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Abstract. The Witt indices which may occur after base field extension for a given

anisotropic excellent quadratic form are uniquely determined by the dimension of the form

and independent of the base field and of the particular form chosen. We generalize that

result to a larger class of forms and give an easy method of computing these indices. In

particular, this can be done for the form given by a sum of squares. This gives a natural

generalization of Pfister’s theorems on the level of fields. Another result is the existence of

families of anisotropic special orthogonal groups of unbounded absolute rank which have a

joint generic splitting field of small transcendence degree including examples of transcen-

dence degree 0.

Introduction

The splitting pattern of a regular quadratic form q over a field k of characteristic
different from 2 is the sequence of distinct Witt indices of q which may occur after
base field extension. For a given regular form q̄ we define a class of forms which we
call q̄-extensions. We will show that the anisotropic members q of this class all have a
splitting pattern depending only on the dimension of q and on the splitting pattern of
q̄. This dependency is determined in §2. For example, Pfister forms are of this type
(here we have q̄ = 0); their Witt index is either 0 or maximal. For every form q̄ there
are q̄-extensions of arbitrarily high dimension. The q̄-extensions with dim q̄ ≤ 1 are
precisely the “excellent” forms introduced by Knebusch, who gave a recursive formula
for their possible Witt indices in [3, 7.11]. In general, the determination of the splitting
pattern of a given quadratic form seems to be very difficult, however, for excellent forms
there is an easy way of describing their splitting patterns; this will be discussed in §2.

Our investigations have interesting consequences. For example, they generalize
the results of Pfister that the level of fields is infinite or a power of 2, and that fields
exist having a prescribed power of 2 as its level (cf. 3.4).

Another important consequence is the fact that families of anisotropic forms of
arbitrarily high dimension exist which have a field of low transcendence degree as a
joint generic splitting field (cf. 2.5, 2.14). This behavior is completely different from
the splitting behavior of (finite-dimensional) central simple division algebras over k,
since a theorem of Witt, Amitsur and Roquette says that a generic splitting field of
such an algebra D splits precisely those division algebras which represent powers of D
in the Brauer group. This is always a finite set of division algebras.

1. Generic splitting towers of quadratic forms

Let V be a vector space of dimension n ≥ 2 over a field k of characteristic different from
2 and q : V → k be a regular quadratic form on V with discriminant d(q) ∈ k∗/k∗2.
We are interested in the possible Witt indices

0 ≤ i0 < i1 < . . . < ih−1 < ih = [n/2]
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which occur for the quadratic forms qL := q ⊗ L with L running through all field
extensions of k.

These Witt indices can be investigated by means of the notion of the so-called
generic splitting tower of q considered by Knebusch [2, §5] (cf. also [4, Ch. 4, 6.9, p.
160]). However, our definition is slightly more general than that of [2].

For any quadratic form q, let i(q) denote its Witt index.

1.1 Definition. A generic splitting tower of q is a sequence k = K0,K1, . . . ,Kh of
field extensions of k with the following properties:
i) The associated sequence of Witt indices ij := i(qKj

) is strictly increasing.

ii) For every field extension L of k, there is a j such that i(qL) = ij .
iii) Every field extension L of k with i(qL) ≥ ij is a k-specialization of Kj (that is,

there is a k-place Kj → L ∪ {∞}).
The sequence (i0, i1, . . . , ih) is called the splitting pattern of q, the number h is called
the height of q and will be denoted by h(q).

1.2 Remark. i) and iii) imply the existence of the k-specializations Ki → Kj for
i < j. Hence we obtain a sequence k = K0 → K1 → . . .→ Kh of k-specializations. In
[2] a sequence of embeddings was required. But our definition allows generic splitting
towers {Ki} with not necessarily non-decreasing transcendence degrees, which often
exist, as can easily be seen from 2.5, 2.10, 2.14.

If {k = L0, L1, . . . , Lh′} is a second generic splitting tower of q, then obviously
h′ = h and for j = 0, . . . , h the fields Kj and Lj are k-spezializations of each other.

