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Introduction.

Let q be an anisotropic quadratic form of dimension n ≥ 2 over a field k of
characteristic 6= 2. The splitting pattern of q is made up from all distinct Witt indices
of q which occur over field extensions of k. The entries of the splitting pattern of q are
called the higher Witt indices of q.

For excellent quadratic forms q, the splitting pattern depends only on the dimen-
sion n of q, and is known explicitly for every n. This goes back to the originating work
of M. Knebusch [10, 11] and has been studied further in [5]. However, surprisingly
little is known about the splitting pattern of quadratic forms q, in general, as soon as
there are at least 2 non-zero Witt indices in the splitting pattern of q.

In section 1 we investigate general constraints on splitting patterns. In theorem
1.6 we describe in which way the splitting pattern of a quadratic form is influenced by
its Clifford algebra. For this we use the index reduction formulas of A. S. Merkurjev
[14] as the crucial tool. It turns out that the splitting of the Clifford algebra determines
the “high end” of the splitting pattern.

On its “low end”, we find that the first higher Witt index i1(q) of q always is less
than or equal to the first higher Witt index of the anisotropic excellent forms of the
same dimension as q. In particular, i1(q) is less than or equal to the excess of dim q
over the biggest 2-power which is strictly smaller than dim q. If equality holds, then q
is a “stable Pfister neighbor”; that is, there is a field extension K of k such that qK is
an anisotropic Pfister neighbor.

Similar results on i1(q) have earlier been obtained by D. W. Hoffmann [4].
Here we give a short proof based on Theorem 1.7, which describes a useful criterion

to determine when an anisotropic form q is an orthogonal summand of an anisotropic
Pfister form π. Corollary 1.8 establishes the existence of a unique field extension K
of k in a generic splitting tower of π ⊥ −q such that πK is anisotropic and has the
anisotropic kernel (qK)an of q as an orthogonal summand.

In section 2 we study the “algebraic” splitting pattern; that is, we look at the
possible Witt indices which can occur over algebraic extensions of k. In general, the
algebraic splitting pattern is different from the splitting pattern. However, we show
that for given dimension n there is a number t such that, for every form q of dimension
n over any field k, the splitting pattern of q is equal to the algebraic splitting pattern
of qK , where K is a purely transcendental field extension of k of degree t.

In section 3 we approach the wide open case of quadratic forms of height 2; that
is, with exactly 2 non zero Witt indices in the splitting pattern of q; see, in particular,
theorems 3.4 and 3.11 for so-called good forms of degree 3 and forms of degree 2
that are not good, respectively. The general theorem 3.9 makes explicit the splitting
pattern of good forms of arbitrary degree, assuming that the conjectures by B. Jacob
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and M. Rost [6] on higher cohomological invariants are true. Under this assumption
those forms have always twice the dimension of their leading form, and over a suitable
field extension they are (still anisotropic) a product of a four dimensional form and a
Pfister form. This also answers a question of M. Knebusch [11, 10.6, p. 30].

We gladly acknowledge most helpful conversations with D. W. Hoffmann and
J. Morales on section 1 and B. Kahn on section 3. We also thank I. Kersten very
much for several improvements and corrections.

0. Setup.

Let q be a regular quadratic form of index i(q) and let

i0 := i(q) < i1 < . . . < ih−1 < ih = [n/2]

denote all distinct Witt indices which occur for the quadratic forms qL := q⊗L with L
running through all field extensions of k.

The natural number h is called the height of q. The (h+1)-tuple (i0, i1, . . . , ih) of
strictly increasing integers is called the splitting pattern of q (cf. [5, 1.1]). If necessary,
we will write iν(q) and h(q) instead of iν and h. We now illustrate the extreme cases
h = 1 and h = m := [n/2].

0.1 Example (Height 1; cf. [10, Thm. 5.8, p. 81]). An anisotropic quadratic form q
of dimension ≥ 2 over k has splitting pattern (0,m) for some m ∈ N if and only if q is
similar to an orthogonal summand of codimension ≤ 1 of a Pfister form over k.

