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§0. Introduction

In this paper we try to “determine” the group K,(D), where D is a finite
dimensional central division algebra over either a local field or a global (number
or function) field F. Here the word “determine” means to reduce the de-
termination to problems on commutative fields (e.g., the determination of K, (F)
and certain Galois cohomological computations). As far as we know, only
rudimentary results on this question can be found in the literature. We mention
Harris and Stasheff [8], who proved that under certain conditions the group
K, (D) contains a direct factor isomorphic to K,(F) in the case of a locally
compact division algebra D over a p-adic F. Another general result is due to
Keating [11], who compared Quillen’s localization sequence of the global field
F with that of D. A special example has been studied by Alperin and Dennis [1].
They computed the group K, (D) in the case of the Hamilton skew field D|R,
and in a certain sense their techniques are the starting point for our paper.

Let us briefly describe what we do. By general results of K-theory, there is a
bimultiplicative pairing F* x K, (D)—K,(D). In the case of local or global fields
we have SK,(D)=1 by classical theorems of Matsushima-Nakayama [13] and
Wang [25]; hence K (D)~ A, p:=Im RNy, = F*(RNp,p is the reduced norm of
D over F). This gives a homomorphism F* ®, .47, ,—K,(D), and it turns out
that under a slight technical condition (which is always valid for local or global
fields) this map is even a symbol; that is, it vanishes on the subgroup
Z S F* @4/ r generated by elements a ® (1 —a) (xe F*, 1—aep, ). Hence, if
Y(D|F):=(F* ®.Ap¢)/Z, we have a homomorphism

y: Y(D|F)-K,(D).
By Matsumoto’s theorem on the presentation of K, of fields [12], there is a
canonical map Y(D|F)—K,(F), which is clearly an isomorphism if A}, ,=F*

(e.g., if F is p-adic, a global function field or a totally imaginary number field
[7]). If F is a number field with real places (or if F=R), then A} ={a€F|a
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positive at all real places where D is ramified} by Eichler’s norm theorem [7]. In
this case we do not know whether or not this map has a non-trivial kernel
except if F has exactly one real place, in which case the map is split injective:
K,(F)={{—1, —1}> x Y(D|F) (see also the footnote to 2.7). Now, if E is any
splitting field of D of finite degree, we show that we have a commutative
diagram

K, (D)

e

Y(D|F) K,(E)

where the horizontal arrow is defined by the map Y(D|F)—K,(F) composed
with the natural map K,(F)->K,(E), and pp,; is the map
K,(D)-K,(D ®E)— K,(E), where the latter isomorphism is given by the
natural identification. If E|F is Galois, then certainly K, (E) may be replaced by
K, (E)S*EIF) in the diagram (cf. 2.4).

To prove the injectivity of ¥, now one only has to construct, for each
£ e Y(D|F), a splitting field of D of finite degree such that & has non-trivial image
in K, (E). We solve this problem completely in case F is local or global, char F +0
(3.1, 3.6). In the case of a local field of char F =0, residue class characteristic p,
our Theorem (3.1) has two gaps: one of them depends on the solution of the
question of whether or not the p-primary part of the divisible subgroup of K, (F)
is trivial (which is a conjecture of Tate and proven by him recently in many

cases [22]), while the second occurs only in the case char F=0, p=2, ]/——1 ¢F.
Nevertheless, these local results yield global ones via the existence theorem of
Grunwald-Wang together with the theorem of Hasse-Brauer-Noether, which
give the injectivity of ¥ for any D for instance in the case F =Q (3.4, 3.5). In the
global function field case, our tools are Tate’s Galois cohomological description
of K, [21] together with a classical theorem of Tsen [23], which yields the
existence of a cyclotomic splitting field E|F of D. We get Y(D|F)~K,(F)
~K,(E)® and therefore the result that K,(F)~yK,(F) is a direct factor of
K, (D). Here g denotes the Galois group Gal(E|F).

Our results are unpleasant in the general number field case. But it seems
possible that the combination of our two methods will give satisfactory results
at least in the totally real case, where Tate’s cohomological description is as
good as in the function field case. We hope to come back to this question later.

The question of whether or not y is surjective looks like a difficult problem.
We have a general positive result only in the case of generalized quaternion
skew fields over arbitrary fields, where we can prove that Y is surjective
whenever it is defined. This together with our discussion of injectivity gives the
results of § 4. (The proof of the surjectivity of ¥ we give here is essentially due to
R.K. Dennis, who kindly permitted us to use it.)

