃
are conjugate over K̃ by [8, Th. 4.21, p. 93]. This conjugation induces an isomorphism

i:X (TK) → X ((T1)K1
). Hence we obtain an ordered root system Φ(GK1

, T1) as the image of ΦK

under i, with basis i(∆K) as a set of simple roots of GK1
with respect to T1, and we have ιK1

= i◦ιK .
ii) For i = 1, 2, let ki be two field extensions of k, and let Pi be parabolic subgroups of Gki

. Then
P1, P2 are of the same type if and only if they are conjugate over some free composite of k1, k2.
This follows from i) by using splitting field extensions Ki ⊇ ki of G and from [8, Th. 4.13 c), p. 90].

iii) Because of i), we will henceforth identify ∆K with ∆. By ii), there is a one-to-one correspondence
of the subsets Θ ⊆ ∆ and the conjugacy classes of parabolic subgroups of GK for any splitting field
K.

iv) Following [32, 2.3, p. 39] we define the ∗-action of the Galois group Γ = Gal (ks/k) on ∆ = ∆ks

as follows. As G splits over ks, parabolic subgroups of every type are defined over ks and hence Γ
operates on the set of their conjugacy classes. Via iii) we get an induced action on ∆, if we restrict
this operation to the conjugacy classes of maximal parabolic subgroups of Gks

which are in obvious
one-to-one correspondence with the elements of ∆: The element corresponding to PΘ is the unique
one in ∆ \ Θ. This gives the wanted ∗-action. The permutation of ∆ corresponding to γ ∈ Γ will
be denoted by γ∗. The group G is of inner type if the ∗-action is trivial on ∆ and of outer type

otherwise.
v) Let S denote a maximal split k-subtorus of G contained in a maximal k-torus T of G. By i) we

may assume that Φ = Φ(Gks
, Tks

). The set of roots of ∆ which vanish on S is usually denoted by
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∆0, and the set of nontrivial restrictions of elements of ∆ to S is k∆. Hence we have the restriction
map res k : ∆ → k∆∪{0} with res−1

k (k∆) = ∆\∆0. The set ∆0 is the set of simple roots of DZ(S).
By 1.9 iii) G is quasi-split if and only if DZ(S) is trivial, which obviously is equivalent to ∆0 = ∅.
On the other hand, the pre-images of single elements of k∆ under res k are precisely the equivalence
classes of elements of ∆ \ ∆0 under the ∗-action of Γ [32, 2.5.1, p. 40]. Hence we can conclude: If
G is of inner type, then the map res k, restricted to ∆ \ ∆0, is injective. Moreover, if G is of inner
type and quasi-split, res k : ∆ → k∆ is a bijection, hence the derived group D(G) of G is split.

3.5 Lemma. There is a finite Galois extension kinn of k which is unique up to k-isomorphism with the
following properties:

i) The group Gkinn
is of inner type.

ii) Every field extension k′ of k such that Gk′ is of inner type contains a subfield isomorphic to kinn.

Proof. Clearly the subgroup Γ′ = { γ ∈ Γ | γ∗ = id } is normal of finite index in Γ = Gal (ks/k). Hence
its fixed field kinn is a finite Galois extension of k such that Gkinn

is of inner type. Let k′
s be a separable

closure of k′ containing ks. If Gk′ is of inner type, then the ∗-action of the Galois group Gal (k′
s/k′) on

∆ is trivial. Hence (cf. 3.4 iii), iv)) the ∗-action of Gal (k′ks/k′) ∼= Gal (ks/(k′ ∩ ks)) is trivial as well,
which implies kinn ⊂ k′ ∩ ks.

3.6 Theorem. Let kalg be the composite in ks of kinn and the generic splitting field of the maximal
central torus of G (cf. 2.3).

i) The free composite of kalg and a generic quasi-splitting field of G is a generic splitting field of G.
ii) Any splitting field of G contains a subfield k-isomorphic to kalg.

Proof. Let F be a field obtained from an generic quasi-splitting field L of G as in i). Since Gkalg
is,

by 3.5, of inner type and since it has a split maximal central torus, it follows from 3.4 v) that F is
a splitting field of Gkalg

and hence of G. Let k′ be a splitting field of G. Then there is a k- place

ϕ : L → k′ ∪ {∞}. Since kalg is algebraic over k and since kalg is contained in k′ by 3.5 ii) and 2.3 we
have a trivial kalg-place kalg → k′∪{∞} [38, Chap. VI.4, p. 13]. Thus ϕ can be extended to a kalg-place
F = L · kalg → k′ ∪ {∞}. This implies that F is generic and also proves ii).

3.7 Lemma.

(1) If Θ ⊆ ∆ is ∗-invariant, then there is a unique projective k-variety VΘ with the following property:
For any field extension k′ of k and any parabolic subgroup P ′ of Gk′ of type Θ one has VΘ ×k k′ ∼=
Gk′/P ′.

(2) For arbitrary Θ ⊆ ∆ the following conditions i) – iii) are equivalent.
i) There is a parabolic subgroup of G of type Θ.
ii) Θ is ∗-invariant and VΘ(k) 6= ∅.
iii) Θ is ∗-invariant and Θ ⊇ ∆0 = {α ∈ ∆ | res k(α) = 0} (cf. 3.4 v)).

Proof. (1) Let V denote the ks-variety given by the conjugacy class of parabolic subgroups of Gks
of

type Θ. By [8, 6.2 (3), p. 104], Θ is ∗-invariant if and only if V (ks) is Γ-stable. By [7, 8.4, p. 482],
the Γ-stability of V (ks) implies that V is defined over k. For any field extension k′ of k, let k̄′ denote
an algebraic closure of k′. Then, by [7, 7.2 (b), (i), p. 474], the set M = V (k̄′) is a homogeneous
(G, k)-set represented by a k-variety VΘ . Hence M is a homogeneous (Gk′ , k′)-set represented by the
k′-variety VΘ ×k k′ (cf. [7, 7.3, p. 475]). Let now P ′ be a parabolic subgroup of Gk′ of type Θ. Then
VΘ ×k k′ ∼= Gk′/P ′, since parabolic subgroups are self-normalizing. The uniqueness of VΘ now follows
from [7, 7.5 (i), p. 475].

(2) If i) holds then clearly Θ is ∗-invariant. Hence to prove the equivalence of i), ii), iii) we may
assume the ∗-invariance of Θ. For any field extension k′ of k, the set VΘ(k′) is the set of parabolic
subgroups in Gk′ of type Θ. This follows from [7, Prop. 7.6, p. 476] applied to the homogeneous (G, k)-
set M above. Therefore i) is equivalent to ii). The equivalence of ii) and iii) follows from [8, 6.3 (1),
p. 105] and [8, 6.8, p. 107].

3.8 Corollary. G is quasi-split if and only if G contains a parabolic k-subgroup of type Θ for every
∗-invariant subset Θ of ∆, and G is split if and only if it contains parabolic subgroups of every type and
its maximal central torus splits.

Proof. We recall from 3.4 v) that G is quasi-split if and only if ∆0 = ∅. Hence the equivalence of i)
and iii) in 3.7 says that every parabolic subgroup of ∗-invariant type occurs in the quasi-split case. The
converse is trivial, as ∅ is ∗-invariant and the type of a Borel subgroup.
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If G is split, then its maximal central torus splits and the ∗-action is trivial. It follows by the above
that G has parabolic subgroups of every type. Conversely, if this is true, then certainly the ∗-action is
trivial, G is quasi-split and therefore split by 3.4 v) if its maximal central torus splits.

Remark. Let Θ ⊆ ∆ be ∗-invariant. For a parabolic subgroup P of GK of type Θ the quotient GK/P
is a projective irreducible K-variety which defines, by 3.7, a k-variety VΘ such that VΘ ×k K ∼= GK/P .
We will say that GK/P is defined over k in spite of the fact that P is not necessarily defined over k.
Note that VΘ does not depend on the choice of the splitting field K.

3.9 Corollary. Let k′ and L be two field extensions of k such that k′ is a k-specialization of L. If P is
a parabolic subgroup of GL, then there is a parabolic subgroup of Gk′ of the same type as P . Moreover
we have the following:

i) rank (Gk′) ≥ rank (GL).
ii) Anisotropic reductive k-groups remain anisotropic under purely transcendental extensions of k.
iii) Every k-specialization of a splitting field of G is a splitting field of G.

Proof. By assumption, we have a k-place ϕ : L → k′ ∪ {∞}, and V (L) 6= ∅ with V being the quotient
L-variety GL/P . Clearly the type Θ of P is ∗-invariant with respect to the action of Gal (Ls/L). Since
Gal (Lkinn/L) ∼= Gal (kinn/(L ∩ kinn)), we find that Θ is ∗-invariant with respect to Gal (ks/k1), where
k1 := L ∩ kinn. Therefore V is defined over k1 by 3.7. The field k1 is finite separable over k and
consequently it is mapped isomorphically by ϕ onto a subfield of k′. Identifying this subfield with k1 we
obtain that ϕ is a k1-place, hence k′ is a k1-specialization of L. By 1.3 we obtain that V (k′) 6= ∅, hence
Gk′ contains a parabolic subgroup of type Θ.

We now prove i). Since G is an almost direct product of its maximal semisimple subgroup D(G)
and a torus [8, 2.2, p. 63], it suffices to prove that assertion for tori and for semisimple groups. The
statement for tori follows from 2.2 by induction on the dimension. If G is semisimple and P a minimal
parabolic subgroup of GL we find by the above that Gk′ contains a parabolic subgroup of the type of
P and hence a k′-split k′-torus whose rank equals rank (GL) (cf. [6, 20.6, p. 225]) which proves the
inequality.

ii) and iii) are immediate consequences of i).

3.10 Theorem. Let Θ ⊆ ∆ be ∗-invariant and let V := VΘ denote the corresponding k-variety as
described in 3.7. Then the function field k(V ) is a regular extension of k, and for every field extension
k′ of k the following statements are equivalent:

i) V (k′) 6= ∅.
ii) The free composite of k′ and k(V ) is a purely transcendental extension of k′.
ii′) There is a k-linear embedding k(V ) ↪→ k′(X1, . . . ,Xm) of k(V ) into a finitely generated purely

transcendental extension of k′.
iii) k′ is a k-specialization of k(V ).

Proof. It follows from 1.1 that k(V ) is regular.
“i) ⇒ ii)”: If V (k′) 6= ∅, then there is a parabolic subgroup Q of Gk′ of type Θ by 3.7. By 3.2 the

k′-variety Vk′
∼= Gk′/Q is rational over k′ which implies ii).