0.2 Example (Height m; cf. [10, Ex. 5.7, p. 80]). Let q = 〈X1, X2, . . . , Xn〉 with
indeterminates Xi over k = F (X1, . . . , Xn) for any field F . Then q has splitting
pattern

(0, 1, 2, . . . ,m− 2,m− 1,m).

Given m ∈ N, there are 2m−1 different tuples (0, . . . ,m) of strictly increasing
integers. What about realizing them as splitting patterns? By example 0.1, there is
no quadratic form q with splitting pattern (0, 5) or (0, 6), say, since there do not exist
Pfister forms of appropriate dimensions.

The basic question of our paper is: What are the splitting patterns of quadratic
forms?

The above observation concerning splitting patterns of quadratic forms of height
1 yields immediately that a tuple (0, . . . ,m − a,m) can be realized to be a splitting
pattern of some quadratic form of arbitrary height only if a or a− 1 is a 2-power.

We will look for further restrictions on splitting patterns and will comment on the
next-to-extreme cases h = 2 and h = m− 1.

By the disciminant d(q) of any quadratic form q we always mean its signed dis-
criminant. The Witt invariant is defined as in [13, Ch. V.3, p. 120]. We recall the
standard notation for Pfister forms: For n > 0 and a1, . . . , an ∈ k∗ the 2n-dimensional
quadratic form 〈〈a1, . . . , an〉〉 := 〈1, a1〉 ⊗ · · · ⊗ 〈1, an〉 is called an n-fold Pfister form.
Sometimes it makes sense to call the form 〈1〉 a 0-fold Pfister form.

For the definition of the leading field and the leading form of a quadratic form we
refer to [10, 5.4, p. 79 and 5.9, p. 82]. The degree of a form q is defined in [10, §6, p. 88].
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1. General constraints on splitting patterns

We will present an analog to example 0.2. Consider the rational function field k =
F (X1, . . . , Xn−1) with indeterminates X1, . . . Xn−1 for any field F of characteristic
6= 2, let c ∈ F ∗.

1.1 Lemma. The n-dimensional quadratic form

q = 〈X1, X2, . . . , Xn−1, cX1X2 · · ·Xn−1〉

is anisotropic over k for any n ≥ 3.

Proof. Assume that q is isotropic over k. Then there are relatively prime polynomials
p1, . . . , pn in F [X1, . . . Xn−1] with

(∗) X1p
2
1 +X2p

2
2 + · · ·+Xn−1p

2
n−1 = −cX1X2 · · ·Xn−1p

2
n.

As the form 〈Xi1
〉 ⊥ . . . ⊥ 〈Xir

〉 is anisotropic over k for every subset {i1, . . . , ir} of
{1, . . . , n− 1} we conclude, using the substitution Xi = 0, that Xi divides pj for every

j ∈ {1, . . . , n−1}, j 6= i. Thus Xjp
2
j = Xj(

∏
j 6=iX

2
i )p̃

2
j for some p̃j ∈ F [X1, . . . , Xn−1]

for all j = 1, . . . , n − 1. So every summand in (∗) is divisible by X := X1 · · ·Xn−1.
Dividing (∗) by X yields

(∗∗) X̂1p̃
2
1 + . . .+ X̂n−1p̃

2
n−1 = −cp2

n

where X̂i := X/Xi = Πj 6=iXj . From (∗∗) it follows that Xn−1 divides pn if and only if
it divides p̃n−1, but this cannot happen since the pi are assumed to be relatively prime.

By substituting Xn−1 = 0 we obtain an equation X̂n−1
˜̃p 2
n−1 = −cp̃ 2

n with non-zero
˜̃pn−1, p̃n ∈ F [X1, . . . , Xn−2]. Now this implies that −X̂n−1/c is a square in k. But for
n ≥ 3 this contradicts the fact that F [X1, . . . , Xn−1] is a unique factorization domain.

Let us apply this lemma to the case n = 2m and c = (−1)m to obtain:

1.2 Proposition. Let k = F (X1, . . . , X2m−1) with indeterminates Xi over F and
2 ≤ m. Then q = 〈X1, X2, . . . , X2m−1, (−1)mX1X2 · · ·X2m−1〉 has height m − 1 and
splitting pattern (0, 1, 2, . . . ,m− 2,m).
Moreover, the Clifford algebra C(q) of q is isomorphic to M2(D), with a central division
algebra D that is a tensor product of m− 1 quaternion algebras.