§ 1. Some Properties of the Reduced Norm in K-Theory

Let A4 be an associative ring with unit. In the Steinberg group, St(4), we denote
by U, the subgroup generated by elements c(u, v)=c*(u, v)=[h,,(u), h,5(v)] with




On K, of Finite Dimensional Division Algebras Over Arithmetical Fields 77

u, ve A*, h;;(u)e St(A4) defined as in [14, §5]. (If x, y are elements of any group
we use the notations *y:=xyx~', [x,y]:=%y-y~'.) One easily verifies the
following relations among the generators of U, [18]:

0) clu,1—uy=1 (u,1—ued®),
1) c(uv)c(v,u)=1,
2)  c(uv, wy=c(*v, *w) c(u, w),

3) c(u, vw)y=c(u, v)c(*u, *w).

The natural homomorphism ¢ =¢ ,: St(4)—GL(A) induces the epimorphism
p=p,: U,~[A* A*](c(u, v)— [u, v]), which shows that U, is a central extension
of [A*, A*], and via *c(u, v): =c(*u, *v) (x € A*) one gets an action of A* on U,
which fixes every element of kernel p, with respect to which p is an A*-
equivariant map.

As usual one defines K, (A4):=cokernel ¢, and K,(A4):=kernel¢,. Now, if «
is an element of the centre of A*, relation 3) together with the above remark on
the action of A* on U, shows that the map ur-c(ax,u) (ueA*) defines a
homomorphism A*—K,(A), which clearly vanishes on [4*, A*].

If A=M,(D) is the ring of r x r-matrices with entries in a skew field D with
centre F, the well-known properties of the Dieudonné determinant det:
A*—D*/[D* D*] give a canonical isomorphism of K, (4)=A4*/[A*, A*] with
K, (D)=D*/[D*, D*] which we also call det.

These considerations yield the following

1.1. Lemma. Let D be a skew field with centre F,A=M_,(D). Then the cor-
respondence

(o, uy—c (- 1,,u)  (xeF* ueA¥)
defines a bimultiplicative pairing
F*x K, (4)~K,(A).

(Therefore, by abuse of notation, we also use entries ue K,(A4) in expressions
o 1,,u))

Now we make the general assumption that rings we consider are finite
dimensional algebras over some fixed commutative field F. Let D be any
division algebra over F and X a second F-algebra, not necessarily with centre F.
Then clearly Dy:=D ®; X is a free left D-module, and therefore we have a
homomorphism GL(D,)—GL(D) (induced by some choice of a D-basis of Dy)
which gives a homomorphism NJ*: K, (Dy)— K, (D) (independent of the D-basis
chosen).

1.2. Lemma. Let D be a central division algebra over F and let E|F be a finite
field extension with norm NE. Then the following diagram commutes:

KI(DE)M)E*

‘NBE lNE

K, (D)~ px
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Proof. The assertion is an application of the more or less well-known “tower
formula of the reduced norm”, which we cite without proof from [6, p. 28]:

If B is a simple F-subalgebra of a central simple F-algebra A and if E is in
the centre of B then

L[ [AF] e
t_([E:F][B:F]) eN

and

RN,z (b)=Ny p - RNy (b)Y  (beB).

We choose A=D®; My p(F)~M;. (D), B=Dy=D®,E which is embedded
into A by the correspondence

Ul u® ¥, (ueD, (cE)

where #,€ M. ,(F) denotes the matrix of left multiplication by ¢ on E with
respect to some F-basis of E. Then t=1 and, if be B,

IQIVM[E:F](D)ll‘"(b):1\]&'“’O RNDE|E(b)'

Since the left-hand side is equal to RN, (detb), the lemma follows.

The homomorphism GL(Dy)—GL(D) also induces the transfer homomor-
phism Trp*: K,(Dy)—K,(D) (independent of the chosen D-basis). We have the
following

1.3. Lemma. Let o€ F*, ueD%. Then
i) if X=M(F), we have Dy=~M,(D), K,(Dy)=K,(D) and
X1, u)=cP(a - 1,, detu),

i) if X is arbitrary,
Trpx (- 1y, u)=c"(a, NDxu).