Clearly ii) implies ii′).
“ii′) ⇒ iii)”: There is a k′-place k′(X1, . . . ,Xm) → k′ ∪ {∞}, whose restriction to k(V ) gives a

k-place k(V ) → k′ ∪ {∞}, hence iii).
“iii) ⇒ i)”: k(V ) is the residue field at the generic point of V and hence V (k(V )) 6= ∅ (cf. [20, Chap.

II, §6, p. 161]). The assertion i) now follows from 1.3.

3.11 Theorem. The function field F := k(V∅) is a generic quasi-splitting field of G. If G is semisimple
of inner type, then F is a generic splitting field of G.

Proof. Clearly ∅ ⊆ ∆ is ∗-invariant, and ∅ is the type of a Borel subgroup B of GK . Hence V∅ is a
k-variety such that GK/B ∼= V∅ ×k K by 3.7. Since V∅(F ) 6= ∅, the field F is a quasi-splitting field of
G. If k′ is a quasi-splitting field of G, then V∅(k

′) 6= ∅ (by 1.5 ii)), hence k′ is a k-specialization of F by
3.10. Consequently F is a generic quasi-splitting field of G. By 3.4 v), every quasi-splitting field of an
inner type semisimple group is a splitting field of that group.

3.12 Corollary. Let L be a generic quasi-splitting field of G. Then k is algebraically closed in L, and
L does not split any nontrivial anisotropic k-torus of G.

Proof. Let F be the generic quasi-splitting field of G as defined in 3.11. If L is a generic quasi-splitting
of G, then there is a k-place L → F ∪ {∞} by Definition 1.5 iii). Since any algebraic extension of k in
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L possesses only trivial k-places (cf. [38, Chap. VI, §4, p. 13]) and since k is algebraically closed in F
by 1.1, it follows that k is algebraically closed in L. If L splits some k-torus T of G, then, by 2.1, the
k-algebraic elements of L already form a splitting field of T .

We now generalize the notion of a quasi-splitting field.

3.13 Definition. Let F be a field extension of k and let Θ ⊆ ∆.
i) F is a Θ-splitting field of G if GF contains a parabolic subgroup of type Θ.
ii) A Θ-splitting field F of G is said to be generic, if every Θ-splitting field of G is a k-specialization

of F .

3.14 Remark. It follows from 3.9, that every k-specialization of a Θ-splitting field of G is a Θ-splitting
field of G.

3.15 Examples.

i) A (generic) quasi-splitting field is a (generic) ∅-splitting field.
ii) The field k is a generic ∆-splitting field of G.
iii) For any ∗-invariant subset Θ ⊆ ∆ the function field k(VΘ) with VΘ as in 3.7 is a generic Θ-splitting

field of G as follows from 3.10.

3.16 Theorem. Let Θ ⊆ ∆ be any subset. Then there is a finite separable field extension kΘ of k,
contained in the field kinn of 3.5, with the following properties:

i) Every Θ-splitting field of G contains a subfield isomorphic to kΘ.
ii) Θ is invariant with respect to the ∗-action of the Galois group Gal (ks/kΘ).
iii) If VΘ denotes the kΘ-variety defined in 3.7, then the function field FΘ := kΘ(VΘ) is a generic

Θ-splitting field of G.
iv) The field FΘ is regular over k if and only if k = kΘ, hence if and only if Θ is invariant with respect

to the ∗-action of Gal (ks/k).

Proof. Let ΓΘ = {γ ∈ Gal (ks/k) | γ∗(Θ) = Θ} and let kΘ be its fixed field. Since kinn is the fixed field
of Γ′ = {γ ∈ Gal (ks/k) | γ∗ = id} and Γ′ ⊆ ΓΘ it follows that kΘ ⊆ kinn.

i) Let k′ be a Θ-splitting field of G. Let k′
s be a separable closure of k′ containing ks. By assumption

Gal (k′
s/k′) leaves Θ ∗-invariant. Hence Gal (k′ks/k′) ∼= Gal (ks/(k′ ∩ ks)) leaves Θ ∗-invariant, which

implies kΘ ⊆ k′ ∩ ks.
ii) This follows from the construction of kΘ.
iii) Since VΘ(FΘ) 6= ∅, Lemma 3.7 implies that FΘ is a Θ-splitting field of GkΘ

and hence of G. Let
k′ be a Θ-splitting field of G. By i) we may assume that k′ is a field extension of kΘ. Thus 3.10, “i) ⇒
iii)”, implies that k′ is a kΘ-specialization of FΘ, hence also a k-specialization of FΘ. This proves iii).

iv) By 1.1, the field FΘ is regular over kΘ. Since kΘ is algebraic over k, the first statement follows.
If k = kΘ, then Θ is invariant with respect to the ∗-action of Gal (ks/k) by ii). If the latter is true, then,
by 3.7, the variety VΘ is defined over k, and the function field k(VΘ) is a Θ-splitting field of G. By i) it
contains kΘ, which implies k = kΘ, since k(VΘ) is regular over k.

The following corollary illustrates the functorial behavior of the map Θ 7→ FΘ.

3.17 Corollary. Let Θ′ ⊆ Θ be a pair of subsets of ∆. Then the following is true.
i) If k′ is a Θ′-splitting field of G, then kΘk′ is a kΘ-specialization of FΘ.
ii) If FΘ is a Θ′-splitting field of G and if kΘ ⊆ kΘ′ , then FΘ is a generic Θ′-splitting field of G.
iii) If Θ is ∗-invariant and if FΘ is a quasi-splitting field of G, then it is a generic quasi-splitting field

of G.
iv) If FΘ is a splitting field of G, then it is a generic splitting field of G.

Remark. The assumption that Θ is ∗-invariant in 3.17 iii) is necessary. See the example after 5.4.

Proof of 3.17. i) After replacing k by kΘ we may assume that Θ is ∗-invariant, hence kΘ = k. By 3.7,
“i) ⇒ iii)”, we have ∆0 := {α ∈ ∆ | res k′(α) = 0} ⊆ Θ′. Since Θ′ ⊆ Θ, it follows that k′ is a Θ-splitting
field of G by 3.7, “iii) ⇒ i)”. Thus k′ is a k-specialization of FΘ by 3.15 iii).

ii) Let k′ be a Θ′-splitting field of G. Then kΘ ⊆ kΘ′ ⊆ k′ by assumption and 3.16 i). So i) implies
that k′ is a k-specialization of FΘ.

iii) This follows from ii) and 3.16 iv) for Θ′ = ∅.
iv) Let k′ be a splitting field of G. By 3.6 ii), k′ and especially FΘ both contain a copy of the Galois

extension kalg of k. Replacing k by kalg we may assume that G is of inner type by 3.5. Hence we may
apply iii) to find that k′ is a k-specialization of FΘ which yields iv).
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It seems to be natural to expect that Θ-splitting of any group G can be achieved by the corresponding
Θan-splitting of the anisotropic kernel Gan of G, where Θan is the appropriate set of vertices of the
Dynkin diagram of (Gan)k̄. The precise meaning of this statement is given in 3.18, 3.19. It essentially
is reflected by the fact that the generic Θ-splitting field of G is a purely transcendental extension of
the corresponding Θan-splitting field of Gan, hence these two fields are obviously equivalent in the sense
that they are k-specializations of each other. The reason for this is that Gan is given – up to a torus
part, cf. 1.9 – by a Levi-subgroup of a minimal parabolic subgroup Q of G and that G/Q is a rational
k-variety. This explains and generalizes an observation made by Roquette [23, Th. 4, p. 413], which will
be discussed in 4.10 below.

3.18 Theorem. Let Q be a parabolic k-subgroup of G of type ∆′ ⊆ ∆ and let L be a Levi k-subgroup
of Q. Consider ∆′ as a root basis of Lks

. Let Θ be a ∗-invariant subset of ∆. Let V (resp. V ′) denote
the projective k-varieties associated to Θ (with respect to G) (resp. to Θ′ (with respect to L)) according
to 3.7. Then k(V ) is isomorphic to a purely transcendental extension of k(V ′).

Proof. In L we choose a maximal k-torus T of G containing a maximal k-split k-torus S of G, such that
Z(S) ⊆ L (cf. [6, 20.6, p. 225]). In Gks

we choose a Borel subgroup B such that Tks
⊂ B ⊆ Qks

and
a parabolic subgroup P ⊆ Gks

of type Θ with B ⊆ P . We identify ∆ with the basis of a root system
Φ(Gks

, Tks
) such that the parabolic subgroups of Gks

containing B are those which are in standard
position. Hence especially Qks

and P are standard parabolic subgroups of Gks
. By [6, 21.13, p. 235],

the subgroup BL := B∩Lks
is a Borel subgroup of Lks

which we will use to define the standard position
of parabolic subgroups of Lks

.
Since Q is defined over k, its type ∆′ and hence also Θ′ is ∗-invariant. P∩Lks

is a parabolic subgroup
of Lks

by [6, 21.13, p. 235]. It is obviously in standard position. From [8, 5.20, p. 102] it follows that its
type is Θ′. We have Vks

:= V ×k ks
∼= Gks

/P and V ′
ks

:= V ′ ×k ks
∼= Lks

/(P ∩ Lks
) ∼= Qks

/(P ∩ Qks
).

The k-embedding L → G induces a ks-embedding ι : V ′
ks

→ Vks
by g(P ∩ Lks

) 7→ gP for g ∈ L(ks). By
construction, P = PΘ in Gks

and P ∩ Lks
= PΘ′ in Lks

.
We show that ι is Gal (ks/k)-equivariant: For σ ∈ Gal (ks/k) there is a unique wσ in the Weyl group

of Φ(Gks
, Tks

) such that wσσ(∆) = ∆. For any root α ∈ ∆ we then have wσσ(α) = σ∗(α) (cf. [32, 2.3,
p. 39]). Let nσ be a representative of wσ in the normalizer of T (ks) in G(ks). The orders defined on
X (Tks

) by ∆ and by σ(∆) induce the same order on X (Sks
). Therefore it follows from [8, 6.6, p. 107]

that nσ ∈ Z(S)(ks) ⊂ L(ks). Thus σPΘ = nσPσ∗(Θ)n
−1
σ and σPΘ′ = nσPσ∗(Θ′)n

−1
σ . Since the conjugacy

class gPg−1 identifies with the coset gP in V and similarly for V ′ we obtain by the ∗-invariance of Θ
and Θ′ that ι(σ(gPΘ′)) = ι(σg nσPΘ′) = σg nσPΘ = σg σPΘ = σ(gPΘ) = σ(ι(gPΘ′)) for any g ∈ L(ks) which
proves the Gal (ks/k)-equivariance of ι.