Proof. The 2m-dmional quadratic form q is anisotropic over k by Lemma 1.1. We have
arranged for q to have determinant (−1)m, which means that its discriminant is 1.
Thus if, for some extension L of k, the form qL splits off at least m − 1 hyperbolic
planes, then qL splits completely. That is, m− 1 does not appear as a Witt index over
any extension of k.

Hence we are done if m = 2, obtaining splitting pattern (0, 2). We proceed by
induction. We write qm := q for m ≥ 3 and assume that the proposition has been
proved for all qm′ with m′ < m. Then over L = k(

√
−X2m−2X2m−1) the form qm is

isometric to qm−1 ⊥ 〈X2m−2,−X2m−2〉. Thus it splits off exactly one hyperbolic plane,
since by Lemma 1.1 the first summand is still anisotropic over L. Using the induction
hypothesis we get our first claim.
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To prove our statement about C(q) we write am = (−1)mX1X2 · · ·X2m−1, Y =
X2m−2/am−1, Z = X2m−1/am−1 and observe that

qm−1 ⊥ (−am−1)〈〈−Y,−Z〉〉 ∼= qm ⊥ 〈1,−1〉,

which yields C(qm−1)⊗M2(Q) ∼= M2(C(qm)) for some quaternion skew field Q over k
[13, Ch. V, 2.7, p. 113 and 3.3, p. 116]. Clearly the index of C(qm) is twice the index
of C(qm−1), and the assertion follows by induction on m.

Contrasting Proposition 1.2, the reader notices that no odd dimensional form has
splitting pattern (0, 1, 2, . . . ,m− 2,m) since no 5-dimensional form has height 1.

More generally, we can see that, for a ≥ 1, no odd dimensional form q can have
a splitting pattern (0, 1, 2, . . . ,m − 2a,m) since this would require the existence of an
anisotropic form of dimension 2a+1 + 1 of height 1 contradicting 0.1.

An even dimensional form with splitting pattern (0, 1, 2, . . . ,m− 2a,m) and a ≥ 2
would require the existence of an anisotropic form q of discriminant 1, Witt invariant 1
(by 1.6 below), height 2 and splitting pattern (0, 1, 2a+1), hence of dimension 2a+1+2.
This seems us to be unlikely, especially because of our results in §3. We can exclude
the case a = 2 since then dim q = 10, in which case it follows from [15, Proof of Satz
14, No. 5, p. 123] that a form q having invariants as mentioned above is necessarily
isotropic.

1.3 Question. Given a ≥ 3, is there an even dimensional form q over some field k with
splitting pattern (0, 1, 2a+1)? If the answer is no as we expect, is there a general lower
bound on i1(q) (independent of the field k) for even dimensional anisotropic forms q of
height 2 as an increasing function of the degree? (3.9 below yields this under certain
assumptions for excellent resp. “good” forms of height 2.)

Next we will exhibit constraints on the first non-zero entry of the splitting pattern
of a quadratic form.

We begin with excellent forms as introduced by Knebusch [11, 7.7, p. 3]. For those
forms, the splitting patterns depend only on the dimension of the form. Let i1(n)
and h(n) stand for the first non-zero Witt index and the height of all n-dimensional
(anisotropic) excellent forms of dimension n over any field k (of characteristic 6= 2).

Given j ∈ N, what is the best possible lower bound for i1(n), where n ranges over
all dimensions with h(n) = j? An answer is given by the following proposition which
sharpens 3.1 in [5].

1.4 Proposition. Let h ≥ 1. Then the natural number

nh :=

{
(2h+2 − 2)/3 if h is odd,
(2h+2 − 1)/3 if h is even

is the minimal dimension of an excellent form of height h. Moreover we have i1(n) ≥
nh(n)−2 for any n ∈ N with h(n) ≥ 3, with equality for excellent forms of dimension
n = nh.