Proof. i) The obvious isomorphism D,~M,(D) gives St(D,)=~St(D), hence a
natural isomorphism K,(Dy)~K, (D), which allows us to identify both groups.
Now we have u=diag(u,, 1,, ..., 15) modE,(D)=[GL,(D), GL,(D)] where
u, € D* such that detu=u, [D*, D*]. Using the relations in St(Dy) (as deduced in
[14, §9]) and the fact that changing the entries of a commutator modulo the
centre does not affect its value one easily derives the formula.

ii) Under the map
J: Dx =D ®p My, y(F)=Mx.(D)=:A

(defined by u @ x—~u® £, (ueD, xe€ X)) we have jo)=a-1,,
jw)=diag(u,,1,,...,1,) mod Ex. p(D)=[A% A*]

where u, € D* with u, [D* D*]=det (u ® £,)= NP*(u). Now the formula follows
from 1i).
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1.4. Lemma. Let D be a central finite dimensional division algebra over F, and let
E|F be a splitting field for D. If E|F is Galois, we denote by g=Gal(E|F) the
Galois group. Then we have a canonical homomorphism p=pp z: K,(D)—K,(E)
with Im p < K, (E)® in the Galois case.

If i: F > E denotes the inclusion, one has, for ae F*, ue D*,
p(cP (o, u)) = (i, i RNp p(u) =i, c7 (o, RNy (1))
(here i, : K,(F)— K,(E) is the map induced by i).

Proof. We define p to be the composition of the map K,(D)->K,(D®,E)
(induced by wu—u®1l (ueD)) with the natural identification
K,(D®E)—>K,(E). In the Galois case D®,E is a g-module via °(u® v)
=u® °v (g €g). Therefore, fixing an isomorphism A: D ®, E — M (E) (n=ind D
:]/[D : F1]), M, (E) carries two g-module structures: the natural one and the one
induced by 4. Both agree on E and hence by the theorem of Skolem-Noether the
two operations of the element seg are the same modulo a certain inner
automorphism of M, (E). Now, using the fact that the elements of kernel p,,
=kernel p, =K, (E) are fixed under the operation of M, (E)*, we conclude that
both operations define the same g-structure on K, (E).

Hence clearly 4 induces a map p: K,(D)—>K,(E)®. A second application of
the Skolem-Noether theorem shows the independence from the choice of 2.

The formula follows immediately from 1.31) and the definition of the reduced
norm.

1.5. Remark. If we compose the transfer Trp¥: K,(Dy)—K,(D) of 1.3 with the
canonical map i : K,(D)—K,(Dy) induced by the embedding, we get Trp¥ i (&)
=& (EeK,(D), d=[X:F)).

On the other hand, if D is a central division algebra over F of degree d
=[D:F], ifi,: K,(F)—K,(D) denotes the map induced by the embedding and
i*: K,(D)->K,(F) denotes the associated transfer (i*=Trk? in our former
notation), we also have the formula i, o i*(n)=#" (7e K, (D) [8]. This means that
any divisible subgroup and any torsion element of order relatively prime to d of
K, (D) (resp. K,(F)) is contained in the image of i, (resp. i*).

§2. The Map ¢

Now, and for the rest of the paper, if we speak about a skew field D, we will
always assume that it is of finite degree over its centre F. Then we have the
reduced norm RNp, ; and it is clear that kernel RNy, 2[D*, D*]. In general it is
not true that equality holds, as recent examples of V.P. Platonov and P.K.J.
Draxl show. It may also happen that kernel RNy =[D*, D*], but that there
exists a finite extension E|F of fields such that kernel RN, #[D¥, D¥] (where
D.,=D®;E) [6, p.81].

We consider the following condition on the central finite dimensional
division algebra D over F:

(A) For each finite field extension E[F we assume kernel RN, ,,=[D}, D§].

This condition is fulfilled if
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i) F is local, or global, or D is discretely valuated with commutative residue
class field [13, 25].

ii) F is arbitrary and the index ind D=7/[D:F] is not divisible by a square
integer +1 [25].

(A) implies K (D)~ A} p:=Im RN, S F*; therefore, by 1.1, we have a
bimultiplicative mapping F* x 4}, z—K,(D), or what amounts to the same
thing, a homomorphism ,: F* @45 z— K, (D).

We need another more technical assumption which, as we will show, holds in
the case of a local or global field.

(B) Let n=ind D=7/[D: F] be the index of the central finite division algebra

D over F. For each ae F* such that 1 —ae .4}, and for every B in some fixed
algebraic closure of F with f"=o we assume 1—f €./}, where E=F(f).

2.1. Lemma. (B) is true if for each finite field extension E|F the reduced norm
RNy, is surjective, e.g. if F is of type C’ in the sense of [20, 11-19]. (This
happens for instance if F is local or global and D is ramified only at non-real
places of F, by Eichler’s norm theorem.) (B) is also true if F is a local or global
field.

Proof. The first assertion is trivial as is the second in case F=R. Since it is easy
to see that the reduced norm of a p-adic locally compact skew field is always
surjective, we only have to consider the global case. But then Eichler’s norm
theorem [7] tells us that

Npip={aeF*|a>0 for every real ramified place of D}.