A natural choice for a generic splitting tower of q is described in [1, §5]: For
i = 1, . . . , [n/2], the variety of i-dimensional totally isotropic subspaces of V is defined
over k except if n is even, i = n/2 and d(q) 6= 1, in which case it is defined over
k(
√

d(q)). (This variety is absolutely irreducible except when n is even and i ≥ n/2−1.
In this case it consists of two irreducible components, and for our purposes we just may
take one of them, cf. [1, 5.2].) Its function field Fi is a generic field for the problem
of splitting off at least i hyperbolic planes from V . That is, i(qFi) ≥ i, and every field
extension L of k with i(qL) ≥ i is a k-specialization of Fi. Also, for every such L,
we have i(qL) ≥ i if and only if the free composite Fi · L is a purely transcendental
extension of L [1, 5.3 and 5.7]. We get a generic splitting tower of q by taking the
subsequence of {Fi} obtained by avoiding repetitions of Witt indices; that is, we define
K0 = k, and, if Kj is already defined and ij < [n/2], then Kj+1 is Fi where i is minimal
with i > ij . If ij = [n/2] we set h = j (cf. [1, 5.8 and 5.9]). If necessary, we write Fi(q)
(resp. Ki(q)) instead of Fi (resp. Ki).

It is immediate from 1.1 ii) that the numbers ij are the only possible Witt indices
for qL, where L runs through all field extensions of K.

For example, if q is a regular subform of codimension ≤ 1 of an anisotropic Pfister
form, then the only possible Witt indices of q are i0 = 0 and i1 = [n/2] since, for
every such form q and every field extension L of k, we have: if qL is isotropic, then qL
splits completely. For Pfister forms this follows from [4, Ch. 4, Cor. 1.5, p. 144]. If q
is of codimension 1 in some Pfister form, say ϕ = q ⊥ 〈a〉 for some a ∈ k∗, and if qL
is isotropic, then ϕL splits totally and therefore has an (n + 1)/2-dimensional totally
isotropic subspace which intersects the space of qL in a subspace of dimension [n/2],
hence qL splits completely.
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2. Excellent quadratic forms

2.1 Remark. Let q̄ = 〈a1, . . . , an〉 be a regular quadratic form over k. Then the Pfister
form ϕ := 〈1, a−1

1 a2〉 ⊗ . . . ⊗ 〈1, a−1
1 an〉 is of dimension 2n−1 and has an orthogonal

summand 〈1, a−1
1 a2, . . . , a

−1
1 an〉 which is similar to q̄. Thus we have an orthogonal

decomposition a1ϕ
∼= q ⊥ q̄ with some regular form q.

2.2 Definition. Let q be a regular quadratic form over k.
i) The level `(q) of q is the smallest number l such that q is an orthogonal summand

of a scalar multiple of an anisotropic l-dimensional Pfister form.
ii) q is a Pfister neighbour if there exists a Pfister form ϕ with (dimϕ)/2 < dim q,

some a ∈ k∗ and some form q′ such that aϕ ∼= q ⊥ q′. The forms ϕ (resp. q′) are
called the associated Pfister form (resp. the complementary form) of q, and dim q ′

is called the codimension of q.
iii) Let q̄ be a regular quadratic form over k. The form q is called a q̄-extension if there

is a sequence q = q0, q1, . . . , qr = q̄ of quadratic forms over k of length r ≥ 0 such
that, for j < r, the form qj is a Pfister neighbour with complementary form qj+1.
The number r is called the order of the q̄-extension q and denoted by ord (q, q̄).
An excellent form q is a q̄-extension with dim q̄ ≤ 1, and ord (q) denotes its order.

2.3 Remarks and Examples.

i) The notions of a Pfister neighbour and of an excellent form have been introduced
and studied by Knebusch [3, 7.4ff.]. It is proved in [3, l.c.] that ϕ and q ′ in
2.2 ii) are uniquely determined up to isomorphism by q, hence it follows that the
sequence q0, . . . , qr in 2.2 iii) is uniquely determined up to isomorphism.

ii) Clearly the level of a form q is always a power of 2. By 2.1 we obtain `(q) ≤
2(dim q)−1. A form q is a Pfister neighbour if and only if `(q) < 2 dim q.

iii) Let n, t ∈ N and let t be minimal such that 2t ≥ n. Then the quadratic form
n× 〈1〉 is excellent of level l = 2t, as is easily seen by induction. Hence there are
(anisotropic) excellent forms of any dimension.

iv) If q̄ is excellent (which is in particular true if dim q̄ ≤ 3), then every q̄-extension
is also excellent.

v) For excellent anisotropic q, it follows from [3, Prop. 7.9] that h(q) = ord (q).
In 2.12 below we will show that, for an arbitrary anisotropic q̄-extension q, the
relation h(q) ≤ ord (q, q̄) + h(q̄) holds with equality for excellent forms, which
shows that ord (q, q̄) plays the role of a ’relative’ height for anisotropic forms.