Proof. We prove the first statement by induction on h. Obviously n1 = 2, and 5 is the
lowest dimension of an excellent form of height 2, hence n2 = 5 and we are done for
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h ≤ 2. We now assume that h ≥ 3, and that the first statement has been shown for
excellent forms of height < h. We write h = 2u+ ε with ε = 0 or ε = 1 and find

(1) nh = 2ε(4u+1 − 1)/3 = 2ε(

u∑

i=0

4i) = 2ε4u + nh−2 = 2h + nh−2.

If q is an excellent form of height h ≥ 2 and if q2 denotes its second complementary
form it follows from [5, 2.6 and 2.10] that

(2) dim q = 2a − 2b + dim q2

with a > b ≥ h. Clearly q2 has height h − 2. Hence, using the induction hypothesis
and (1), we obtain from (2) that dim q ≥ 2b+1 − 2b + dim q2 ≥ 2h + nh−2 = nh. Thus
the first statement is proved.

It follows from [5, 1.8] that the dimension of the first complementary form q1 of q
is given – in terms of (2) – by 2b − dim q2, and hence we obtain

i1(n) = (dim q − dim q1)/2 = (2a − 2b + dim q2 − 2b + dim q2)/2(3)

= 2a−1 − 2b + dim q2 ≥ dim q2 ≥ nh(n)−2.

If n = nh, then a comparison of (1) and (2) together with the equality dim q2 = nh−2

shows that 2a − 2b = 2h, hence (3) holds with an equality everywhere.

1.5 Remark. In particular, we have i1(n) > 1 for all n with h(n) ≥ 3.

We now study the influence of the splitting behavior of the Clifford algebra C(q)
on the splitting pattern of an arbitrary regular form q.

Let us remark that the function field k(q) of a quadratic form q is a purely tran-
scendental extension followed by a quadratic extension, hence if a central simple algebra
over k is tensored by k(q), then its index goes down by a factor of at most 2.

It follows from [13, Ch. V, Thm. 2.5, p. 111] that in case dim q > 0 even and
d(q) = 1 the Clifford algebra of q is of the form C(q) ∼= M2(E(q)) for some central
simple k-algebra E(q). In the other cases we define E(q) as follows. If dim q is even
and d(q) 6= 1, then E(q) := C(q). If dim q is odd, then E(q) := C0(q), the even part of
the Clifford algebra.

If q ∼= 〈1,−1〉 ⊥ q′ and q′ 6= 0, then E(q) ∼= M2(k) ⊗ E(q′) ∼= M2(E(q′)) by [13,
Ch. V, 2.7, 2.9, p. 113f].

Hence if E(q) is a skew field 6= k, then q is anisotropic.

1.6 Theorem. Let q be anisotropic and let E(q) ∼= M2r (D) for some skew field D 6∼= k
and some r ≥ 0.
i) Let r > 0. Then Dk(q) is a skew field, i1(q) ≤ r, and there is some ν such that
iν(q) = r.
ii) Let r = 0. Then E(q) is a skew field, and this also holds for all higher anisotropic
kernels of q. If dim q is odd or d(q) 6= 1, then the splitting pattern of q is (0, 1, 2, . . . ,m−
1,m) and E(q) is a product of m quaternion skew fields. If dim q even and d(q) = 1,
then the splitting pattern of q is (0, 1, 2, . . . ,m− 2,m) and E(q) is a product of m− 1
quaternion skew fields. (Here m = [dim q/2].)

Proof. For i = i1(q) and q
′ = (qk(q))an we have qk(q)

∼= 〈1,−1〉i ⊥ q′, hence by [13, Ch.
V, 2.7, 2.9, p. 113f]

(∗) M2r (Dk(q))
∼= E(qk(q))

∼= M2i(k(q))⊗k(q) E(q′) ∼= M2i(E(q′)) for q′ 6= 0.
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i) If r > 0, then it follows from Merkurjev’s index reduction theorems [14, Thm.
1, 2, 3, p. 218] that Dk(q) is a skew field. Therefore i1(q) = i ≤ r by (∗). Repeating
this procedure yields our assertion.

ii) If r = 0, then it follows from (∗) that Dk(q) is not a skew field, but then its
index is exactly half of the index of D ∼= E(q). Hence i must be 1 unless d(q) = 1 and
dim q = 4, in which case i = 2. An induction proves the result.

