In Search of New "Homology™ Functors Having a

Close Relationship to K-theory
by

R. Keith Dennis ¥

For any group G and G-module M one would like to obtain
a sequence of functors ﬁi(G,M) which are intimately related -

to K-theory. They should satisfy the following axioms:

~N
I. Hi(G,M) is a covariant functor which commutes with

direct limits. There are natural surjective maps
H, (G,M) —> H, (G,M) .
II. For any ring R there is a natural map
H, (R* ,2) —> K, (R) (trivial action on 2)
such that for all n > 1 the diagrams
H (6L, (R) 52) ———> K (M, (R) s

K (R)
> Ki(Mh+l(R))//é7

H; (6L, (R)52)
commute.

III. For G an abelian group ﬁ* (G,Z) 1is equipped with a
product making it into an anti-commutative graded ring

such that the maps

H, (G,2) > H, (G,2)
and
He (R¥ ,2) —> K (R)

are homomorphisms of graded rings. Here R denotes a

commutative ring.
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It is clear that‘one can take ﬁi(G,M) = Hi(G,ND for
i = 0, 1 in the above requirements (and meet no immediate
conflicts). However, for i = 2 there is an obvious
obstruction to using ﬁz = H2. Namely, the product in
homology is strictly anti-commutative (a-a = 0) whereas
in K-theory the product is only anti—comﬁutative (a-b = -b-a).

Thus no such map HQ(R* sZ) —> K2(RJ exists (e.g., =-l4-1 # 1
in K,(2) , but -lr-1 is trivial in H2(Z* sZ) ). In case
i = 2 we will show that this is the only obstruction and
~
exhibit such a functor H2(G,Z).
In analogy with our result for i = 2 one might hope
to strengthen I by requiring in addition

I'. There is an exact sequence

0 —> t, (G) > 1, (6,2) > H_(G,2) — >0 .

Here ti(G) denotes a certain group of clements of
order 2 which is defined in §1 below.

In general we do not know how Eo define functors ﬁi(G,M)
nor do we even know how to define H2(G,M) for arbitrary
coefficients M. This note is written in the hope that it
will inspire someone to do so. We now continue with some
remarks that may or may not be relevant. Independent work
of S. M. Gersten (unpublished) and J.-L. Loday
(lecture at the K-theory confercence in Oberwolfach, July 15,

1976) established the existence of sequences of the form

1 —> Hy(G,2) —> X —> F > G > 1

for groups G with HlG = HG = 0. It is conceivable
that one might be able to modify this to obtain a definition
£ H,.
°F 73

the puroduct

In fact, the construction of Loday [5] or [6] for

Ky (R) X K3 (R) % K (R) ——> K (R)

is reminiscent of the construction of the pairing



GL(R) X GL(R) —> St(R) used to define our map ﬁ;(GL(R),Z)——%> KE(R)'
One might hope that his construction could be used to define
a map ﬁ3 (GL(R) ,2) —> K5 (R).

If it is possible to define such groups, one should also
try to generalize to obtain groups ﬁi(R,M) analogous to the
Hochschild homology of a ring R with coefficients in an
R-R-bimodule M. 1In this case one would presumably expgct

an exact sequence

1 —> B (R,B) —> K,RI€]) —> K,(R) —> 1

where R[€ ] denotes the dual numbers over the (not necessarily

comnutative) ring R.
I would like to thank K. Brown for saving me from a number

of errors by his careful reading of a preliminary version of

this manuscript.



1. Preliminaries.

Let R denote a commutative ring and M an R-module.
As usual /N M denotes the exterior algebra on M : /\*M = TM)/IM)
where T(M) dis the tensor algebra on M and I(M) denotes
the two-sided ideal of T(M) generated by the elements m & m
for all me M. In an analogous manner we define ;\* M = T(M/IM)
where J(M) is the two-sided ideal of T(M) generated by all
elements of the form m®&n + n®m for m,ne M. Clearly
J(M) € I(M)_ and there is a surjective homémorphism of graded
algebras /N M > /X M. We define t, (M) to be the
kernel. Note that tO(M) = tl(M) = 0.