2.4 Proposition. Let q be a q̄-extension of order r. If q̄ is isotropic, then the
anisotropic kernels of q and of (−1)r q̄ are isomorphic. If q̄ is anisotropic, then the
anisotropic kernel of q is isomorphic to one of its ’signed’ complementary forms (−1)j qj
for some j with 0 ≤ j ≤ r. In particular, the anisotropic kernel of an excellent form is
excellent.

Proof. We may assume that q is isotropic. Therefore q ⊥ q′ splits completely since it
is similar to an isotropic Pfister form, and hence q defines the same Witt class as −q ′,
which gives the assertion.

We give an example concerning generic splitting fields of special orthogonal groups.
Recall that a generic splitting field of a reductive linear algebraic k-group G in the sense
of [1] is a field extension F of k such that GF is split and such that the field extensions
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L of k for which GL is split are the k-specializations of F . If G = SO(q) is the special
orthogonal group of the regular quadratic form q of dimension n, then GF is split if
and only if i(qF ) = [n/2]. This condition means that qF is totally split.

2.5 Theorem. Let q be a q̄-extension with dim q̄ ≥ 2, let G = SO(q) and Ḡ = SO(q̄).
A field extension F of k is a (generic) splitting field of G if and only if it is a (generic)
splitting field of Ḡ.

Proof. It follows immediately from 2.4 and the preceding remark that, for dim q̄ ≥ 2,
the field F is a splitting field of G if and only if it is a splitting field of Ḡ.

Let F be a generic splitting field of Ḡ and L a splitting field of G. Then L is
a splitting field of Ḡ and hence is a k-specialization of F . Therefore F is a generic
splitting field of G. The converse follows similarly.

2.6 Lemma. Every natural number n can be written uniquely as an alternating sum
of 2-powers

n = 2ah − 2ah−1 + 2ah−2 −+ . . .+ (−1)h−12a1 + (−1)hε

with ε, h, a1, . . . , ah ∈ N ∪ {0} satisfying 0 < a1 < a2 < . . . < ah−1 < ah and

ε =

{

0 and a1 < a2 − 1 if n is even,
1 and 1 < a1 if n is odd.

In particular, 2ah is the smallest 2-power greater than or equal to n.

Proof. Let n = 2gε0 + 2g−1ε1 + . . . + 2εg−1 + εg denote the dyadic expansion of n
with εi ∈ {0, 1}. Each subsequence of {εi} consisting of consecutive 1’s only and being
maximal with this property represents some subsummand of type 2a − 2b with a > b.
If the last one is such that a = b+ 1, then this can be replaced by 2b. This proves the
Lemma.

2.7 Definition. For n ∈ N, the expansion of 2.6 is called the alternating 2-expansion
of n. For j = 0, . . . , h, the numbers 2aj − 2aj−1 + − . . . ± 2a1 ∓ ε are called the j-th
alternating 2-partial sums of n and denoted by n(j). The number h is called the height
h(n) of n.

2.8 Corollary. Let q be a q̄-extension of order r with dim q = n, dim q̄ = n0, and let
n be expanded as in 2.6. Then h = h(n) = r + h(n0), `(q) = 2ah and dim qj = n(h−j)

for any j = 0, . . . , r.
If q̄ is anisotropic and j is such that (−1)jqj is the anisotropic kernel of q, then i(q) is
given by

ij(n) := (n− n(h−j))/2 =

{

2ah−1 −+ . . .− 2ah−j+1−1 if j is even,
2ah−1 −+ . . .+ 2ah−j+1−1 − dim qj if j is odd.

In particular, for j = 1, the smallest non-trivial Witt index is given by

i1(n) = 2ah−1 − 2ah−1 + 2ah−2 −+ . . .+ (−1)h−12a1 + (−1)hε

= n− 2ah−1 = n− `(q)/2,
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which is the remainder of n modulo the highest power of 2 below n.