1.7 Theorem. Let π be an anisotropic Pfister form, let q be any regular form with
dim q < dimπ, and let q̃ := π ⊥ −q. Then i(q̃) + i(q) ≤ dim q, and the following are
equivalent.
i) i(q̃) + i(q) = dim q.
ii) π

k(q̃an)
is isotropic.

iii) qan is an orthogonal summand of π.

Proof. We have π ⊥ (−q)an ∼= q̃an ⊥ Hδ with δ := i(q̃)− i(q). Since π is anisotropic
this yields δ ≤ dim qan, which is equivalent to i(q̃) + i(q) ≤ dim q. There are regular
subforms π′ ⊆ π and q′ ⊆ qan each of codimension δ such that π′ ⊥ (−q′) = q̃an.

If i) holds, then δ = dim qan, hence q
′ = 0 and q̃an must be an orthogonal summand

of π which implies ii).
We show that ii) implies iii). Since dim q < dimπ we have π′ 6= 0, hence there is

some s ∈ k∗ represented by π and by q̃an. Let k′ := k(q̃an). If πk′ is isotropic, then
it is hyperbolic. By [12, 7.4, p. 22], the form q̃an = s2q̃an is an orthogonal summand
of π, hence there is a regular form q1 such that π = q̃an ⊥ q1. By Witt cancellation
we get q1 ⊥ (−q)an = Hδ and thus δ = dim qan. This implies q′ = 0 and therefore
q̃an = π′ ⊆ π, hence the orthogonal complement of π′ in π is isomorphic to qan.

If iii) holds, then δ = dim qan which yields i).

The notion of a generic splitting tower of a quadratic form has been introduced by
Knebusch in [10, p. 78]. However, we here will use the slightly more general version of
[5, 1.1, p. 184].

1.8 Corollary. In any generic splitting tower of q̃ there is a (unique) field extension
K of k such that πK is anisotropic and (qK)an is an orthogonal summand of πK .

Any two such field extensions are k-equivalent, i. e. they are k-specializations of
each other.

Proof. A generic splitting tower {Kν} of q̃ can be constructed inductively by K0 := k,
Kν+1 := Kν((q̃Kν

)an) (cf. [10, p. 78]).
Take ν maximal such that πKν

is anisotropic. Then πKν+1
is isotropic and we can

apply 1.7 with k replaced by K := Kν to obtain that (qK)an is an orthogonal summand
of πK .

If now K and K ′ are two fields from generic splitting towers of q̃ such that πK and
π′K are anisotropic and (qK)an (resp. (qK′)an) is an orthogonal summand of πK (resp.
πK′), then, by 1.7, we obtain i(q̃K) + i(qK) = dim q = i(q̃K′) + i(qK′). We may assume
that i(q̃K) ≥ i(q̃K′), hence there is a k-specialization K ′ → K ∪ {∞} which implies
i(qK) ≥ i(qK′). Therefore we get i(q̃K) = dim q − i(qK) ≤ dim q − i(qK′) = i(q̃K′) and
hence i(q̃K) = i(q̃K′), obtaining a k-specialization K → K ′ ∪ {∞}.
1.9 Corollary. Let dimπ = 2r+1 and K be as in Corollary 1.8.
i) If dim q − i(qK) ≤ 2r, then K(πK) is k-equivalent to k(π).
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ii) Assume qk(π) is anisotropic. If either dim q ≤ 2r or dim q = 2r + i1(q), then qK
is an orthogonal summand of the anisotropic Pfister form πK .

Proof. By 1.7, 1.8 we have dim q − i(qK) = i(q̃K). Let V denote the variety of
(min {2r, i(q̃K)})-dimensional totally isotropic subspaces of q̃. Then V has a ratio-
nal point over k(π), since i(q̃k(π)) ≥ 2r. Hence it follows from [9, Thm. 3.10, p. 46,
and 5.2, p. 58] that k(π)(Vk(π))

∼= k(V )(πk(V )) is purely transcendental over k(π), and
that there is a k-specialization k(V )→ K ∪{∞}. Hence i(q̃k(V )) ≤ i(q̃K) with equality
if and only if k(V ) and K are k-equivalent.