If M is a free module with ordered basis [mi] , then
a basis for /\nM can be obtained as the set of all

m. /\ m. A e o - A m.
1 e n

where (il’i2""’in) ranges over all strictly increasing

~sets of indices of length n. If 2 dis a unit, then t (M) = O.
If char R = 2 , then in a similar manner one can obtain

~
a basis for /\nM as the set of all

-~ ~
m. . - L] L .
A ml A A ml
2 n

(= the coset of m, & m, & - - - & m, )
1 2 n
where (il’iz"' . ’in) ranges over all non-decreasing sets of

n-tuples of indices.

LEMMA 1. For any R-~module M and any integer n,'the seQuence
0 —> t )—> /\™M—> N\M——>0

is exact. If M/2M is a free R/2R-module, then the sequence

splits (non-canonically) as a sequence of R-modules.

Further, tn(M) is annihilated by 2. ITor n = 2 and R = 2

there is a canonical isomorphism

MO Z, R WA R T, (M)

induced by mt—>m A m.

The sequence is clearly exact and as 2I(M) ¢ J(M) , we

have 2tn(M) = 0 . For n > 1 considering the commutative diagram




0 —> t (M —> _/\nM —_— /\“M —>0

| |

0—> t_(va) —> /\"wan — /\'evay —> 0

and noting that tn(ND

> tn(M/QM) is an isomorphism, we
see that the bottom sequence (and hence the top sequence) splits
as each module is free over R/ZR. tn(M)7———4> tn(M/2M) is
an isomorphism as each is a module over R/Z2R and as one can
find a spanning set of tn(M) which is mapped to a basis of
the free R/2R-module tn(M/EM). The last statement is easy.

REMARK. Let R have characteristie 2. If M is a~free module

of rank r, then -/\nM is free of rank (g) and /”\?M is
free of rank (r+2—1). Thus if R = Z and M is a finitely
generated abelian group, tn(M) is an EQ vector space of

. - r+n-1 r . . .
dimension ( n ) - (n) where r is the Ee dimension
of M/2M.

Finally for G any group, we define ti(G) = ti(Gab)
where Gab is the abelianization of G considered as a

Z-module. In particular, note that

b, _ .ab
t,(6) = t,E")~6" 27,



2. H2 and ﬁz R

We first recall C. Miller's definition of H,(G,Z) (81.
Let G be a group and let F(G) be the free group on the
set G X G whose elements will be denoted by <x,y> , X,y€G.
B(G) denotes the normal subgroup of F(G) generated by the

"universal commutator relations"
(1) <x,y> <y,x>

(2 < xy,xz > <X,z> <xy,z>-'l

3) < xy,xz > <zZ,y> <X,[y,z] >"l )
) <x,x
for all x,y,z€ G. There is a homomorphism F(G) —> G
defined by <x,y> —> [x,y] = xy-y—l = xyx']'y"'l

which vanishes on B(G). We denote its kernel by Z(G).

THEOREM 2 (Miller [8]). There is a canonical isomorphism
H,(G,2) = Z(G)/B(G) . More precisely, if
l—> R —>F > G > 1 is exact with F free, then

there is a commutative diagram with exact rows

1——> Z(G)/B(G) —> F(G)/B(G) —> G

l l J-

1——> RAF'/[R,F]——> F¥[R,F]—> G

and vertical isomorphisms given by <x,y>}—> [X,¥] where

X and ¥ are any liftings of x and y to F.

REMARKS. 1. RNF'/[R,F] is Hopf's definition of H, which
is canonically isomorphic to the definition given via the bar
resolution. An explicit formula for the isomorphism can be
found in [8, p. 594].

2. Miller proves directly from this definition that H2 of

a free group is trivial. It thus follows that any commutator
relation that is universally true is a consequence of the above

four.
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For simplicity we will now use congruence notation to denote

computation modulo certain of the above relations. First we have
(21  <xyyz> = <X,y> < x,Vz mod (1), (2)

Next expanding <ax ,by> 1in two different ways yields

(5) <ax,by> = < 8%,2b > <a,b> < ba, ba y > < ba,by > mod (2), (2%)

and

(57) <ax,by>= < %x,% > < ab ,aby > <a,b> < ba,by > mod (2), (2%).

Combining these two and replacing X by (bg)'l;ba and y

by (ba)"lyba yields

1 [a,b] [a,b]

(6) <a,b> <x,y><a,b> "= < y > mod (2), (2%).

Thus if CEGF(G) maps to c €[G,G] , then we have

C <x,y> € = < %,% > mod (2), (27) .