Now let (2, 1 —a)e F* x A}, and E=F(f), p"=a. If there exists some embed-
ding v: E—R such that D; ®;R is ramified, then of course D ®;R is ramified
which implies v(1 —a)>0. But then v(1—f)>0 and hence 1—fe A}, 5.

2.2. Theorem. Let D be a central division algebra of index n=ind D over a field F
with property (A); let i,: K,(F)—K,(D) be the map induced by the embedding
i: F-D, and i*: K,(D)— K,(F) the associated transfer (i* =Tt in the notation
of 1.3). Then

1) for each (o, )€ F* x A}, we have

Vola® ) =i, (o, B}),  i*oho(a® B)={o, f}"

(here we use the common notation {a, B} =c* (a, B)).

i) if, additionally, D has property (B), Y is a “symbol” i.e. it vanishes on the
subgroup Z<F*®g M p generated by elements a®(1—o) with (o, 1—a)e
F* 5 Mg
2.3. Definition. If D is a central division algebra over a field F with (A), (B), we
define Y(D|F):=(F*®z . 4pr)/Z. The image of a® f is denoted by (o, ).
Further let

Y: Y(D|F)—K,(D)

denote the homomorphism induced by .
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2.4. Corollary. If D is a central division algebra over F satisfying (A), (B), and if
EoF is a splitting field for D, we have a commutative diagram

K, (D)

e

Y(D|F)——K,(E)

where the horizontal map is induced by («, B)— c(a, B).

If ESF is Galois with group g=Gal(E|F) we may replace K,(E) by K,(E)®.

If the canonical map Y(D|F)— K, (F) is injective then kernel Y has exponent
n=ind(D).

This follows from 2.2 together with Matsumoto’s theorem and 1.4.

2.5. Corollary. Let F be a global field.

i) Cokernel  is finite.

ii) If the canonical map Y(D|F)—K,(F) is injective, then kernel s is finite.
Proof. 2.2i) shows that it is enough to prove that i, has finite kernel and
cokernel. Now both groups are of exponent n?; therefore we only have to show
that they are finitely generated. But this follows easily from Keating’s compari-
son of the localization sequence of D with that of F ([11, Th. 1]; see also [16])

together with Quillen’s result that K, of the integers of F (resp. of a maximal
order of D) is finitely generated [17, p. 197].

Proof of 2.2. i) The definition of ¥, says:
Yola® P)=c"(o,b)  where f=RNp p(b) (xeF*, BeNpp)
Now RN, ¢(b")=RNp, ¢(f); hence

Yol ® B)'=cP(a, b") =cP(o, f) =i, " (o, B)=1i,({e B}),

i*Yo(a ® B)=1i*c(a, b)=c" (o, RN b")={at, B}".

i) Let (¢, 1 —a)e F* X Ap 5, and let X"—a= [1/:(X)* be a decomposition
into pairwise relatively prime monic irreducible factors f;(X)eF[X]. In an

algebraic closure of F we choose, for each i, a root «; of f(X); let E;=F(x,).
Then it is easy to see

L—oa=[]fi() =] NF (1 —o)
Now, since (B) is assumed, we can choose u;e D;=D®E; with RN, ; (u;)=
1 —a;. Using i) and the fact that the index of D; is a divisor of n, we get ¢”i(a;, )"
=1 which yields, by 1.3:
L=T]Tr3i(c” (o, u)*)"
=[] TrP (c” (o, u;)*)
=[]c"(o, Npiu)*
=cP(a, [[ND uf).



82 U. Rehmann and U. Stuhler

From 1.2 we get
RNp ([ TN uf) =N RNp, , uf' =1~

hence Y y(a, | —a)=1, which proves 2.2.
For later applications, we need some technical facts. Let D|F be as above.

2.6. Lemma. If x,ye AN then (—x, x)=1, (x,y) ' =(y, x).

Proof. Since A, p is a group we have x ™!, xye A} p; therefore
(—x,x)=1—x,x)(1—x"H " Lx)=1-x"1, x Y)=1,

which yields

l=(=xy, xy)=(=x, X)(=x, ) (3, X) (3, ¥) =(x, ) (), X).

2.7. Proposition.' Let D|F be a division algebra which is ramified at exactly one
real place of F. Then K,(F) is a direct sum of a subgroup isomorphic to Y(D|F)
under the natural map and the cyclic group of order two generated by {—1, —1}.