2.9 Proposition. Let q be an anisotropic q̄-extension with r = ord (q, q̄) > 0 and with
complementary form q′.
i) Let r > 1 or let q′F1(q)

be anisotropic. Then −q′F1(q)
is isomorphic to the anisotropic

kernel of qF1(q)
.

ii) If q′F1(q)
is isotropic, then the fields F1(q) and F1(q

′) are k-specializations of each
other.

Remark. It is not known whether the condition in 2.9 ii) can hold for a Pfister neigh-
bour q with complementary form q′. (Cf. [3, 8.3].)

Proof. i) By 2.4 we only have to show that q′F1(q)
is anisotropic if q′ is a Pfister neigh-

bour. Hence we may assume that r > 1. Let ϕ′ be the Pfister form associated to q′.
Remark 2.3.ii) implies dim q > dimϕ′. If q′F1(q)

were isotropic, then ϕ′
F1(q)

would split

completely. Hence, by the Cassels-Pfister subform theorem [4, Ch. 4, 5.4 ii), p. 155],
q would be a subform of ϕ′, which is impossible.

ii) Clearly F1(q) is a k-specialization of F1(q
′). Conversely, F = F1(q

′) splits the
Pfister form ϕ associated to qF totally, and hence any of its maximal isotropic subspaces
intersects the space of qF non-trivially for dimension reasons, hence qF is isotropic and
therefore F is a k-specialization of F1(q).

2.10 Corollary. Let 1 ≤ i ≤ [n/2].
i) For j = 1, . . . , r− 1 the anisotropic kernel of qFi(q) is isomorphic to (−1)j(qj)Fi(q)

if and only if ij−1(n) + 1 ≤ i ≤ ij(n). This is also true for j = r if q̄F1(qr−1)
is

anisotropic.
ii) Let K0 = k and for j = 1, . . . , r let Kj = F1(qj−1). Then the sequence {Kj} is

an initial sequence of a generic splitting tower of q. In particular, if q is excellent,
then this is a generic splitting tower.

Proof. i) If 1 ≤ i ≤ i1(n), then the free composite F of the fields F1(q) and Fi(q) is a
purely transcendental extension of F1(q) by [1, Th. 5.3]. Therefore −q′ is anisotropic
over F , since it is so over F1(q) by 2.9, and hence it is anisotropic over Fi(q). It follows
that the anisotropic kernels of qF1(q)

and of qFi(q) are both obtained from −q′ by base
extension. On the other hand, if i > i1(n), then i(qFi(q)) ≥ i > i1(n) and hence q′Fi(q)
is isotropic. This proves the claim for r = 1. Since the complementary form of qj is
qj+1, an induction on j gives the rest of the statement.

ii) This follows from 2.8, applied to the form qKj
over Kj .

2.11 Theorem. Let q be an anisotropic q̄-extension of order r = ord (q, q̄) with n =
dim q. Then the first r components of the splitting pattern of q are always given by
ij = ij(n) for j = 0, . . . , r − 1. Its components for j ≥ r are given by

ij = ir(n) +

{

jj−r if q̄F1(qr−1)
is anisotropic,

jj−r+1 otherwise,

where (j0, . . . , jt) is the splitting pattern of q̄.

Proof. The jth component of the splitting pattern of q is the Witt index of qKj
. By

2.8, applied to qKj
instead of q, this is ij(n) for j < r, and the same argument, together

with 2.9, works for j = r. For j > r the statement follows from 2.4, applied to qKν(q̄)
,

where Kν(q̄) runs through a generic splitting tower of q̄.
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2.12 Corollary. If q is an anisotropic q̄-extension of order r, then h(q) ≤ ord (q, q̄) +
h(q̄). Equality holds if q̄F1(qr−1)

is anisotropic, and otherwise we have h(q) = ord (q, q̄)+

h(q̄)− 1. In particular, if q is excellent, then we have h(q) = h(dim q).

2.13 Illustration. Let q be an anisotropic excellent form of dimension n over a field
k. The following data hold independently of the field k and of the particular excellent
form q. For example, they hold for the form given by the sum of n squares over any
field with level ≥ n.
i) n = 12 = 24 − 22, thus h(q) = 2 and

dim q1 = 4,dim q2 = 0.
Splitting pattern: (0, 4, 6).

ii) n = 123 = 27 − 23 + 22 − 1, thus h(q) = 3 and
dim q1 = 5,dim q2 = 3,dim q3 = 1.
Splitting pattern: (0, 59, 60, 61).

iii) n = 1234 = 211 − 210 + 28 − 26 + 25 − 24 + 2, thus h(q) = 7 and
dim q1 = 814,dim q2 = 210,dim q3 = 46,dim q4 = 18,
dim q5 = 14,dim q6 = 2,dim q7 = 0.
Splitting pattern: (0, 210, 512, 594, 608, 610, 616, 617).