Hence ι is defined over k [6, AG.14.3, p. 31], i. e., it is obtained by base extension from a k-embedding
ι : V ′ → V . Let Q− and P− denote parabolic subgroups of G (resp. Gks

) which are opposite to Q and
P .

By [6, 14.21, p. 198], the product maps

Ru(P−) ×ks
P → Gks

, (Ru(P−) ∩ Lks
) ×ks

(P ∩ Lks
) → Lks

induce ks-isomorphisms of their pre-images onto open dense subvarieties of Gks
and Lks

. Hence we
obtain morphisms of ks-varieties

Ru(P−) → Vks
, Ru(P−) ∩ Lks

→ V ′
ks

which are ks-isomorphisms of their pre-images onto open dense subvarieties of Vks
and V ′

ks
. Also the

product map
(Ru(P−) ∩Ru(Q−

ks
)) ×ks

(Ru(P−) ∩ Lks
) → Ru(P−)

is an isomorphism of ks-varieties which can be seen as follows: By 3.1, we have

Ru(P−) = 〈 Uα | α ∈ u−
Θ 〉,

Ru(P−) ∩ Lks
= 〈 Uα | α ∈ u−

Θ ∩ 〈∆′〉 〉,
Ru(P−) ∩Ru(Q−

ks
) = 〈 Uα | α ∈ u−

Θ \ 〈∆′〉 〉,

where u−
Θ is the set of all negative roots which are not linear combinations of elements of Θ, and where

〈∆′〉 is the set of roots which are linear combinations of elements of ∆′. It follows from [6, 21.9 (ii), p. 232]
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that the three groups above are the direct span of their respectively generating groups Uα since each of
their underlying sets of roots α is closed in the sense that it contains the sum of each two of its elements
if this sum itself is a root. Therefore, as varieties, each of the above three groups is ks-isomorphic to an
affine space (cf. [6, 21.20 (i), p. 240]) and the product map induces a ks-isomorphism.

Hence we obtain the following commutative diagram of ks-morphisms, each of which is an isomor-
phism onto an open dense subvariety.

(Ru(P−) ∩Ru(Q−
ks

)) ×ks
(Ru(P−) ∩ Lks

) −→ Ru(P−)y
y

(Ru(P−) ∩Ru(Q−
ks

)) ×ks
V ′

ks
−→ Vks

Here the latter horizontal map is just given by (g, h(P ∩ Lks
)) 7→ ghP .

Let ψ = u−
Θ \ 〈∆′〉, so that Ru(P−) ∩ Ru(Q−

ks
) = 〈Uα | α ∈ ψ〉 as above. As Θ and ∆′ are both

∗-invariant, Ru(P−)∩Ru(Q−
ks

) is Gal (ks/k)-invariant and hence defined over k (cf. [6, AG.14.4, p. 32]).

Therefore we have a k-subvariety U of Ru(Q−) such that U ×k ks = Ru(P−) ∩ Ru(Q−
ks

). The image
of ψ under res k (cf. 3.4 v)) is a closed set of roots of G over k. Hence we conclude using [6, 21.20
(i), p. 240] that U is isomorphic, as a k-variety, to an affine k-space. Thus we obtain a morphism of
k-varieties U ×k V ′ → V which is an isomorphism onto an open and dense k-subvariety. Therefore
k(V ) ∼= k(U) ⊗k k(V ′), and since U is isomorphic to an affine k-space, the theorem is proved.

Let Q be a minimal parabolic k-subgroup of G, with Levi subgroup L and type ∆0 ⊆ ∆ (cf. 3.4
v)). Then, by 1.9, the derived group Gan of L is a semisimple anisotropic kernel of G. Let Θ ⊆ ∆ be
∗-invariant. As above, Θan := Θ∩∆0 is ∗-invariant and can be considered as a set of roots of Lks

and of
(Gan)ks

. If P is a parabolic subgroup of Gks
of type Θ then PL := P ∩ Lks

and Pan := P ∩ (Gan)ks
are

parabolic subgroups of type Θan of Lks
(resp. (Gan)ks

). Consequently, the associated quotient varieties
Gks

/P , Lks
/PL, (Gan)ks

/Pan are defined over k by 3.7. We denote the respective k-structures by VΘ,
VL,Θan

, VΘan
. Since L is the product of its maximal central torus and Gan, the natural k-embedding

Gan → L defines a ks-isomorphism (Gan)ks
/Pan → Lks

/PL which is Gal (ks/k)-equivariant. Therefore
it induces a k-isomorphism of the k-varieties VΘan

→ VL,Θan
(cf. [6, AG.14.3, p. 31]). Hence k(VΘan

) is
naturally isomorphic to k(VL,Θan

). By 3.18 we find that k(VΘ) is purely transcendental over k(VL,Θan
).

Hence we conclude:

3.19 Corollary. For any ∗-invariant Θ ⊆ ∆, the generic Θ-splitting field k(VΘ) of G is a purely tran-
scendental extension of the corresponding induced generic Θan-splitting field k(VΘan

) of the semisimple
anisotropic kernel Gan of G.

3.20 Example (Witt [37]). We first consider the case char(k) 6= 2 which has been investigated by Witt
and which is the origin of the theory of generic splitting.

Let a, b ∈ k∗ be such that D = (a, b) is a quaternion algebra over k, that is, an Azumaya algebra
over k of k-dimension 4. One can choose a k-basis {1, u, v, uv} of D such that the multiplication in D
is given by u2 = a, v2 = b, vu = −uv. Let G = SL1(D) be the kernel of the reduced norm Nred of D
over k restricted to the group GL1(D) of invertible elements. G is an anisotropic k-form of (SL2)k if D
is non-split. The Dynkin diagram of Gk̄ consists of a single vertex only, hence the only conjugacy class
of proper parabolic subgroups is given by the class of Borel subgroups, which can be represented, over
k̄, by the k̄-group B of upper triangular matrices of determinant 1.

Now G operates k-morphically and k-linearly on the affine k-space D by conjugation. This operation
gives an operation on the projective k-space P(D)k

∼= P
3
k. Let V denote the k̄-subvariety of nilpotent

lines of P(D)k̄. It is easily checked that G(k̄) operates transitively on V (k̄) and that B is the stabilizer
subgroup of the nilpotent line of V (k̄) represented by the matrix

(
0 1

0 0

)
∈ M2(k̄) ∼= D ⊗k k̄.

Hence V ∼= Gk̄/B. By 3.7 we know that V is defined over k, but we here will give an elementary
argument for this fact which will give us the equation with coefficients in k defining the complete curve
V . If x = ξ +η1u+η2v +η3uv ∈ D, then the reduced norm Nred and the reduced trace Sred are given by
the formulae Nred(x) = ξ2 − η2

1a− η2
2b + η2

3ab and Sred(x) = 2ξ. The variety of nilpotent elements of Dk̄

is defined by the equations Nred(x) = Sred(x) = 0. These are equivalent to ξ = 0 and η2
1a + η2

2b = η2
3ab.
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Hence a defining equation for k(V ) is given by X2a + Y 2b = ab. This is the function field associated to
D = (a, b) by Witt [37, p. 464].

The field k(V ) is isomorphic to F := k(Z)(y) with an indeterminate Z and y =
√

aZ2 + b (with
X = b/y, Y = aZ/y, and y = b/X, Z = bY/aX). If D splits over k, then clearly F is a splitting
field of G. So let D be non-split. Since Dk(Z)

∼= (−a/b, aZ2 + b), we may assume that F is a maximal
commutative subfield of Dk(Z). We then obtain a maximal anisotropic k(Z)-torus T in Gk(Z) defined
as the kernel of Norm F/k(Z) (restricted to the invertible elements) (cf. 2.4). The torus T is not defined
over k. It splits over F and hence F is a splitting field of G.

Every splitting field of G is a splitting field of D and vice versa. If now L is such a splitting field,
then, over L, the element b is a norm from the L-algebra L[X]/(X2 − a) (cf. [19, Th. 15.7, p. 149]),
hence there are elements ξ1, ξ2 ∈ L such that ξ2

1 = aξ2
2 + b. We then have a k-place ϕ:F → L ∪ {∞}

with ϕ(Z) = ξ2 and ϕ(y) = ξ1. Hence F is a generic splitting field of G.
We now assume char(k) to be arbitrary. Then for a, b ∈ k with b 6= 0 we obtain a quaternion

k-algebra D with k-basis {1, u, v, uv} and multiplication defined by u2 = u + a, v2 = b, vu = (1 − u)v
which is a full 2×2-matrix ring over k if and only if the equation b = ξ2 +ξη−aη2 has a solution ξ, η ∈ k
[1, Th. 26, p. 146], or equivalently, if b is a norm from the separable extension k[X]/(X2 − X − a).

It is easily checked that the reduced norm and trace of D for x = ξ + η1u + η2v + η3uv ∈ D is given
by the formulae Nred(x) = ξ2 + ξη1 − η2

1a− (η2
2 + η2η3 − η2

3a)b and Sred(x) = 2ξ + η1. As above, we get
the variety V ∼= Gk̄/B of nilpotent lines of Dk̄ by the equations Nred(x) = Sred(x) = 0.

If char(k) = 2, these equations are equivalent to the k-equation ξ2b + η2
2 + η2η3 + η2

3a = 0. By [28,
XIV, §5, Example, p. 221] this is the homogeneous equation defining the Severi-Brauer variety associated
to D.

4. Generic splitting of Azumaya algebras over fields

Let A be an Azumaya algebra over an infinite field k, that is, A is a finite dimensional central simple
k-algebra, and, by Wedderburn’s theorem, there is a unique integer r ≥ 0 and a central division algebra
D over k which is unique up to k-isomorphism such that A ∼= Mr+1(D). Let d = ind (A) denote the
index of A (that is, dim kD = d2), and let n be defined by

n + 1 = d(r + 1).

Then the semisimple k-group G := SLr+1(D) has the k-rank r and the absolute rank n (cf. [6, 23.2,
p. 254f]).

Let K be a splitting field of G. We then have GK
∼= SLn+1,K , and a maximal K-split torus T of

GK is given by the set of diagonal matrices

t = diag (t1, t2, . . . , tn+1) :=




t1 0 . . . 0
0 t2 . . . 0
...

...
. . .

...
0 0 . . . tn+1


 with det(t) = 1 .