Note as a consequence that Z(G)/N will be a centrai subgfoup
of F(G)/N for any normmal subgroup N which contains all
elements of the form (2) and (2%)

We note that relation (3) can be replaced by either of

(@) <X ,YZ> <Y 22X> <z, Xy>
(T1)  <zy,X> <XZ,y> <yX,z> .

It is easy to check that (7) and (7') are equivalent in

the presence of (2) and (2') . We now show that (3) and
(7) are equivalent in the presence of (1) and (2) . It
already follows from Remark 2 above that (7) dis a consequence
of (1) - (¥) . Explicitly we have

<X yz> <y,zx> = <X,y> < yx Yo <y,z> < 2y, %x > mod (2Y)

1

< 'yx, yz > < [x,y]y’[x,y]z > X,y> < Zy,zx > mod (6)
X, X
< yX, yZ > < [xsy]y,[an]

i

z >< [x,ylyz > mod (3), (1)
X X
=< Yx, Yz > < [x,yly,z > mod (2)

= <Xy 42> mod (2)

and we are done via (l). Next



-8 -

< ly,zlox > =< Y2 27 Y2 > <yz, 0 mod (2j
=<y,z> < Ytz h,Px > <y 2> Yy, zx> <z,xy> mod (6)5(T)s (L)
=<y ,2> <x,zy>_<y,z>"l<y,zx> <z,xy> mod (1), (2)
=<y ,2> <X,yzy> < Zy,zx > <z, < xz,xy > mod (2%), (1)

=<y,z> < 2,0y > mod (2%), (1)

and we are done via (1).

Taking x = y = 1 in (2) yields < 1l,z> and then
taking z = 1 in (7) ydields (1). Thus (1) is a conseguence
of (2) and (7). We thus find that (1), (2, (3) are
equivalent to (2) and (7).

We now define B (G) to be the normal subgroup of F(G)
generated by (1), (2), (3) or equivalently (2), (7). We let
(G,G) = F(G)/BO(G), ﬁEG = Z(G)/BO(G) and denote the class
of <x,y> in (G,G) by (X,y) . There is then an exact sequence

1—> H6 —> (G,6) —> [6,6] —> 1

with ﬁeG a central subgroup of (G,G) .

By the definition of H.G there is a natural way of

2
constructing homomorphisms.

MAPPING PROPERTY 3. Given any group H and a function

# : HX H——> (G,G) .

satisfying
(1) (x=y) (y#x) = 1
(i) )=z = ( y=x7z) (x#z)
(1ii) xxlysz] = ( Sy*"z) (z#y)

or equivalently (ii) and

(Av) (x=yz) (y*rzx) (z=xxy) = 1,

then there exists a homomorphism

(H:H)“"__'9 (GSG) .



1f there exists a homomorphism [H,H] ——> [G,G] making the
diagram

(H,H) ——> (G »G)

} |

[H,H] > [G,G]

commute, then there is an induced homomorphism

'ﬁzl-l ~————~>f'{2G .

~

REMARK. The proof is trivial. Note in particular that H, is
thus a covariant functor from the category of groups to the
category of abelian groups. It is also clear from the definition

that ﬁz preserves direct limits. An analogous mapping property

can be given for H,.

LEMMA 4. If A is an abelian group, there is a canonical

isomorphism /Afﬁ ————é-ﬁEA given by aaAb k> (a,b) .
As A is abelian, Z(3) = F(a) and hence HA = F(A)/B (2)-

By (2) and (2%)

(ab,c) = (b,0) (a,0)

(a,be) = (a,b) (a,0)
and (1) yields

(a,b) (b,a) = 1.

(3) is easily seen to be a conscquence of (1) and (2)  in
(a4

this case. We thus have a presentation for HEA which is

precisely that of /A\?A.

REMARK. A similar argument gives the well-known /ka:x HEA'

PROPOSITION 5. Tor any group G there is an exact seguence

1-—> P @ Z,—=> H,G ——> 1,6 —— > 1

which splits (non-canonically).
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The addition of relation (4) gives the surjective homomorphism
H 6 —> H,
We define a homorphism G—> ﬁeG by sending x to (X,X) .

G whose kernel is generated by the elements (X,X) .