i) We have i(q̃k(V )) = i(q̃K), hence the fields K(πK) and k(V )(πk(V )) are k-
equivalent. Thus i) follows since k(V )(πk(V )) is purely transcendental over k(π).

ii) By 1.8, we have to show that i(qK) = 0. If K and k(V ) are k-equivalent, then
i(qK) = i(qk(V )) = 0, since qk(π) is anisotropic and k(V )(πk(V )) is purely transcendental
over k(π). Otherwise 2r ≤ i(q̃k(V )) < i(q̃K) ≤ i(q̃K) + i(qK) = dim q = 2r + i1(q) which
implies i(qK) ≤ i1(q)− 1, hence i(qK) = 0.

1.10 Lemma. Let k′ := k(X0, . . . , Xr) and π := 〈〈X0, . . . , Xr〉〉. Then π is anisotropic,
and k′(π) is unirational over k. If q is a regular form over k, then q and qk′(π) have
the same splitting pattern.

Proof. Since π is isotropic over k′′ := k′(〈1, X0〉) we find that k′′(π) is purely transcen-
dental over k′′. As k′′ is purely transcendental over k, it follows that k′(π) ⊂ k′′(π) is
unirational over k.

If L is a field extension of k, then the free composite L′ := Lk′ is isomorphic to the
rational function field L(X0, . . . , Xr) and, by the above, L1 := L′(πL′) is unirational
over L and contains k′(π). Hence i(qL) = i(qL1

). This shows that every Witt index
which occurs over an extension of k also occurs over an extension of k′(π).

Except of the statements on splitting patterns, the following three corollaries 1.11,
1.12, 1.13 are contained in [4, Thm. 2, Cor. 3 and Thm. 1]. We here give shorter proofs
based on Thm. 1.7.

1.11 Corollary. Let q be an anisotropic form with either dim q ≤ 2r or dim q =
2r + i1(q) < 2r+1. Then there is a field extension K of k and an anisotropic (r + 1)-
fold Pfister form π over K such that qK ⊆ π. If dim q ≤ 2r, then K and π can be
chosen such that, for every regular form q′ over k, the forms q′ and q′K(π) have the
same splitting pattern.

Proof. We apply Corollary 1.9, with k replaced by k′ from Lemma 1.10 and with the
particular π defined there and with q replaced by qk′ . The unirationality of the field
k′(π) over k as stated in Lemma 1.10 gives the anisotropy of qk′(π) required by 1.9 ii).

1.12 Corollary (Hoffmann, cf. [4, Thm. 1]). Let q, q′ be regular forms such that q′

is anisotropic and, for some natural number r, we have dim q′ ≤ 2r < dim q. Then
q′k(q) is anisotropic. More generally, q′ and q′k(q) have the same splitting pattern.

Proof. If q is isotropic, then k(q) is a purely transcendental field extension of k [10,
3.9, p. 72] and there is nothing to show. Otherwise take K,π as in Corollary 1.11, but
for the form q′. If q′k(q) is isotropic, then πK(qK) splits, hence qK is a subform of π by

[10, 4.5, p. 75]. As qK(π) is anisotropic this implies dim q ≤ 2r.
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Now if L is any field extension of k, then L(qL) is a field extension of k(q), and
(q′L)an stays anisotropic over L(qL) by what we just showed applied to (q′L)an and qL.
Hence the splitting patterns of q′ and q′k(q) are the same.

1.13 Corollary. Let q be an anisotropic quadratic form of dimension n. Then we
have i1(q) ≤ i1(n). If equality holds, then there is a field extension K of k such that
qK is an anisotropic Pfister neighbor.
Conversely, if q is a Pfister neighbor with complementary form q′, then −q′k(q) is the

anisotropic kernel of qk(q) and i1(q) = i1(n) holds.

Proof. By [5, 2.8, p. 187], i1(n) is the difference of n and the greatest 2-power which
is strictly smaller than n. Hence the first part of the theorem follows, since, by 1.12,
no subform of q of codimension i1(n) becomes isotropic over k(q). If equality holds, we
apply 1.11 if dim q is not a power of 2, otherwise we apply 0.1.