The anisotropic quadratic forms of height 1 are known to be the forms similar to
an anisotropic subform of a Pfister form of codimension ≤ 1; that is, these are exactly
the anisotropic excellent forms of dimension 2a1 or 2a1 − 1 (cf. [2, Th. 5.8]).

The anisotropic excellent forms of height 2 are clearly the anisotropic excellent
forms of dimension 2a2 − 2a1 with a1 ≥ 1, a2 > a1 + 1 or of dimension 2a2 − 2a1 + 1
with a1 ≥ 2 and a2 > a1. Compare [3, §10] for results and questions about anisotropic
forms of height 2 that are not excellent.

2.14 Corollary. Let q be excellent of dimension n. Let n be expanded as in 2.6.
Then G = SO(q) has a generic splitting field of transcendence degree ≤ 2a1 − ε− 2. In
particular, G has an algebraic generic splitting field of degree 2 – namely k(

√

d(q)) –
if n ≡ 2 (mod 4), and G has a generic splitting field which is the function field of a
complete curve defined over k if n ≡ 3, 4, 5 (mod 8). The curve can be taken to be the
Severi-Brauer variety associated to the even Clifford algebra of the ternary form qh−1

in case n ≡ 3, 5 (mod 8). Similarly, in case n ≡ 4 (mod 8) the curve can be taken
to be the Severi-Brauer variety associated to the quaternion algebra which is related
to the quaternary form qh−1.

Proof. q is a qh−1-extension for the (excellent) form qh−1 of dimension n1 = 2a1 − ε.
Hence, by 2.5, a generic splitting field of SO(qh−1) is one of G. By the preceding remark

and by [1, 5.4], qh−1 is of height 1, hence the field F1(qh−1) (resp. k(
√

d(qh−1)) is a
generic splitting field of SO(qh−1) if n1 ≥ 3 (resp. n1 = 2). By [1, 5.5], this field has
transcendence degree n1−2. Let n ≡ 3, 5 (mod 8). It follows from [4, Ch. 2, 14.3 (i)],
that the ternary form qh−1 splits if and only if its even Clifford algebra C = C(qh−1)
splits. But C is a quaternion algebra, and it has been discovered by Witt [5] a long
time ago that the generic splitting field of a quaternion algebra is the function field of
its associated Severi-Brauer variety; that is, of the variety of its nilpotent elements (cf.
[1, 3.20]).

The curve in case n ≡ 4 (mod 8) is obtained as the Severi-Brauer variety of the
quaternion algebra A associated to the Pfister form related to qh−1. Namely, since in
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this case d(qh−1) = 1, it follows from [4, Ch. 2, 14.3 (ii)] that qh−1 splits if and only if
A splits.

3. Witt indices, the level of fields, and applications to number fields.

Corollary 2.8 gives some interesting relations between the possible Witt indices and
the height of excellent quadratic forms. For anisotropic excellent forms q of height 1
everything is clear: i1 = [n/2] with n = dim q. In the case of height ≥ 2 we obtain:

3.1 Proposition. Let q be an anisotropic excellent form of height h ≥ 2. Then
i1(n) ≥ 2h−2 with strict inequality for h ≥ 4.

Proof. For h = 2 there is nothing to prove. Hence we may assume h ≥ 3. Let n be
given in alternating 2-expansion as in 2.6. It follows from 2.8 that

i1(n) = 2ah−1 − 2ah−1 + dim qh−2 = 2ah−1(2ah−ah−1−1 − 1) + dim qh−2 ≥ dim qh−2.

Hence we have i1(n) ≥ dim qh−2 > `(qh−2)/2 = 2ah−2−1, where the inequality follows
immediately from the definition of the level of a quadratic form, and since aj − 1 ≥ j

for every j = 2, . . . , h, we obtain in fact i1(n) > 2h−2 for h ≥ 4.