Proof. Let g,€{+ 1} (resp. |a|) denote the sign (resp. value) of ae F at the real
ramified place of D, such that =0, |a|.

Then a split epimorphism K,(F) =Y (D|F) is defined by
{o, By— (o 1) (g, l2) ™" (o, feF¥).

It is clearly bimultiplicative, and the value of {a, 1—o} is trivial, which is
obvious in the case 1 —a>0. If 1 —a <0, then a€ .4}, and, by 2.6

(0, 1=a) (=L et =(a—10) (-1, 0" ' =1.
Since K, (F) is generated by {—1, —1} and {a, f}, f>0, the proposition follows.

2.8. Corollary. If D is ramified at at most one real place of F, kernel  has
exponent n=n(D).

§3. Is ¢ Injective ?

In this paragraph we always assume F to be a local or global field, and D a
central division algebra of finite degree.

As Corollary 2.4 shows, ¥ is injective if for each non-trivial element
Ee Y(D|F) there exists a finite extension E|F which splits D, but not ¢ (that is,
the image of £ is not trivial under the map

Y(D|F) =K, (F) > K,(E)).

If F is a non-archimedian local field with u(F) the torsion subgroup of F*, a
well-known theorem of C.C. Moore [10] says that the (unique) power norm

! Tt is possible to prove a similar result in the case that D is ramified at exactly two real places (as
was pointed out by one of the authors together with R.K. Dennis), which yields results like 3.5, 4.4 at
least if 4 yn=ind D. But it is unclear to us what happens in the general case
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residue symbol defines a split epimorphism 7n,: K,(F)—u(F) with Z:
=kernel n; the unique maximal divisible subgroup of K,(F). One also knows
[4]:

9, is uniquely divisible by any number prime to the residue class field
characteristic p.

Together with 2.5, this implies that kernel ¥ "2, is of exponent p” where v is
the greatest integer such that p¥ divides n=ind D. Kernelyy nZ clearly would
be trivial if &, were uniquely divisible by p-powers. The latter assertion is a
conjecture of Tate and has been proved recently by him in the following cases: i)
char F %0, ii) F =Q,(a), a some p-power root of unity [22, Th. 5.5].

3.1. Theorem. Let D be a locally compact division algebra with centre F.

1) If F=R, D the ordinary quaternion skew field, then

Y1 Y(D|F)—K,(D)
is injective.

ii) If F is non-archimedian with residue class field of characteristic p (then
clearly Y(D|F)~K,(F) since (A) holds), then kernel \ is contained in the p-
primary part of 9 and image V is a direct summand of K,(D) except possibly in

case charF=0, p=2,1/ —1¢F, and 2|n=ind D, in which case [kernely: &,]1 <2
holds where &,, denotes the intersection of kernely with the 2-primary part of 9.

Remark. 1) has been proved recently by Alperin-Dennis [1]. A result similar to
part ii) can be found in Harris-Stasheff [8], but without an explicit map ¥ and
with certain conditions on n=ind D in case char F =0.

Proof. 1) One deduces from [3, p.356] that K,(R)=<{{—1, —1})> x @ where
g 1s a uniquely divisible group (see also [22, proof of Th. 5.5]). But it follows
from 2.7 that Y(D|F)~ %, and 2.6 gives the assertion.

ii) Assume we can prove the following

3.2. Lemma. If F is a non-archimedian local field and ne N, then there exists a
cyclic cyclotomic field extension E|F of degree n with group g=Gal(E|F) such
that the homomorphism

n(i*): K, (F)/ %= (K, (E)/Zg)®

induced by the inclusion i: F—E is an isomorphism except when charF =0, p=2,
VY —1¢F and 2|n.

In the exceptional case we have, for any finite extension E|F of degree n,
|kernel n(i, )| =2, and there exists a (not necessarily cyclic) cyclotomic field
extension E|F of degree n such that |kernel n(i,)|=2.

Then part ii) of 3.1 follows from 2.5 together with the remarks in the
beginning of this paragraph, since a classical theorem says that D is split by any
extension E|F of degree n=ind D (cf. [19]).

Proof of 3.2. For the proof we borrow an argument from Harris-Stasheff [8,
p-343]. For any Galois extension E|F with group g, denote by i*:
K,(E)—>K,(F) the transfer and by i,: K,(F)—K,(E) the induced map of
i: F—E.
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Then one easily verifies i, o i* = Nf where NE(&) =Y °¢ (¢€ K,(E)). Now one
geg

can derive from [14, Remark 15.9] that the map n: K,(E)—u(E) can be chosen
g-equivariant; therefore we have the following commutative diagram

NE
KZ(E)\ — K, (E)
K, (F)

u(F)

V n(is)

where the map Ni: u(E)—u(E) is induced by the usual norm map E*—F*
composed with the embedding i: F—~E and where n(i*) (resp. n(i,)) is induced
by i* (resp. i,). In [14, p.177] it is proved that i* is surjective, hence 7(i*) is
surjective.