If q is a Pfister neighbor with complementary form q′ we set d = dim q− 2r. Then
dim q′ = 2r−d, hence q′k(q) is anisotropic by 1.12. It then follows from [5, 2.9 (i), p. 187]

that −q′k(q) is the anisotropic kernel of qk(q). But this means that i1(q) = d = i1(n).

1.14 Remark. Let q be anisotropic of dimension n. If qK becomes an anisotropic
Pfister neighbor for some field extension K of k, then it is not necessarily true that
i1(q) = i1(n) as can be seen by some combination of 1.18 and, say, 0.2. In fact 1.18
implies that there are fields k such that every anisotropic quadratic form becomes an
anisotropic Pfister neighbor over some field extension of k. As B. Kahn has mentioned
to us, i1(q) = i1(n) if and only if there exists a field extension K of k such that qK is
an anisotropic Pfister neighbor and h(qK) = h(q).

The case l = 1 of the following statement has also been observed by D. W. Hoffmann.

1.15 Corollary. Let q be anisotropic and dim q < 2r. Then, for any natural number
l, there is a field extension K of k and an anisotropic form q̃ over K with ñ := dim q̃ <
2r+l which is a qK-extension of order l in the sense of [5, 2.2, p. 185]; that is, there is
a sequence q̃ = q0, q1, . . . , ql = qK of anisotropic forms over K such that qj is a Pfister
neighbor with complementary form qj+1 for all j < l.
If the splitting pattern of q is (0, i1, . . . , ih), then the splitting pattern of q̃ is given by
(0, i1(ñ), . . . , il(ñ), i1 + il(ñ), . . . , ih + il(ñ)). Every (generic) splitting field of qK is a
(generic) splitting field of q̃.

Proof. Assume l = 1. Corollary 1.11 implies the existence of a field extension K of k
and an r + 1-fold anisotropic Pfister form π over K such that qK is a subform of π,
hence it is the complementary form of some Pfister neighbor q̃ of π. Since dim q < 2r

it follows from 1.11 that K can be choosen such that q and qK have the same splitting
pattern. Clearly dim q̃ > 2r, hence q and q

K(q̃)
have the same splitting pattern by 1.12.

Together with the second half of 1.13 this now yields the result on the splitting pattern.
The statement about the (generic) splitting field follows from [5, 2.4, 2.5, p. 186]. A
straightforward induction now proves the case of arbitrary l.

1.16 Example. The splitting patterns of anisotropic forms q with dim q = n ≤ 9 are
given by

n = 2 (0, 1)
n = 3 (0, 1)
n = 4 (0, 2), (0, 1, 2)
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n = 5 (0, 1, 2)
n = 6 (0, 2, 3), (0, 1, 3), (0, 1, 2, 3)
n = 7 (0, 3), (0, 1, 2, 3)
n = 8 (0, 4), (0, 2, 4), (0, 1, 2, 4), (0, 1, 3, 4), (0, 1, 2, 3, 4)

and possibly (0, 2, 3, 4)
n = 9 (0, 1, 4), (0, 1, 2, 3, 4).

Explanation. The first entry in each line above is the excellent splitting pattern, as
can easily be checked from [11, 7.10, p. 4] or [5, 2.8, p. 187].

Everything is clear for dimension ≤ 3. For n = 4 both patterns occur by examples
0.1 and 0.2. For n = 5, (0, 2) fails to be a splitting pattern by 0.1. For n = 6, the
pattern (0, 1, 3) occurs by 1.2, (0, 2, 3) is the excellent pattern, (0, 1, 2, 3) is realizable
by 0.2, but (0, 3) is not by 0.1.

For n = 7, (0, 3) and (0, 1, 2, 3) occur by 0.1 and 0.2, respectively. The tuple
(0, 1, 3) fails to be a splitting pattern since (0, 2) does not occur for n = 5. We show
that the only remaining tuple (0, 2, 3) also is not realizable. A corresponding form q
cannot be excellent, hence its Witt invariant c(q) is non trivial by [11, p. 11]. By 1.6
we conclude that c(q) is given by a single quaternion skew field, hence the leading form
of q is defined over k by [11, 9.8, p. 23]. But this contradicts the initial remark of [11,
§10, p. 27].