A basis ∆ of the root system Φ(GK , T ) is given by the K-rational characters αi(t) := ti t
−1
i+1, for

i = 1, . . . , n, and its Dynkin diagram is given by

◦
α1

◦
α2

· · · ◦
αn

.

Since G is of inner type 1An we have a k-variety VΘ for any subset Θ ⊆ ∆ by 3.7. The function
field FΘ = k(VΘ) has the properties described in 3.10 and is a generic Θ-splitting field of G by 3.16.

4.1 Theorem. Let {αi1
, . . . , αil

} = ∆ \ Θ for Θ ⊆ ∆. Then, for every field extension k′ of k, we have
VΘ(k′) 6= ∅ if and only if ind (A ⊗k k′) divides gcd (d, i1, . . . , il).

Proof. It suffices to show the equivalence for the case k′ = k. Using the description of the relative
Dynkin diagram of 1An as given in [32, Table II, p. 55] we see that ∆ \ ∆0 = {αd, α2d, . . . , αrd} with
∆0 as in 3.4 v). It follows that d | gcd (d, i1, . . . , il) if and only if ∆ \ Θ ⊆ ∆ \ ∆0. However, the latter
condition is equivalent to VΘ(k) 6= ∅ by 3.7, “iii) ⇔ ii)”.
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4.2 Corollary.

i) Let L and k′ be two field extensions of k such that k′ is a k-specialization of L. Then ind (A ⊗k k′)
divides ind (A ⊗k L).

ii) For d = ind (A) and i1, . . . , il as in 4.1 we have ind (A ⊗k FΘ) = gcd (d, i1, . . . , il).
iii) Let i divide d. Then there is a parabolic subgroup P of Gks

such that V = Gks
/P is defined over

k and that ind (A ⊗k k(V )) = i. Every field extension k′ of k with ind (A ⊗k k′) dividing i is a
k-specialization of k(V ). A possible choice is P = P∆i

for ∆i = ∆ \ {αi}.
Proof. i) For i = 1, . . . , n let Vi := V∆i

with ∆i = ∆\{αi}, and let Fi := k(Vi). It follows from 4.1 that,
for any extension k1 of k, the set of all j ∈ {1, . . . , n} with Vj(k1) 6= ∅ consists precisely of the multiples
of ind (A ⊗k k1). Applying this to the fields L, k′ yields i), since Vj(L) 6= ∅ implies Vj(k

′) 6= ∅ by 1.3.
ii) We have VΘ(FΘ) 6= ∅ which implies ind (A ⊗k FΘ) | g := gcd (d, i1, . . . , il) by 4.1. Let p be a

prime dividing g and ps the highest power of p which divides g. It suffices to show that ps divides
ind (A ⊗k FΘ). There is finite separable field extension k′ of k such that ps = ind (A ⊗k k′) (cf. [22, 14.4,
Lemma b, p. 260]). Thus 4.1 and 3.10 yield that k′ is a k-specialization of FΘ. Now i) implies that ps

divides ind (A ⊗k FΘ).
iii) For P = P∆i

the first statement follows immediately from ii). The second statement follows
from 4.1 and 3.10.

The generic splitting field k(V∅) of G (cf. 3.11) is of transcendence degree n(n + 1)/2 (apply 4.4
below with Θ = ∅). If n > 1, then there are generic splitting fields of G of smaller transcendence degree,
as follows from 4.3 and 4.4.

4.3 Corollary. If the greatest common divisor of i1, . . . , il and d is 1 then the function field FΘ := k(VΘ)
is a generic splitting field of G = SLr+1(D) .

Proof. By 4.2 ii) we find that FΘ is a splitting field of A and hence of G. Cor. 3.17 iv) now implies that
FΘ is a generic splitting field of G.

4.4 Proposition. For Θ ⊂ ∆, let VΘ be the corresponding k-variety as defined in 3.7. If {αi1
, . . . , αil

} =
∆ \ Θ with i1 < · · · < il and if i0 := 0, then

dim VΘ =
l∑

j=1

(ij − ij−1)(n + 1 − ij).

Moreover, VΘ ×k K is isomorphic, as a K-variety, to the projective variety Flag Θ(Kn+1) of flags of
subspaces of the (n + 1)-dimensional affine K-space {0} = U0 ⊂ U1 ⊂ · · · ⊂ Ul with dim KUj = ij for
j = 0, . . . , l.

Proof. Let {e1, . . . , en+1} denote the standard basis of Kn+1. The group GK
∼= (SLn+1)K operates

K-morphically and transitively on Flag Θ(Kn+1), and the stabilizer subgroup P of the flag

{0} = U0 ⊂ U1 ⊂ · · · ⊂ Ul, Uj = Ke1 ⊕ · · · ⊕ Keij
⊆ Kn+1, for j = 1, . . . , l

is defined by the matrices in SLn+1(K) of shape (Ajj′)j,j′=1,...,l+1. Here Ajj′ is an (ij−ij−1)×(ij′−ij′−1)-
matrix for j, j′ = 1, . . . , l + 1, where we define il+1 := n + 1, and Ajj′ = 0 for j > j′. Since P contains
the Borel subgroup B of GK defined by the upper triangular matrices, it is a parabolic subgroup of
GK . The dimension of its unipotent radical Ru(P ) is equal to the sum of the number of entries of all
matrices Ajj′ for j < j′. By 3.2, this yields the right hand side of the formula for the dimension of VΘ.

By 3.1, the reductive part of PΘ is the centralizer Z(TΘ) in GK of the K-torus

TΘ :=




n⋂

ν=1,ν 6=i1,...,il

Ker (αν)




◦

.

Hence TΘ(K) consists of diagonal matrices

t = diag (ti1 , . . . , ti1︸ ︷︷ ︸
i1 times

, ti2 , . . . , ti2︸ ︷︷ ︸
i2−i1 times

, . . . , til+1
, . . . , til+1︸ ︷︷ ︸

il+1−il times

)

with det(t) = 1 and il+1 = n + 1. Now it is easily checked that the Levi subgroup of P is the centralizer
Z(TΘ) of TΘ in GK . Therefore we obtain

P = Z(TΘ)Ru(P ) = Z(TΘ) · B = Z(TΘ)Ru(PΘ) = PΘ

by 3.1. Hence P = PΘ, which proves 4.4, since GK/P ∼= Flag Θ(Kn+1).
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We now restrict our attention to proper maximal subsets of ∆. Set

Θ := ∆i := ∆ \ {αi}, Vi = V∆i
, Fi := k(Vi)

for i ∈ {1, . . . , n}. The following corollary is a direct consequence of 4.4.

4.5 Corollary. For i = 1, . . . , n we have dim Vi = i(n + 1− i), and Vi is, as a K-variety, isomorphic to
the Graßmann variety Grass i(K

n+1).

4.6 Corollary. For i = 1, . . . , n the equality ind (A ⊗k Fi) = gcd (d, i) holds, and for every field ex-
tension k′ of k we have Vi(k

′) 6= ∅ if and only if ind (A ⊗k k′) divides i. In particular, Fjd is a purely
transcendental extension of k for j = 1, . . . , r.

Proof. The equality holds by 4.2, the rest of 4.6 follows from 4.1 and 3.10.

As it was mentioned in [4, p. 103], the generalized Severi-Brauer varieties described there are
precisely the k-forms of the Graßmann varieties from 4.5, except in the case 2 | (n+1) and i = (n+1)/2,
where also an outer form of Grass i(k

n+1) exists. This will naturally occur in the theory of the generic
splitting of special unitary groups of type 2An which will be discussed in §6 (cf. 6.5).

4.7 Corollary. For every field extension L of k, the following statements are equivalent:
i) L is a splitting field of G.
ii) V1 ×k L ∼= P

n
L.

iii) V1(L) 6= ∅.
The statements i), ii), iii) remain equivalent if V1 is replaced by Vn in ii) and iii).

Proof. The statement i) implies ii) by 4.4. Obviously, ii) implies iii). If iii) holds, then dL := ind (A ⊗k L) | 1
(resp. n) by 4.6. Since dL | (n + 1), it follows in both cases that L is a splitting field of A and hence of
G.

4.8 Remark. i) Since the separable closure ks is a splitting field of G (cf. 1.7 iii)) it follows from 4.7
that Vi ×k ks

∼= P
n
ks

for i = 1, n, hence V1 and Vn are n-dimensional Severi-Brauer varieties over k [28,
Chap. X, §6, p. 168]. More generally, all Vi for i = 1, . . . , n are isomorphic to “generalized Severi-Brauer
varieties” introduced in 1976 by Heuser (for i | (n + 1)), [12, p.30, 46], and later (1991) for all i by
Blanchet [4, p. 100, 102] and Schofield/v. d. Bergh [26]. The generalized Severi-Brauer varieties are the
varieties Wi of rank i left ideals of A in [12] and [26] (and right ideals in [4]). Using the isomorphism
A⊗k K ∼= Mn+1(K), one verifies similarly as in the proof of 4.4 that GK operates transitively on Wi and
that P∆i

stabilizes a rank i left ideal of Mn+1(K) under left multiplication. Hence Wi
∼= GK/P∆i

= Vi

for i = 1, . . . , n. (Note that P∆i
are precisely the proper maximal parabolic subgroups of GK .) It follows

that the fields Fi are the generic partial splitting fields of A, introduced by Heuser [12, Def. 7, p. 22
and p. 63], Blanchet [4, Def. 3 and Th. 2, p. 103] and Schofield/v. d. Bergh [26, Sec. 3]. The statement
ind (A ⊗k Fi) = gcd (d, i) and the equivalence of 4.6 was proved by Heuser [12, p. 73, p. 43], Blanchet [4,
Th. 3, p. 104, Prop. 3, p. 103] and Schofield/v. d. Bergh [27, Th. 2.5]. Blanchet and Schofield/v. d. Bergh
also proved the equivalence of “i)” and “ii)” of 3.10 for the special case V = Vi.

ii) The assertion ind (A ⊗k Fi) = gcd (d, i) with Fi = k(Vi) in 4.6 shows a significant difference in
the behavior of the generic splitting of Azumaya algebras and that of quadratic forms as discussed in
the next paragraph (cf. 5.8).

4.9 Remark. Taking i = 1 (or i = n) we obtain from 4.6, 4.7 and 3.10 the results of Amitsur [2, 9.1,
p. 26] (see also [3, Th. 2, p. 1]), which were later proved by Roquette [23, Th. 2, p. 413] with methods
from Galois cohomology and which generalize the result of Witt on quaternion algebras (cf. Example
3.20).