Now, if u(F) has trivial p-primary part (which is always the case in
char F >0) or if n is prime to p, then we may take for E the unique unramified
extension of F of degree n. For the non-p-part of the group u(F) it follows easily
from the well-known properties of the tame symbol [14, p. 98] that n(i,) defines
an isomorphism. In the case (n,p)=1 we get injectivity on the p-primary part
from 1.5, which yields n(i*) o n(i,)=[E: F] id.

Therefore, now we can assume that F contains the p-th roots of unity and
that n=p*. Let 4 denote the greatest integer such that F contains the p*-th roots
of unity, and let { be a primitive p*-th root of unity. Then we show that E

=F (’{/{) has the property wanted in case n=p (from which one concludes the
general case by induction). For the non-p-part of the groups the injectivity of n(iy,)
is obvious by n(i*) o n(i,)=[E: F] id. Therefore we only have to compare the p-
parts of u(F) and =n(i,) u(F). But for these groups the isomorphism follows from
the formula Nﬁ('{[{)=(—l)”‘1c — except in the case char F=0, p=2, VTI¢F,
in which case n(i,) has a kernel of order 2 and E|F is not necessarily cyclic.
Since —1 is in the image of =(i*) but cannot be a norm of a 2*-th root of unit in
an extension of even degree, it must be in the kernel of n(i,) for any extension
E|F of even degree. Hence the lemma is proved.

3.3. Remark. i) The lemma shows that, in the exceptional case, we cannot
decide (with our method) whether or not our map ¥ is injective or has a kernel
of order 2.

ii) It is possible to identify the non-trivial element of the presumed kernel of
¥ in the exceptional case: Let d € F* be an element of quadratic defect 40 in the
sense of [15, §6J] (o being the ring of integers of F) or, equivalently, a
distinguished unit of F in the sense of [14, p. 173]. Then,

kernel y ={1} <y ({—1,1+6})+1.
This can be deduced from [15, 63.13, proof].




On K, of Finite Dimensional Division Algebras Over Arithmetical Fields 85

Let us now study the case of a global field F. Our first result uses C. Moore’s
theorem on uniqueness of reciprocity laws (in fact we need only the “classical”
part of it), the Grunwald-Wang existence theorem of class field theory and the
theorem of Hasse-Brauer-Noether to get a description of kernel ¥ which yields
injectivity results at least in the case F=Q. The second approach uses Tate’s
cohomological description of K, (F) from which we get injectivity in the function
field case.

We first state Moore’s Theorem. For each prime v of F let F, be the
completion of F at v, m the order of u(F) and — for non-complexe v — m, the
order of u(F). Let n,: K,(F,)—u(F,) denote the m,-th norm residue symbol (cf.
[14, §15]) of F,. Composing with the natural map K, (F)—K,(F,) and taking the
direct sum over all non-complex v gives a map

n: K,(F)~]] u(F,).

If {,e u(F,), then clearly {J*'™e u(F); therefore the definition &)~ Cwm gives
a map v

p: [ u(F,)—u(F)

and Moore’s theorem says that the following sequence is exact:
K ()= [T #(F)—" u(F)—1

(cf. [10], a nice proof of this can be found in [5]).

One knows from Garland (number field case) and Tate (function field case)
that kernel = is finite (for literature, cf. [2]).

For any finite dimensional central division algebra D over F we define

Cp=kerneln if charF>0

Cp={leK,(F)|n,(&)=1 for all v except those with v|2,
1/t—1¢Fv, 2|n,=ind (D ®,F,))>0; and =,(£)*=1 for all v}
if char F=0.

Clearly C,, is an extension of kernel n by a finite elementary 2-group, and Cj
=kernel 7 in the number field case for instance when 2/n=ind D.

3.4. Theorem. Let D be a finite dimensional central division algebra over the
global field F. Then the kernel of the map : Y(D|F)—K,(D) is contained in the
inverse image of Cj, under the natural map Y(D|F)—K,(F).

3.5. Corollary. If F=Q or, more generally, if F is a global field with kerneln
={1} and, additionally, in the number field case, with at most one dyadic place v

such that }/ —1¢F, and with at most one real place, then V is injective for all D.