Now . o o
Gvaxy) = (F97% ) 0 Cys ) (%Y )
by (5). As (%,X)» ( xey,xey ) are in the center of (G,G),
we have o 5
ysxy) = (6X) ( Xy, y) -
since ( Xy.x) (X,y) = 1 by (1. By (3) and (1)
(%y.%y ) = (2slysy]) sy) = (vsy)

as (z,1) = 1 by (2%') . Thus

(xy,xy) = (x:%) (¥>¥)
as asserted. Since ﬁQG is abelian and (xz,xg) = (X,X) (Xs%x) =

by (1) , we obtain a homomorphism
* @z, —> G .

The commutative diagram with exact rows

~
gab Z,—> HG —> HLE—>1
P o 4 i 171'2Gab--—«> e 5
= J/ \l/u J,"

k"~ Noo
1—> ¢ @ Z s NG —— AP 1

reduces the injectivity of the top left-hand map to the
abelian case where it is known via Lemmas 1 and 4. The

top sequence splits since the bottom one does.

COROLIARY 6. If G is perfect or if G2° is divisible by 2,

then H2G ~——> H,G is an isomorphism.

In particular note that

1 > H,G —> (6,6) ——> [6,6]——> 1

is the universal central extension of G if G 1is perfect.
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3. ﬁg and K-theory.

Let R be any associative ring with 1. As usual GL(R)
and E(R) will denote the infinite general linear and elementary
groups over R. St(R) will denote the usual Steinberg group.
RatherNFhan construct maps ﬁzR% —_— K2(R) and obtain a
map HEGL(R) _— KE(R) by taking direct limits, we construct

the latter map directly and obtain the former by composition.

THEOREM 7. There is a canonical isomorphism

(GL(R),GL(R)) =2 (E(R),E(R)) X (GL(R)ab,GL(R)ab)

and hence there is a canonical split exact sequence

1 —s fEE®) — A eLE®R) —> HGLR)P—> 1 .

We abbreviate GL(R) by G and E(R) by E. There is

a well-defined pairing

4 : GXG > (E,E) © St(R)

defined as follows (see [4]). Let a€¢GL(m,R), b€GL(n,R),
ate GL(n',R), b'eGL(',R) be such that

a=a®a'e®l ,, ‘B=b@1m,eb'e}3.

Choose 1iftings 3, b €(E,E) & St(R) and let axb = [&a,b] =
(that the last two are equal is immediate from (6); see Miller
[8, equation 7] for a proof). It is easy to check that a#b
is independent of m, n, m', n', a', b' and the liftings-chosen
(see [4]). Equations (ii) and (iv) follow immediately from
the usual commutator relations. Say a, B, ¢ arve liftings of
a®a'®10®1l, b®l1lO®b'®1l, ce8lel ®c' in E.
Then . R

(35,81 = [ %%, % ] [&,3]
and using the independence statement above yields

(ab) xc = ( bA%e ) (akc) .

A similar argunent works for (iv) ( and also for (i) and

(iii) but not for () I ). Thus we obtain a homomorphism

(G,G)

> (E,E). Note that if a, beE, then (by independence)
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one can take a' = b' = 1 and hence the composition
(EsE) —> (G,G) —> (E,E)

is the identity.
Recall that (6*°,6%%) = H 6"
Let a€GL(m,R), b€ GL(n,R) and define

b since Galb is abelian.
asb = (a ®1,1 ®b)€ HG € (G,6) -

I1f Ze&(G,6) maps to ze¢ [G,G] , then as a-b is central we have
1 4

a-b Z(a-b)z2~

(a@1,%1ob)

from (6). By choosing appropriate z it follows that

asbh = (Lea, b®1)
= ( ell, le a)'l
= (b.a)'l .
Now
(ab)ec = ((b &1)(dtab @ 1), 18c)
- (Pl iy e1,P®li6c) e, 100
= (a*c) (bec) .
Similarly a-(bc) = (a-b) (a-c). Finally as ﬁzG is abelian
there is a map
¢ x ¢ — H6 c (6,6) -
Clearly a-beﬁzG' maps to (class a, class b)¢ ﬁaGah since
b and 1 &b represent the same class in Gab. Thus the
composition
@6 = 16— 6.0 —> .6

is the identity.
As the image of (Gab,Gab) in (G,G) is central and as-
the composition

ab

(E,E) —> (G,6) —> (62°,6%P)

is clearly trivial (since [G,G] = E ) , to complete the proof
that (G,G) dis canonically the direct product of (E,E) and
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‘(Gab,Gab) , it will suffice to show that every generator of
(G,G) is a product of an element from (E,E) and one from

the image of (Gab,Gab). By equation (5)

@@atelboleb™
- . - -1
- (ea lel,%belel) (lea lel,leleb™) (a@lel,bael) ( “aelsl,leleh ™) .