Amitsur also showed that the automorphism group of F over k is isomorphic to A∗/k∗. This
can be shown in the following way: The automorphism group of V1 is certainly a k-form of the group
(PGLn+1)k which is isomorphic to (GLn+1)k modulo its center C((GLn+1)k). Obviously it contains
the group GL1(A)/C(GL1(A)) ∼= GLr+1(D)/C(GLr+1(D)) which is a k-form of the group above. For
dimension reasons, this is already the full automorphism group of V1. But its k-rational points are just
given by A∗/C(A∗) ∼= A∗/k∗.

The corollary in [3, p. 3] characterizes splitting fields K of A by the condition that k(V1) is contained
in a purely transcendental extension of K. This condition is, by 3.10, equivalent to V1(K) 6= ∅, hence
the assertion of the corollary follows from 4.6.
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4.10 Remark. In [23, p. 424f], Roquette associates to every Galois-2-cocycle γ ∈ H2(Gal (K/k),K∗)
(where K is a finite Galois extension of k), and every multiple m of its Schur index d a “Brauer field”
Fm(γ) of transcendence degree m − 1 over k.

In our terminology, the cocycle γ defines a central k-division algebra D of index d, the multiple m
of d is just n + 1 = (r + 1)d. These data define the semisimple group G = SLr+1(D), and the Brauer
field Fm(γ) defined by Roquette is precisely the function field k(V1), where V1 is a Severi-Brauer variety
satisfying GK/P∆1

= V1 ×k K. Clearly we hereby obtain an infinite series of generic splitting fields of
D as r ranges over all non-negative integers. It can easily be deduced from 3.18 that, for m′ ≤ m, the
field Fm(γ) is a purely transcendental extension of the field Fm′(γ), which is the content of [23, Th. 4,
p. 413]. In particular, all the fields Fm(γ) are purely transcendental over the smallest one, F1(γ), which
is isomorphic to the generic splitting field of Gan as constructed in 3.19, since the semisimple anisotropic
kernel of SLr+1(D) is a direct product of r + 1 copies of SL1(D).

5. Generic splitting of quadratic forms

Let k be an infinite field with char(k) 6= 2 and let (M, q) be a regular quadratic k-space of dimension m,
that is, M is an m-dimensional k-vector space and q is a quadratic form with nondegenerate associated
bilinear form ( , ) such that q(x + y) = q(x) + q(y) + (x, y) holds for all x, y ∈ M . The discriminant
d(M) of (M, q) is defined to be the square class (−1)[m/2] det((ui, uj)i,j=1,...,m)k∗2 ∈ k∗/k∗2. (Here
{u1, . . . , um} denotes a k-basis of M .) We have a Witt decomposition of M into mutually orthogonal
subspaces

M =

(
r

⊥
i=1

Hi

)
⊥ Man

where Hi is a hyperbolic plane for i = 1, . . . , r and (Man, qan) with qan := q|
Man

is a maximal anisotropic

subspace of (M, q) which is unique up to k-isometry and is called an anisotropic kernel of the quadratic
space (M, q). The integer r ≥ 0 is the Witt index of (M, q), and we have m = 2r + dim k Man and
d(M) = d(Man). It is convenient to choose a k-basis {e1, . . . , em} of M as follows. For i = 1, . . . , r,
let {ei, em−i+1} ⊂ M be a basis of Hi such that q(ei) = q(em−i+1) = 0, (ei, em−i+1) = 1, and let
{ei | i = r + 1, . . . ,m − r} be any basis of (Man, qan). A basis like this we will call a Witt basis of
(M, q). We mention that {e1, . . . , er} (as well as {em−r+1, . . . , em}) generate a maximal totally isotropic
subspace of (M, q).

Let G := SO(q) be the special orthogonal group of (M, q). If m = 2, then G is a k-torus and its
generic splitting field is described in 2.3 and 2.5. Hence we now assume m ≥ 3. This implies that G is
semisimple. The following proposition is obtained from [6, 23.4, p. 256f] and Definition 1.8.

5.1 Proposition. Let (M, q) be a regular quadratic k-space of Witt index r. Then r is the rank of
G = SO(q), and a maximal k-split k-torus S of G is given, with respect to a Witt basis {ei} of (M, q),
by the diagonal matrices

s = diag (s1, . . . , sr, 1, . . . , 1, s−1
r , . . . , s−1

1 ) ∈ GL(M), s1, . . . , sr ∈ k∗.

A reductive anisotropic kernel of G is given by Gan = SO(qan), where (Man, qan) is the anisotropic kernel
of (M, q). More precisely, we have Z(S) = S×k Gan, and Gan is semisimple if and only if dim k Man ≥ 3,
and is an anisotropic k-torus of rank 1 if and only if dim k Man = 2, in which case G is quasi-split but
not split. G is split over k if and only if dim k Man ≤ 1.

Let K be any splitting field of G. Then the rank of GK is n := [m/2]. We modify the Witt basis
given above over k into one over K by setting e′i = ei for i 6∈ {r + 1, . . . ,m − r} and by replacing
the basis ei of Man for i = r + 1, . . . ,m − r by a Witt basis e′i of (Man ⊗k K, qan ⊗k K) such that
q(e′i) = q(e′m−i+1) = 0, (e′i, e

′
m−i+1) = 1 for i = r + 1, . . . , n. Let T be the K-torus of GK which is given

with respect to the new basis by the diagonal matrices

t = diag (t1, . . . , tn, 1̂, t−1
n , . . . , t−1

1 ) ∈ GL(M ⊗k K), t1, . . . , tn ∈ K∗.

(Here the symbol 1̂ means that the component 1 occurs (resp. does not occur) in the middle according
as m being odd (resp. even).) Then, by the above, T is a maximal torus of GK which splits completely
and contains SK .
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A basis ∆ of the root system Φ = Φ(GK , T ) is given by the K-rational characters αi(t) := ti t
−1
i+1,

for i = 1, . . . , n − 1, and, in addition,

αn(t) =

{
tn, if m is odd, i. e., G is of type Bn;
tn−1tn, if m is even, i. e., G is of type Dn.

The Dynkin diagram of GK is, respectively, given by

◦
α1

◦
α2

· · · ◦
αn−1

> ◦
αn

in case Bn

and

◦
α1

◦
α2

· · · ◦
αn−2

◦ αn−1

¡
@◦ αn

in case Dn.

If m is odd or d(M) = 1, then G is of inner type, while G is of outer type 2Dn for m even and
d(M) 6= 1. [32, 2.3, p. 39 and Table II, p. 56f].

For i = 1, . . . , n, define standard parabolic subgroups of GK by

Pi = P∆i
, where ∆i :=

{
∆ \ {αi} if G is of inner type or i ≤ n − 2;
∆ \ {αn−1, αn} if G is of outer type and i = n − 1.

(Intentionally, we leave Pn undefined in the outer type case.) Then Pi is, for every i, a proper parabolic
subgroup of GK such that GK/Pi

∼= Vi ×k K for some k-variety Vi and such that Pi is maximal with
this property. This follows by 3.7, since in the outer type case, the subset {αn−1, αn} ⊂ ∆ is the only
equivalence class under the ∗-action which contains more than one element [32, Table II, p. 57]. Also we
have Pi ⊃ B = P∅ = 〈T,Uα | α ∈ ∆〉, and B is the stabilizer of the complete isotropic flag of K-spaces
given by Ui = Ke′1 ⊕ · · · ⊕ Ke′i for i = 1, . . . , n.

5.2 Lemma. Let i ∈ {1, . . . , n} if G is of inner type, and i ∈ {1, . . . , n − 1} otherwise.
i) Let the Witt index of (M,q) be at least i. Then Pi is a k-parabolic subgroup of G. Moreover, the

k-variety Ii of i-dimensional totally isotropic k-subspaces of M is equal to Vi except when G is of
inner type Dn and i ≥ n − 1, in which case M splits totally and In equals Vn−1 ∪ Vn.

ii) Conversely, if there is a parabolic k-subgroup of type ∆i, then there is a totally isotropic subspace
U of M of dimension greater than or equal to i, hence the Witt index of (M, q) is at least i.

Proof. i) By Witt’s cancellation theorem on quadratic forms, the operation of G on Ii is transitive unless
we are in the exceptional case where In has two orbits.

For the Witt basis {e1, . . . , em}, the k-subspace U = ke1 ⊕ · · · ⊕ kei of M is totally isotropic and
U⊗k K = Ui, hence the stabilizer subgroup PU of U is a k-subgroup of G such that PU,K ⊃ B. Therefore
it is a parabolic k-subgroup of G.

The group PU (k) consists of matrices (Ajj′)j,j′=1,2,3 where A11, A33 are i × i-matrices, while A22

is a (m − 2i) × (m − 2i)-matrix and Ajj′ = 0 for j > j′. From the definition of the Witt basis, we

conclude the identities A33 = IA−t
11 I and Q = At

22QA22. Here I denotes the i × i-matrix with 1’s in
the antidiagonal and zero elsewhere, while Q is the matrix describing the bilinear form on the subspace
M0 generated by ei+1, . . . , em−i. This implies that A33 is uniquely determined by A11 ∈ GLi(k) with
det(A33) = det(A11)

−1 and that A22 ∈ G0(k), where G0 := SO(M0, q|M0
). Hence PU has a Levi

k-subgroup isomorphic to GLi × G0 given by the matrices




A11 0 0
0 A22 0
0 0 IA−t

11 I


 .

The torus T∆i
=

(⋂
α∈∆i

Ker (α)
)◦

is a k-torus and given by the diagonal matrices

diag (t1, . . . , ti, 1, . . . , 1, t−1
i , . . . , t−1

1 )

with t1 = · · · = ti except when G is of type Dn and i ≥ n−1, in which case T∆i
is given by the matrices

diag (t1, . . . , tn−1, ∗, ∗, t−1
n−1, . . . , t

−1
1 )
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with t1 = · · · = tn−1, where ∗, ∗ denotes entries which show up as diagonal elements only over a splitting
field of G and which, otherwise, have to be replaced by 2 × 2 matrices which represent an anisotropic
torus.

Now it is easily checked that, in any case, the Levi subgroup of PU is the centralizer of T∆i
in G.

Hence PU,K = (Z(T∆i
)Ru(PU ))K = Z(T∆i

)K · B = Z(T∆i
)K · Ru(Pi) = Pi by 3.1. This proves i).

ii) Applying the arguments above to the pair K,K instead of k,K we find that the existence of a
parabolic k-subgroup of type ∆i implies the existence of a totally isotropic k-subspace U of dimension
i in M .