This follows from the theorem and from 2.7, since, under the given assump-
tion, Moore’s theorem yields C,={{—1, —1}), hence kernel y = 1. Examples of
number fields, for which the conditions of the corollary hold, are the imaginary
quadratic fields of discriminant d> —35, d#1 (8). (In case d=1 (8), we clearly
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have two dyadic v with VY —1¢F, and in case d=—35, |kernel n|=2, cf. [3],
appendix, Prop.3 and remark.)

Proof of 3.4. Let (e K,(F)— Cy,. By definition of Cp, and by 3.2, there is a place
vo of F such that m, (¢)#1 and such that there exists a finite cyclic extension Ev
of F,, which splits D, :=D ®, F, , with & having non-trivial image in K, (E™).

Choose for each of the finite ramified places v+v, of D|F a finite cyclic
extension E” of F, which splits D,=D ®, F,, then, by the existence theorem of
Grunwald-Wang [25], there exists a finite cyclic extension E|F which has just
the E™, E* as completions at this finite set of places, But then, by the Hasse-
Brauer-Noether theorem [9], E splits D and, by construction, ¢ has non-trivial
image in K,(E).

This proves the theorem.

In the function field case, we get a sharper result by using the Galois-
cohomological description of K,(F) due to Tate ([2, 21]). This allows us to
compare K,(F) with K, (E), where E is a cyclotomic extension of F, and since a
classical result of Tsen [23] tells us that any central division algebra of finite
degree may be split by such an extension, our result follows.

Let us state what we need. (Main reference: [217].)

We fix some separable hull F, , of our global function field F, and for any
fixed prime / +char F we let Ko S F, denote the group of /*-th roots of unity.
Let Z,(1)=limp,.. Z,(1) is a Z,-module of rank 1 and it has also a G-module

structure, where Gp=Gal(F,,|F) is the Galois group of F. We need the Gp-
module

VV/(z)‘ =Q//ZJ ® Zf(1)®2,

where Q,/Z, carries the trivial G-module structure.
Now, if W' =[] W/ (the sum taken over all primes / % char F), there exists
3

a natural isomorphism
gF: Hl(Fa W(Z)):—’KZ(F),

which is functorial in F (cf. [21], Th. 6.6), and the restriction to H'(F, W,2) gives
a map onto K,(F) {/} (=the /-primary part of K, (F)). (Note that H! (F, W)~
[ H'(F, W/?) by [20, p. 1-9]).

‘ The following fact is more or less well-known:

3.6. Proposition. Let E|F be a finite cyclic cyclotomic field extension of the
global function field F with Galois group g=Gal(E|F). Then the restriction map

H'(F, W®)>HY(E, W®)s
is an isomorphism onto.

Proof. From the “profinite” version of the Hochschild-Serre spectral sequence
we get the following exact sequence [20, p. [-14]:

0—H'(g,(W*)9%) =H'(F, W) >H' (E, W) >H?(g, (W?)6x)
(where G denotes the Galois group Gal(F,__|E)).

sep
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The cohomology of finite cyclic groups g and finite g-modules M yields:
|H'(g, M)|=|H*(g, M)| and H?(g, M)~M?/N,M,

where N,= )" g.
g€g N
Hence it is enough to show, for each prime number /= char F, and for

M =(W/»)%=, that M*~N, M.

But since (W,?)G= is the /-primary part of the multiplicative group of the
unique “constant™ quadratic extension of F, with g-module structure defined by
xt—a?x, xe M, ogeg, the last assertion follows from the fact that the norm map
of a finite extension of a finite field is always onto, q.e.d.

Therefore we conclude:

3.7. Theorem. Let D be a finite dimensional central division algebra over the
global function field F. Then the map

Y K, (F) =K, (D)
is injective, and its image is a direct factor of K,(D).

We only have to choose, by Tsen, a finite (cyclic) cyclotomic splitting field E
of D, and then the first assertion follows from 3.6 together with the properties of
gr and the second from 2.4. From 2.5 we get now:

3.8. Corollary. K,(D)~K,(F) x a finite group.

§4. Quaternions

The question of whether or not  is surjective seems to be a difficult algebraic
problem. We know of no example of a finite dimensional division algebra with
defined and not surjective. But in the case of (generalized) quaternion skew fields
we can — and will now — prove an affirmative result.

Let D be a quaternion skew field with centre F. Recall the definition of the
group U, generated by elements c(u, v), u,veD*, from §1. As one knows, U, is
defined by relations 0)-3) given in § 1 (this result is even true for arbitrary skew
fields [18], but we will need only the fact that K,(D) consists of finite products
II c(u;, v;), with u;, v,e D*, IT[u;, v;]=1, which can be easily verified).