Thus
aelel,bolel)
-1

(a,b)

(a-l_ab)-l

-

~i-1

b )

(a+b) ( Pasb™H7t (a
(ax b) (a-b) .

The last statement of the theorem is immediate from the first.

COROLLARY 8. There is an exact sequence

1 ——> HE(R) —> HGL(R) —> H,GL (R)*P— 1

which splits (non-canonically). The splitting is canonical up

to certain elements of order 2.

The exactness can be seen from the commutative diagram

1 1

Voo

~

1-— 62 @ Z,> @ & Z,—> 1

LU

The non-canonical splittings of the-vertical exact sequences
and the canonical splitting of the middle exact sequence give
the non-canonical splitting of the lower sequence.

Upon more careful examination we see that the equation

(@sa) = (awxa) (a-a)

gives the only obstruction to a canonical splitting. For in

H2G we have a+a = asa which is of order 2 and not necessarily

ab

trivial. However the corresponding element of H_G is trivial.
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Let ﬁi = Hi for i = 0, 1. Then for G abelian

and i+ j < 2 , there is an anti-commutative pairing

~ ~ ~r
H.G X H.G—> H. .G .
1 ] 1+

J
The one interesting case is for i = 3 = 1 . Then
A 2
— s
GX G = HGXHG >HG6 = /\G

is defined by (X,y)—> XA Y .

~

COROLLARY 9. The functors Hi , i = 0, 1, 2 satisfy the

relevant portions of axioms I, II, and III.

There is a homomorphism R* ———> GL(R) given by
sending a unit to the diagonal matrix with the unit in the
(1,1) position and 1's elsewhere on the diagonal. This

~ ,
gives the map H2Rk —_— K2R as the composition

~ »* ~ (a4
HR™ ——> H2GL(RJ > HEE(R) = H2E(R) = KR .
More explicitly, the map is induced by the pairing

R*¥* x R* ——> (E,E) & St(R)

defined by (u,v) +——> [hlz(u), h13(v)] (notation of [9]).
It is now clear that the relevant portions of I, II, and

IITI are satisfied.
We now interpret some K-theoretic results in this language.

PROPOSITION 10. 1. H2R*-—~——~> K2R is surjective if and only
if KQCR) is contained in the subgroup of St(R) generated

by the hij(u), ue R* (equivalently, contained in the subgroup

agenerated by the wtﬁu), ue R* ).

2. If R satisfies Bass' stable range condition SR, then
AL Lal conhdition m 2 el

}TQGL(n,R)—w—> KR

is surjective for all n > m.

These ave immediate from our definition and known results

(see [91, [1]1, [2], [3]).

THFEOREM 11 (Maltsumoto-Rehmann). Let D be a ﬂivision ring (skew
field). Then the kernel of the surj'ective map ﬁED“ — KZD
, u # 1.

is generated by the elements (u,l-u) for ue D*
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This follows immediately from a theorem of Rehmann [10]

which we now state in a convenient form. Let c(u,v) = [hla(u) ’hl3 (v) 1]
for u, veD' . The subgroup Uy of St(D) generated by the
c(u,v) is just the set of elements z¢St(D) satisfying

V(z) = diag(a,lye.esl)

where necessarily a€[D¥, D %*7]. Then there is an exact sequence

S S * *

THEOREM 12 (Rehmann [10]). If D is a division ring, . U, is

presented by generators c(u,v), u, ve¢D¥ , subject only to

the relations

Uo c(ul-u) = 1, u # 1

UL c(uv,w) = c( vy, w ) c(u,w)

U2 c(u,vw) c(v,wu) c(w,uv) = 1

U3 e(u,v) c(ut,v?) = of MVl [evlie oy

Note that Ul is (2) , U2 is (7) and U3 (which
can be omitted as it is a consequence of Ul and U2 ) is (6).
Thus the set of relations Ul - U3 is equivalent to (1) - (3) .

The result is now clear.
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