The information about the dimensions of the anisotropic kernels qj stated in 2.8
makes the parity of all Witt indices explicit for anisotropic excellent forms of dimension
n. One concludes:

Let n be even; then all Witt indices are even, except – of course – possibly the
last one, ih = [n/2].

Let n be odd; then the parity of the Witt indices is alternating; namely, ij ≡ j
(mod 2) for 0 ≤ j ≤ h.

In particular, this yields for odd dimensional forms:

3.2 Remark. An anisotropic excellent form of odd dimension n has an even height if
and only if n ≡ 1 (mod 4).

Proof. For anisotropic excellent forms of odd dimension n we have n = 2 ih + 1 with
ih ≡ h (mod 2).

An immediate consequence of the last statement in 2.8 is the following corollary.

3.3 Corollary. An isotropic excellent form q is of Witt index 1 if and only if its (first)
complementary form is anisotropic and dim q = 2κ + 1 for some κ ∈ N ∪ {0}.

3.4 Remark. Of course 3.3 implies, in the case of sums of squares, Pfister’s theorem
that the level of any field k is either infinite or a power of 2 (cf. [4, Ch. 2, 10.8, p.
71]). Namely, the level s = s(k) of k is the smallest number s such that Qs := s× 〈1〉
represents −1 over k, or, equivalently, the biggest s such that Qs is anisotropic over k.
It follows from 2.3 iii) and 3.3, applied to Qs+1, that this number is infinite or a power
of 2, which is Pfister’s result. If s(k) is finite, the anisotropic form Qs(k) is a Pfister
form and hence its level is just the level of k.

The statements 2.9 and 3.3 also give a proof of the fact that fields of arbitrary
level exist (cf. [4, Ch. 4, 4.3 , p. 152]): Let q = (2κ + 1)× 〈1〉 over some formally real
field k. Then, by 2.9 and 3.3, the field F1(q) is of level 2

κ. In fact, if k is taken to be
Q, the field of rationals, then this gives a “generic construction” of such a field.

As another application, we describe the splitting behavior of excellent forms over
Q after base extension by number fields F .
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3.5 Theorem. Let q be an anisotropic excellent form over Q of dimension n. Then,
for every number field F , the only possible Witt indices of qF occur among

0, [n/2] if n ≡ 0,±1 (mod 8),
0, [n/2]− 1, [n/2] if n ≡ ±2,±3 (mod 8),
0, [n/2]− 2, [n/2] if n ≡ 4 (mod 8).

Proof. For n ≤ 3 our claim is obvious; for n = 4 it is true since the splitting pattern is
given by i0 = 0, i1 = 2. Hence we may assume that q is of dimension n ≥ 5. Let F be
a number field such that qF is isotropic.

Since every 5-dimensional indefinite form q over Q is isotropic, we know that q is
definite; q = 〈x1, . . . , xn〉 with xi ∈ Q∗, all xi being positive or all xi being negative.
If the number field F had a real embedding, then qF would still be anisotropic. So, F
is totally imaginary and hence, by Minkowski-Hasse, the anisotropic kernel of qF is of
dimension ≤ 4. Thus, the Witt index i = i(qF ) satisfies i ≥ (n− 4)/2 ≥ [n/2]− 2. We
expand n as in Lemma 2.6. It follows immediately from 2.6 that a2 ≥ 3 and hence

n ≡ (−1)h−1n(1) = (−1)h−1(2a1 − ε) (mod 8).

If n ≡ 0,±1 (mod 8), then a1 ≥ 3 and hence i = [n/2].
If n ≡ ±2 (mod 8), then ε = 0, a1 = 1 and hence i = [n/2] or [n/2]− 1.
If n ≡ ±3 (mod 8), then ε = 1, a1 = 2 and hence also i = [n/2] or [n/2]− 1.
If n ≡ 4 (mod 8), then ε = 0, a1 = 2 and hence i = [n/2] or [n/2]− 2.

It is straightforward to extract from the statement of 3.5 the well-known fact that
the level of number fields, if finite, is 1,2 or 4.

3.6 Remark. The indices mentioned in 3.5 do occur over number fields. To see this,
let F be a number field of level 4. Put Qn = n×〈1〉. Then e.g. i((Q6)F ) = 2 = [6/2]−1
and i((Q12)F ) = 4 = [12/2]− 2 and similarly for other values of n.

Proof. Clearly (Qn)F is a (Qj)F -extension for some j ≤ 4. Now one applies 2.4.
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