By 3.15 iii) the function field Fi = k(Vi) is a generic ∆i-splitting field of G.

5.3 Theorem. Let i ∈ {1, . . . , n} if G is of inner type, and i ∈ {1, . . . , n − 1} otherwise. The field
Fi = k(Vi) is a generic field for splitting off at least i hyperbolic planes from the underlying quadratic
space. Namely, (M ⊗k Fi, q ⊗k Fi) has the Witt index ≥ i, and for every field extension L of k the
quadratic space (M ⊗k L, q ⊗k L) has the Witt index ≥ i if and only if L is a k-specialization of Fi.

Proof. Since Vi(Fi) 6= ∅ it follows from 5.2 ii) that (M ⊗k Fi, q ⊗k Fi) has the Witt index ≥ i. By 5.2
and 3.10 we have: (M ⊗k L, q⊗k L) has the Witt index ≥ i if and only if Vi(L) 6= ∅, and the latter holds
if and only if L is a k-specialization of Fi.

If G is of outer type, there is no regular extension of k which splits (M,q) totally (that is, gives the
maximal Witt index); this follows from 3.5.

5.4 Corollary. If G is of inner type, then k(V∅) and Fn are generic splitting fields of G. If G is of inner
type and m is even, then also Fn−1 is a generic splitting field of G. If G is of outer type, then k(V∅) and

Fn−1 are generic quasi-splitting fields of G, and the fields k(
√

d(M)) · Fn−1 and k(
√

d(M)) · k(V∅) are
generic splitting fields of G.

Proof. It follows from 3.11 that k(V∅) is a generic quasi-splitting field of G and that this is a generic
splitting field if G is of inner type. In that case also Fn is a generic splitting field which is obvious from
5.1, 5.3, and 3.17 iv). If G is of inner type and m is even, then the discriminant of (M, q) is 1. Hence if L
is a field extension of k such that the Witt index of (M ⊗k L, q⊗k L) is ≥ n−1, then M ⊗k L ∼= H ⊥ M ′

with a hyperbolic L-space H and a regular L-space M ′ of dimension 2 and discriminant 1, which therefore
is a hyperbolic plane. Hence GL splits. The last statement follows from 3.6 in combination with 3.17,

since for n ≥ 3 the field kalg of 3.6 coincides with k(
√

d(M)).

Example. To clarify the situation in the case of a non-∗-invariant Θ we take m even and Θ =
{α1, . . . , αn−1}. This is, in the outer type case, not ∗-invariant, and FΘ ⊇ kΘ = k(

√
d(M)) (cf. 3.16).

Clearly GkΘ
is of inner type, FΘ is a splitting field of GkΘ

by 5.4 and hence also of G. Of course FΘ is
then a fortiori a quasi-splitting field of G. However, it is not a generic quasi-splitting field of G by 3.12,
since k is not algebraically closed in FΘ.

5.5 Corollary. The transcendence degree of Fi is given by the following formulae:

trdeg Fi =





i(4n − 3i + 1)/2 if m is odd, 1 ≤ i ≤ n;
i(4n − 3i − 1)/2 if m is even, 1 ≤ i ≤ n − 2;
n(n − 1)/2 if m is even, G is of inner type, n − 1 ≤ i ≤ n;
(n + 2)(n − 1)/2 if m is even, G is of outer type, i = n − 1;

trdeg k(V∅) =

{
n2 if m is odd;
n(n − 1) if m is even.

There is an increasing sequence of (non-canonical) k-linear embeddings

F1 ↪→ · · · ↪→ Fi ↪→ Fi+1 ↪→ · · · ↪→ Fn′ ↪→ k(V∅)

with n′ = n or n − 1 according as G is inner or not.

Proof. By 3.2, the dimension of Vi is the cardinality of u∆i
. This can be computed by using the explicit

descriptions of the root systems of types Bn and Dn as given in [10, p. 252 and p. 256] or [33, p. 30, p. 35].
(Note: The description of positive roots of Dn in [10, p. 256] is erroneous. For a correct description
cf. [33, p. 35].)
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By 5.3, Fi+1 splits off at least i + 1 hyperbolic planes of (M, q). Hence Vi(Fi+1) 6= ∅ by 5.2. Thus,
by 3.10, there is a k-linear embedding of Fi into a purely transcendental extension of Fi+1. By the above
we have trdeg Fi+1 ≥ trdeg Fi, hence it follows from [24, Lemma 1, p. 209] that there is a k-linear
embedding Fi ↪→ Fi+1. A similar argument gives the k-linear embedding Fn′ ↪→ k(V∅). Alternatively,
we here can use the natural map induced by the inclusion B ↪→ Pn′ for a proper choice of a Borel group
B.

5.6 Corollary. We have F1 = k(V1)
∼= k(q)0, where k(q)0 is a generic zero field as defined by Knebusch

[16, 3.2, p. 69, and p. 71].

Proof. V1 is, by 5.2, the variety of the isotropic lines in M , which can be defined by the equation q(x) = 0
for x ∈ M .

5.7 Corollary. Let i = 1, . . . , n′ where n′ = [m/2] or [m/2]−1 according as G is of inner or outer type.
Assume L is an arbitrary field extension of k. Then (M ⊗k L, q ⊗k L) is of index ≥ i if and only if the
free composite Fi · L is purely transcendental over L. In particular, (M, q) is of index ≥ i if and only if
Fi is a purely transcendental extension of k.

This follows from 5.3 and 3.10. Corollary 5.7 was obtained by Knebusch for i = 1 [16. 3.8 and 3.10,
p. 72].

5.8 Remark. It is easily seen that a suitable subsequence {Fij
} of the sequence {Fi} in 5.3 is a so-called

generic splitting tower as originated by Knebusch [16, §5, p. 78]: Let n′ = n if G is of inner type and
let n′ = n − 1 otherwise. We define ij inductively. Let i0 = 0 and Fi0

:= k. If ij ≤ n′ is defined let
ij+1 ∈ {1, . . . , n′} be the smallest number such that the Witt index of (M ⊗k Fij+1

, q ⊗k Fij+1
) is bigger

than that of (M ⊗k Fij
, q ⊗k Fij

). In the inner case the sequence Fij
, j ≥ 1, is a generic splitting tower.

If G is of outer type and F := Fij′
is the last element of this sequence, then the anisotropic kernel of

(M ⊗k F, q ⊗k F ) is a binary form, hence its special orthogonal group is an anisotropic F -torus which

is generically split by the field F (
√

d(M)) (cf. 2.4). In this case we define Fij′+1
:= F (

√
d(M)) as the

last element of the sequence.
Knebusch gives in [16, Example 5.7, p. 80] an example of an anisotropic form of arbitrary dimension

together with a generic splitting tower {Ki} such that every layer splits off precisely one hyperbolic plane.
Clearly, for such a form, the sequence {Fi} is also a generic splitting tower. We have K1 = F1, however,
for i > 1, the transcendence degree of Ki exceeds that of Fi by i(i − 1)/2 if m is odd or i ≤ n − 2, and
if m is even and i = n − 1, by (n − 1)n/2 in the inner case and by (n − 1)(n − 2)/2 in the outer case.

On the other hand it is easy to see that there are forms for which the sequence {Fi} degenerates
completely in the sense that F1 already is a generic splitting field of SO(ϕ). For example, any Pfister
form ϕ has the property that it is hyperbolic already if it is isotropic [25, 4, Cor. 1.5, p. 144]. This
implies that all the associated fields Fi are k-specializations of each other. Since the special orthogonal
group SO(ϕ) is of inner type if the dimension of ϕ is ≥ 4 (the discriminant of a Pfister form of dimension
≥ 4 is 1), it follows from 3.17 iii) that the Fi are all generic splitting fields of SO(ϕ).

As has also been observed by Knebusch, a generic zero field of any orthogonal summand ψ of a
Pfister form ϕ with dim ψ = (dim ϕ)/2 + 1 is a generic splitting field of SO(ϕ).

This seems to indicate that in general it might be difficult to find a generic splitting field with
minimal transcendence degree for an arbitrary reductive group.

As a consequence of Theorem 5.3 we obtain a corollary which can be also derived from [16, Th. 3.3,
p. 69] by using a generic splitting tower of Knebusch (cf. [25, 4. Cor. 6.10, p. 160]).

5.9 Corollary. Let L be an arbitrary field extension of k. If i > 0 is the Witt index of (M ⊗k L, q⊗k L),
then i is the Witt index of (M ⊗k Fi, q ⊗k Fi).

Proof. The field L is a k-specialization of Fi by 5.3. However, L is not a k-specialization of Fi+1, for
otherwise the Witt index of (M ⊗k L, q ⊗k L) would be at least i + 1 by 5.3. Thus the result follows
from 5.3.
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6. Generic splitting of the classical groups

In §§4 and 5 we studied the generic splitting of groups of type 1An, Bn, and certain cases of type 1Dn

and 2Dn (namely, those for which the underlying central k-division algebra is k itself).
In this section we investigate the generic Θ-splitting of G for arbitrary ∗-invariant subsets Θ of ∆

and G of types 2An, Bn, Cn, 1Dn, 2Dn in a uniform manner. This is possible because all these groups are
special unitary groups of certain (skew-) Hermitian forms over some finite dimensional division algebras
over k.

Let k be an infinite field of char(k) 6= 2. Suppose E is a field extension of degree 1 or 2 over k and
D is a central division E-algebra of degree d over E. Let σ : D → D, a 7→ aσ, be an involution on D, so
that σ is E-linear, of order ≤ 2 and (ab)σ = bσaσ for all a, b ∈ D. Assume that M is an m-dimensional
right D-vector space and that h : M × M → D is a non-degenerate ε-σ-Hermitian form on M with
ε = ±1. In particular, we have h(xa, yb) = aσh(x, y)b, h(y, x) = εh(x, y)σ for x, y ∈ M, a, b ∈ D. The
pair (M,h) is called an ε-σ-Hermitian space.

Let now G := SU(h) be the special unitary group of (M,h). Then the index r of (M,h) is the
k-rank of G (cf. [6, 23.9, p. 266]).

If G is of type 2An, then the involution on D is of second type, hence E is separable of degree 2
over k. In this case we let n ≥ 1. If G is of type Bn, then d = 1 and D = E = k and we may assume
n ≥ 2. If G is of type Cn or Dn, we have E = k. We may then assume n ≥ 3.