4.1. Proposition. Let D be a quaternion skew field over an arbitrary field F. Then
each element with trivial reduced norm is a commutator, and K ,(D) is generated by
elements c(u, v) with [u, v]=1.

Proof. The first assertion is a well-known easy application of Hilbert’s Satz 90
and the theorem of Skolem-Noether, if char F+2. In general the proof if as
follows: For each uekernel RNy, there is a ve D* such that v and uv have the
same minimal polynomial, since the only condition for this is RSy (1 —u)v=0
where RS, is the reduced trace of D over F. Hence the assertion follows from
the theorem of Skolem-Noether. The proof of the second fact which we will give
now is due to R.K. Dennis.
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For ¢, neUp,, let us write é=x if &n~' is contained in the subgroup
generated by c(u, v) with [u, v]=1. We first show:
If x, ye D*, [x, y]#+1, then the set

Z, , ={zeD*|IweD*: c(x, y)=c(z, w)} U {0}

contains a linear F-subspace of D of dimension at least 3. Since [x, y]+1, we
have dim(F1+Fy+Fyx)=3, and, if ,eF* (i=1,2,3), w=4,y+/1,yx, we get,
by relations 2) and 3):

c(A x+xw, w)="c(A,; 1+w,w)c(x,w)
=c(x,w)=c(x, yf c(x, A, 1+ A;x)=c(x, y).

It follows that, for any two pairs (x;,y;) (i=1,2) with [x;,y,]#1 there is
zeZ z=+0, such that

Yir2>
c(xy, yy)c(x,, y)=c(wy, 2) ez, wy)

for suitable w,, w, € D*. But, by 1),2):
c(wy,z)c(z, wy)="2c(wy *wy, 2),

and now an easy induction on the length of the product shows
Hce(x;,y)=1

for all x;, y;e D* such that I1[x;, y;]=1. This proves 4.1. We also need:

4.2. Proposition. Let E be a quadratic extension of an arbitrary field F. Then
K, (E) is generated by elements {a, b} with o.€ F*, be E*.

Proof. Let u,ve E*. If u,v are linearly dependent, there exists ae F* such that
u= —av, hence {u, v} ={a, v}.

If u, v are linearly independent, we find «, B F* such that 1=au+ fv. But
then

1= {au, fv} ={a, B} {a, v} {u, B} {u, v},

hence

{u, v} ={B, o} {0, v} " {B, u}

and the proposition follows.
4.1 and 4.2 imply

4.3. Theorem. Let D be a quaternion skew field over an arbitrary field F. Then
the map

Vo: F*®y /VD|F_’K2(D)

is surjective.
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Proof. By 4.1, 4.2 we only have to show: ¢”(o, b)eImy, for ae F*, be D*, since
each pair u,ve D* with [u,v]=1 is contained in some quadratic extension E of
F. But clearly, by definition of y,,

Yol @ RNy pb)=cP(a, b), q.ed.

4.4. Corollary. i) If F is a C)-field in the sense of [20], the map Y:
K,(F)—K,(D) is surjective.

ii) If F is local or global of characteristic +0, ¥: K,(F)=K,(D) is a
surjective isomorphism.

iii) If F=R, D the ordinary quaternions, y: Y(D|F)—=K,(D) is a surjective
isomorphism.

iv) If F is local non-archimedian of characteristic =0, y: K,(F)—~K,(D) is a
surjective isomorphism except possibly in the dyadic case. In the dyadic case we
have the following: If 9 is the maximal divisible subgroup of K,(F), the group
kernel Yy N @, is trivial or possibly non-trivial of exponent 2, depending on whether
or not F is contained in Q,(a), a some 2-power root of unity. The group
kernel y/kernel y N @ is trivial or possibly of order 2 depending on whether or
not ]/ —1eF.

v) If F=Q, y: Y(D|Q)—K,(D) is a surjective isomorphism. In particular
K, (D) can be described as an abstract abelian group by generators (a, p) with
aeQ*, BeQ* (=positive numbers) or peQ*, according as D is ramified at
infinity or not, and defining relations

(0, 1—a)=1 (xeQ* 1—-0eQ¥* or 1—-aecQ%*),
(2, B)=(2, B) (&, B),
(o BB)=(2, B)(at, B).

vi) If F=Q(]/g) is the imaginary quadratic field of discriminant d> — 35,
d=£1(8), then yr: K,(F)—K,(D) is a surjective isomorphism.

All assertions follow from 4.3 together with the results of § 3.
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