Let K be a splitting field of G (for example, K is a separable closure of k). The group GK is
isomorphic to (SLn+1)K (resp. (SO2n+1)K , (Sp2n)K , (SO2n)K) if G is of type 2An (resp. Bn, Cn, Dn).

Then the absolute rank n of G is the rank of GK and is given by the formulae n + 1 = md in case
2An and n = [md/2] in the other cases.

In the case 2An we take the maximal K-split K-torus T given by

t = diag (t1, . . . , tn+1) ∈ G(K), t1, . . . , tn+1 ∈ K∗

and the basis ∆ from §4 for the root system Φ = Φ(GK , T ), which is given by αi(t) := ti t
−1
i+1, for

i = 1, . . . , n.
In the cases Bn, Cn,Dn we proceed as follows. Similarly as in §5 we can use a Witt basis of the

underlying bilinear K-space Kmd to embed GK into (SLmd)K . Then a maximal K-split K-subtorus T
of GK is defined by the set of diagonal matrices (cf. [6, 23.9, p. 266])

t = diag (t1, . . . , tn, 1̂, t−1
n , . . . , t−1

1 ) ∈ G(K), t1, . . . , tn ∈ K∗.

(Here the symbol 1̂ means that the component 1 occurs (resp. does not occur) in the middle according
as G is of type Bn or not.) A basis ∆ = {α1, . . . , αn} of the root system Φ = Φ(GK , T ) is given by
αi(t) := ti t

−1
i+1, for i = 1, . . . , n − 1, and, in addition,

αn(t) =





tn, if G is of type Bn;
t2n, if G is of type Cn;
tn−1tn, if G is of type Dn

(cf. [33, p. 30, 32, 35] and [10, p. 252, 254, 256]).
If deg (E/k) = 2, then for a field extension k′ of k, the k-algebra D ⊗k k′ is an Azumaya E ⊗k k′-

algebra if E ⊗k k′ is a field, or it is a direct sum of two copies of an Azumaya k′-algebra A′ if E ⊗k k′ ∼=
k′ ⊕ k′. In Theorem 6.1 below we use the following notation:

ind (D ⊗k k′) :=

{
ind E⊗kk′(D ⊗k k′) if E ⊗k k′ is a field;
ind k′(A′) otherwise.

We now prove a theorem corresponding to 4.1 for special unitary groups G. If G is of outer type, we
have to replace the set ∆\Θ occurring in 4.1 by a suitable set of representatives in ∆\Θ of ∗-orbits. The
function field FΘ := kΘ(VΘ) is a generic Θ-splitting field of G by 3.16. It has the equivalent properties
listed in 3.10 if Θ is ∗-invariant.

6.1 Theorem. Let G be of type 2An, Bn, Cn,1Dn or 2Dn. For each ∗-invariant subset Θ ⊂ ∆ let
{αi1

, . . . , αil
} be the set of representatives of ∗-orbits of ∆ \Θ such that iν ∈ {1, . . . , n− 1} in case 2Dn

and iν ∈ {1, . . . , [(n+1)/2]} in case 2An, and let {αi1
, . . . , αil

} = ∆ \Θ otherwise. If VΘ is the k-variety
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associated to Θ according to 3.7, then for every field extension k′ of k we have VΘ(k′) 6= ∅ if and only if
d′ := ind (D ⊗k k′) divides gcd (d, i1, . . . , il) and max (i1, . . . , il) ≤ d′ · rank (Gk′).

Proof. If Gk′ is of inner type 1An the equivalence follows from 4.1, since the last condition in 4.1
implies the condition max (i1, . . . , il) ≤ d′ · rank (Gk′). Therefore it suffices to show the equivalence
for the case k′ = k. Namely, we have to show: The index d = ind (D) divides gcd (d, i1, . . . , il) and
max (i1, . . . , il) ≤ dr if and only if VΘ(k) 6= ∅.

A maximal k-split torus S of G is given, with respect to a Witt basis {ei} of (M,h), by the diagonal
matrices s = diag (s1, . . . , sr, 1, . . . , 1, s−1

r , . . . , s−1
1 ) ∈ Mm(D) with sj ∈ k∗ for j = 1, . . . , r (cf. [6, 23.9,

p. 266]). Let ks be a separable closure of k.
Using a Witt basis over ks we may obtain an embedding Gks

↪→ (SLmd)ks
such that a max-

imal ks-torus Tks
of Gks

is, respectively, described by matrices diag (t1, . . . , tn+1) in case 2An and

diag (t1, . . . , tn, 1̂, t−1
n , . . . , t−1

1 ) otherwise with t1, . . . , tn+1 ∈ k∗
s , and Sks

, as a subtorus of Tks
, is given

by the following matrices

s = diag (s1, . . . , s1︸ ︷︷ ︸
d times

, . . . , sr, . . . , sr︸ ︷︷ ︸
d times

, 1, . . . , 1,︸ ︷︷ ︸
(m−2r)d times

s−1
r , . . . , s−1

r︸ ︷︷ ︸
d times

, . . . , s−1
1 , . . . , s−1

1︸ ︷︷ ︸
d times

)

with s1, . . . , sr as above.
We first evaluate the cases Bn, Cn,Dn. If G is of type Bn, then d = 1 and we find, for i ∈ {1, . . . , n},

αi(s) =

{
sr if i = r ≤ n
sis

−1
i+1 if 1 ≤ i < r

1 if i > r.

If G is of type Dn and n = rd + 1, then d ≤ 2 and αn−1(s) = αn(s) = sr. Hence G cannot be of
inner type in this case and is necessarily of type 2Dn.

We find in case d > 1

αi(s) =





sr if i = rd < n
s2

r if i = rd = n
sjs

−1
j+1 if i = jd, 1 ≤ j < r

1 if d |/ i or i > rd

for i ∈ {1, . . . , n − 1} if G is of type 2Dn and i ∈ {1, . . . , n} otherwise.
If d = 1 and G is of type Dn we have the same formula with the exception that αi(s) = sn−1sn, if

i = r = n.
If d = 1 and G is of type Cn, then r = n (cf. [35, §91, p. 31]), and we find that αi|S is not trivial

for all i = 1, . . . , r = n.
In the case 2An we obtain similarly, for i = 1, . . . , [(n + 1)/2],

αi(s) = αn+1−i(s) =





sr if i = rd < (n + 1)/2
s2

r if i = rd = (n + 1)/2
sjs

−1
j+1 if i = jd, 1 ≤ j < r

1 if d |/ i or i > rd.

Using the notation of 3.4 v) we now see that

∆ \ ∆0 =





{αjd, αn+1−jd | j = 1, . . . , r} in case 2An

{αjd | j = 1, . . . , r} ∪ {αn} in case 2Dn, if d ≤ 2 and n = rd + 1
{αjd | j = 1, . . . , r} otherwise

for d ≥ 1. It follows that d | gcd (d, i1, . . . , il) and max (i1, . . . , il) ≤ rd if and only if ∆ \ Θ ⊆ ∆ \ ∆0.
The latter condition is equivalent to VΘ(k) 6= ∅ by 3.7, “iii) ⇔ ii)”.

For any αi ∈ ∆ let ∆i be the maximal ∗-invariant subset of ∆ which does not contain αi. It follows
from [34, Table II, p. 55ff] or also from the above calculations that all those sets can be described as
follows.

∆i =





∆ \ {αi, αn+1−i} if G is of type 2An and i ∈ {1, . . . , [(n + 1)/2]};
∆ \ {αi} if G is of type Bn, Cn or 1Dn or i < n − 1;
∆ \ {αn−1, αn} if G is of type 2Dn and i = n − 1.

We emphasize that, in case 2An, the set ∆i is always of order n−2 except if 2 | (n+1) and i = (n+1)/2,
in which case it is of order n − 1 since αi = αn+1−i.

In all cases, let Vi := V∆i
be the k-variety associated to ∆i according to 3.7, and let Fi = k(Vi) be

its function field. Applying 6.1 for Θ = ∆i we obtain the following corollary.
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6.2 Corollary. Let i ∈ {1, . . . , [(n+1)/2]} if G is of type 2An, let i ∈ {1, . . . , n} if G is of type Bn, Cn or
1Dn, and i ∈ {1, . . . , n− 1} if G is of type 2Dn. Then for every field extension k′ of k we have Vi(k

′) 6= ∅
if and only if d′ := ind (D ⊗k k′) divides i and 1 ≤ i/d′ ≤ rank (Gk′).

We now list generic (quasi-)splitting fields of G with low transcendence degrees. Most, but not all
of them, are defined by maximal proper ∗-invariant subsets Θ of ∆. For G of type Bn this is discussed
in 5.4.

6.3 Corollary. Let the notation be as in 6.2.
i) Let G be of type 2An and let n′ = [(n+1)/2]. If gcd (n′, d) = 1, then Fn′ is a generic quasi-splitting

field of G. More generally, let n′′ ∈ {1, . . . , n′} be some integer such that gcd (n′, n′′, d) = 1 and
let Θ := ∆ \ {αn′ , αn′′ , αn+1−n′ , αn+1−n′′}. Then k(VΘ) is also a generic quasi-splitting field of G.
Moreover, the fields E · Fn′ and E · k(VΘ) are generic splitting fields of G, respectively.

ii) Let G be of type Cn. Then every (generic) splitting field of D is a (generic) splitting field of G. For
every odd i ∈ {1, . . . , n} the field Fi = k(Vi) is a generic splitting field of G.

iii) Let G be of type 1Dn. Then Fn−1 is a generic splitting field of G. If n is odd or d = 1, then Fn is
also a generic splitting field of G.

iv) Let G be of type 2Dn. If n is even or if d = 1, then Fn−1 is a generic quasi-splitting field of G.
If n is odd and Θ = ∆ \ {αn−2, αn−1, αn}, then k(VΘ) is a generic quasi-splitting field. If d(M)
denotes the discriminant of the Hermitian space (M,h), then a generic splitting field is given by
k(

√
d(M)) · Fn−1 if n is even or d = 1 and by k(

√
d(M)) · k(VΘ) if n is odd.

Proof. We recall once and for all that, by 3.17 iv) (resp. iii) ), some field FΘ is a generic splitting field
(resp. quasi-splitting field) of G if it is a splitting field (resp. quasi-splitting field) of G.

i) Let k1 be either Fn′ or k(VΘ). Then it follows from 6.1 or 6.2 that rank (Gk1
) ≥ n′. Therefore

Gk1
is a special unitary group (SUn+1)k1

of maximal rank and hence quasi-split. Now it follows from
3.6 that E · k1 is a generic splitting field, since E is isomorphic to the field kalg.

ii) If d = 1, then G splits [35, §91, p. 31]. Hence the first assertion follows. Since Vi(Fi) 6= ∅ and d
is a power of 2, it follows from 6.1 that ind (D ⊗k Fi) = 1 for odd i. Thus GFi

splits.
iii) Since Vi(Fi) 6= ∅ we have di := ind (D ⊗k Fi) | gcd (d, i) by 6.1. If n is even, then dn−1 = 1, and

if n is odd, then dn = 1, since d is a power of 2. Hence if n is odd we obtain n ≤ rank (GFn
) from 6.1,

therefore GFn
splits.

We have (n− 1)/dn−1 ≤ rank (GFn−1
) by 6.1. Therefore, if dn−1 = 1, then GFn−1

is the orthogonal
group of a quadratic form of dimension 2n with discriminant 1 and of Witt index ≥ n − 1. Hence the
form is hyperbolic, which implies that GFn−1

splits.

It remains to show that dn−1 = 1 for odd n. If n is odd, then d ≤ 2, because d | 2n and d is a
power of 2. Hence dn−1 | 2. Assume dn−1 = 2. Then the rank rn−1 of GFn−1

is at least (n− 1)/2 which

implies n = rn−1dn−1 + 1. This is impossible since G is of inner type 1Dn (cf. [32. Table II, p. 56]).
Hence necessarily dn−1 = 1.

iv) If n is even or d = 1, then, as above, di := ind (D ⊗k Fi) = 1, hence GFn−1
is the orthogonal

group of a quadratic form of dimension 2n over Fn−1 with Witt index n−1 and discriminant d(M) 6= 1,
since Fn−1 is regular over k. Hence GFn−1

is quasi-split. If n is odd, then d ≤ 2 (cf. the proof of

iii)). Obviously Θ is ∗-invariant. Hence we may apply 6.1 to find that d′ = ind (D ⊗k FΘ) = 1 and
n − 1 ≤ rank (GFΘ

). Therefore GFΘ
is of rank n − 1 which means that it is quasi-split. Since G is

semisimple, we have k(
√

d(M)) = kalg, where kalg is given by 3.6. The rest of the statement follows
from 3.6.

6.4 Remark. For groups of outer type there are other non-regular generic splitting fields with possibly
lower transcendence degrees: Let Θ ⊂ ∆ be any not necessarily ∗-invariant subset. By 3.16 there is a
generic Θ-splitting field FΘ = kΘ(VΘ) of G. Applying the results of §4 (resp. §5) to GkΘ

for special
proper maximal subsets Θ we obtain for example:

i) In case 2An: Let Θ = ∆ \ {α1}. Then kΘ = E and VΘ is an n-dimensional Severi-Brauer variety
over E and the function field E(VΘ) is a generic splitting field of GEΘ

, and hence of G.

ii) In case 2Dn: Let Θ = ∆ \ {αn−1}. Then kΘ = k(
√

d(M)) and VΘ is an n(n − 1)/2-dimensional
variety (cf. 5.5) over kΘ and the function field kΘ(VΘ) is a generic splitting field of GkΘ

by 6.3 iii),
and hence of G.

6.5 Remark. In case 2An and 2 | (n + 1) we find an outer form of a generalized Severi-Brauer variety
as discussed in §4: Let i := (n + 1)/2 and ∆i = ∆ \ {αi}. Then ∆i is ∗-invariant, hence the associated
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variety V∆i
is defined over k (cf. 3.7). This is the outer form of Grass i(k

n+1) mentioned after 4.6.

7. Generic splitting of almost simple groups

In this paragraph we will give generic splitting and quasi-splitting fields of the absolutely almost simple
k-groups including the exceptional groups and groups over fields of characteristic 2 which have been
excluded in §§5 and 6. We emphazise that the notions of quasi-splitting field and splitting field coincide
in the case of semi-simple groups of inner type, as it follows from the last statement of 3.4 v). In the
outer type case, one may obtain generic splitting fields out of generic quasi-splitting fields by applying
3.6. Therefore, in this case we only give quasi-splitting fields. But the same method can also be used to
construct generic splitting fields directly.

Let G be any almost simple k-group. Let T be a maximal k-torus of G. Let ∆ = {α1, . . . , αn} be
the set of simple roots of Gk̄ with respect to Tk̄ and some ordering of the root system. We will give
generic splitting or quasi-splitting fields of G in terms of its Dynkin diagram (over a splitting field) by
describing the maximal subsets Θ of ∆ such that FΘ is a generic splitting or quasi-splitting field. We
will use the abbreviations ∆i = ∆ \ {αi} and Fi = F∆i

.

7.1 Lemma. Let Θ ⊂ ∆. Then res FΘ
(α) 6= 0 for all α ∈ ∆ \ Θ.

Proof. As FΘ contains kΘ, we may assume that k = kΘ. Hence we may assume that Θ is ∗-invariant.
Then our claim will follow from 3.7,“i) ⇒ iii)”, applied to FΘ instead of k.

In the following, we will indicate how to use 7.1 together with 3.17 iii) or iv) and the information
encoded in the index of G as described in [32, §2, p. 38ff] just for the particular case 1An, since the
considerations in all the other cases are quite similar.

Dynkin diagram of type An:
◦
α1

◦
α2

· · · ◦
αn

Generic splitting fields in case 1An are given by Fi for any i which is coprime to the index d of the
underlying central k-division algebra D (cf. 4.3). In order to see this, let G denote an almost simple
k-group of type 1An and let k′ be a field extension of k.

We will verify that, for any i ∈ {1, . . . , n} coprime to d, the condition res k′(αi) 6= 0 implies that
Gk′ is split. It follows from the description of the index of Gk′ in the sense of [32, §2, p. 38ff] that
res k′(αi) 6= 0 if and only if i is a multiple of d′ := ind (D ⊗k k′). As d′ divides both d and i, and since
gcd (d, i) = 1 by assumption, we find d′ = 1, which implies that Gk′ is split.

In particular, for k′ = Fi, it follows from 7.1 that res Fi
(αi) 6= 0. By the above, GFi

splits, and 3.17
iii) or iv) proves that Fi is a generic splitting field of G.

For 2An, we use the notation of [33, p.55] or of §4 and let % = [(n + 1)/2]. Generic quasi-splitting
fields in case 2An are given by ∆ \ {α%, αn+1−%} if gcd (%, d) = 1 and by ∆ \ {α%, αn+1−%, α%−1, αn+2−%}
if gcd (%, d) 6= 1 (cf. 6.3 i)).

Dynkin diagram of type Bn:
◦
α1

◦
α2

· · · ◦
αn−1

> ◦
αn

Generic splitting fields are given by ∆n (cf. 5.4).

Dynkin diagram of type Cn:
◦
α1

◦
α2

· · · ◦
αn−1

< ◦
αn

Generic splitting fields are given by ∆i for any i which is coprime to the index of the underlying division
algebra. As this is a power of two, i just has to be odd in this case (cf. 6.3 ii)).

Dynkin diagram of type Dn:

◦
α1

◦
α2

· · · ◦
αn−2

◦ αn−1

¡
@◦ αn

Generic splitting fields for 1Dn are given by ∆n−1 (cf. 6.3 iii)). For the outer case we again use the
notation of [33, p.57] which is consistent with §§5 and 6.



Kersten/Rehmann: Generic splitting of reductive groups 23

Generic quasi-splitting fields for 2Dn are given by ∆ \ {αn−1, αn} if d = 1 or 2 | n and by ∆ \
{αn−2, αn−1, αn} if n is odd (which implies that d ≤ 2 since d is a power of 2 and divides 2n) and d = 2
(cf. 6.3 iv)).

Dynkin diagram of type 3D4,
6D4:

◦
α1

◦
α2

◦ α3

¡
@◦ α4

A generic quasi-splitting field is given by Θ = {α2}.
Dynkin diagram of type E6:

◦
α1

◦
α2

α6◦

◦
α3

◦
α4

◦
α5

Generic quasi-splitting fields are given in case 1E6 by ∆2,∆4, in case 2E6 by ∆ \ {α2, α4}.
Dynkin diagram of type E7:

◦
α1

◦
α2

◦
α3

α7◦

◦
α4

◦
α5

◦
α6

Generic splitting fields are given by ∆3,∆5,∆7.

Dynkin diagram of type E8:

◦
α1

◦
α2

◦
α3

◦
α4

α8◦

◦
α5

◦
α6

◦
α7

Generic splitting fields are given by ∆4,∆5,∆6,∆8.

Dynkin diagram of type F4:
◦
α1

◦
α2

< ◦
α3

◦
α4

Generic splitting fields are given by ∆2,∆3,∆4.

Dynkin diagram of type G2:
◦
α1

< ◦
α2

Generic splitting fields are given by ∆1,∆2.
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Boston-Basel-Stuttgart, 1980.
[19] J. Milnor, Introduction to algebraic K-theory, Ann. of Math. Stud. 72, Princeton Univ. Press and

Univ. Tokyo Press Princeton, N. J., 1971.
[20] D. Mumford, The red book of varieties and schemes, Lecture Notes in Math., 1358, Springer

Berlin-Heidelberg-New York etc., 1988.
[21] H. P. Petersson, Generic reducing fields of Jordan pairs Trans. Amer. Math. Soc. 285 (1984),

825-843.
[22] R. S. Pierce, Associative Algebras, Graduate Texts in Math. 88, Springer New York-Heidelberg-

Berlin, 1982.
[23] P. Roquette, On the Galois cohomology of the projective linear group and its applications to the

construction of generic splitting fields of algebras, Math. Ann. 150 (1963), 411-439.
[24] P. Roquette, Isomorphisms of generic splitting fields of simple algebras, J. Reine Angew. Math.

214/215 (1964), 207-226.
[25] W. Scharlau, Quadratic and Hermitian forms, Grundlehren der math. Wissenschaften, 270,

Springer Berlin-Heidelberg-New York, 1985.
[26] A. Schofield and M. v. d. Bergh, Division algebra coproducts of index n, to appear in Trans.

Amer. Math. Soc.
[27] A. Schofield and M. v. d. Bergh, The index of a Brauer class on a Brauer-Severi variety, to appear

in Trans. Amer. Math. Soc.
[28] J.-P. Serre, Corps locaux, Publ. de l’Institut de Mathématique de l’Université de Nancago, VIII,
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Heidelberg-New York, 1967.
[36] A. Weil, Foundations of algebraic geometry, Amer. Math. Soc. Colloq. Publ., XXIX, Amer. Math.

Soc. Providence, RI, 1962.
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