For n = 8, (0, 4) occurs by 0.1; for (0, 2, 4) we refer to Remark 3.3 below, and
for (0, 1, 2, 4) to Prop. 1.2. Moreover, the tuple (0, 1, 4) is not realizable since (0, 3) is
not realizable in dimension 6. It is left to determine the splitting patterns of forms of
degree 1; that is, of discriminant 6= 1. We can exclude (0, 3, 4) as a pattern by Remark
3.2. The tuple (0, 1, 3, 4) is realizable by the form 〈1, 1, 1, 1, 1, 1, 1, X〉 over Q(X). For
the tuple (0, 1, 2, 3, 4) we can refer to 0.2 or 1.6 ii).

For n = 9, (0, 1, 4) is the excellent pattern, (0, 1, 2, 3, 4) occurs by 0.2. All other
six tuples can be excluded, namely: (0, 4), (0, 2, 4), (0, 3, 4), and (0, 2, 3, 4) are not
realizable as splitting patterns since i1(9) = 1 by Corollary 1.13. Finally, (0, 1, 2, 4)
does not occur since (0, 2) is not realizable in dimension 5, and (0, 1, 3, 4) does not
occur since (0, 2, 3) is not realizable in dimension 7.

1.17 Definition. A regular anisotropic form q over k is called stably excellent if there
is a field extension K of k such that qK is anisotropic and excellent.

1.18 Proposition.
i) If k is a formally real field and if q = 〈a1, . . . , an〉 where all the elements ai are

positive under some real embedding of k, then q is stably excellent.
ii) An anisotropic form q is stably excellent if dim q ≤ 5 or if k is a number field.

Proof. i) Let K = k(
√
a1, . . . ,

√
an). Then qK ' n × 〈1〉; hence qK is anisotropic and

excellent.
ii) For dim q ≤ 3 there is nothing to show since every such form is excellent. A

form q of dimension 4 and of discriminant d 6= 1 is anisotropic if and only if q
k(
√
d) is

anisotropic, but the latter has discriminant 1 and hence is similar to the norm form of a
quaternion skew field, hence to a Pfister form and therefore it is excellent. If dim q = 5,
then 1.13 yields i1(q) = i1(n) = 1, and there is a field extension K of k such that qK is
an anisotropic Pfister neighbor. Then the first kernel form of qK is of dimension 3 and
hence excellent, therefore qK is excellent. If k is a number field and dim q ≥ 5 then,
by the theorem of Minkowski-Hasse, the anisotropy of q implies that there is a real
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embedding of k over which q is (positive or negative) definite and hence anisotropic.
Now the assertion follows from i).

1.19 Remark. The splitting pattern of an excellent 6-dimensional form is (0, 2, 3).
Hence no 6-dimensional form with pattern (0, 1, 3) is stably excellent; compare Theorem
3.11 and Remark 3.13 below.

2. Algebraic splitting patterns

2.1 Definition. The algebraic splitting pattern of a regular quadratic form q over k
is the subsequence of its splitting pattern whose entries can be obtained as the Witt
indices of qK for algebraic field extensions K of k.

2.2 Example. Let q denote the sum of 9 squares over Q, which is clearly anisotropic,
and let F be any number field. An application of the Minkowski-Hasse Theorem shows
that if qF is isotropic, then F has level ≤ 4 and q splits totally; that is, q has Witt
index 4. But the transcendental extension k(q) is a field extension of level 8 and hence
the Witt index of qk(q) is just 1.

This yields that the algebraic splitting pattern of q is (0, 4), whereas the splitting
pattern is (0, 1, 4). A complete determination of the algebraic splitting pattern of
excellent forms over Q is given in [5, Thm. 3.5].

Hence the algebraic splitting pattern in general differs from the splitting pattern.
However, there is always a purely transcendental field extension K of k (so that the
Witt indices of qK and q are the same) such that the algebraic splitting pattern of qK is
the same as the splitting pattern of q, as we will see below. The transcendence degree
of K over k can be chosen in a fairly uniform manner depending just on dim q and not
on the underlying field k or on the form q itself.

More precisely we have the following.

2.3 Theorem. For any natural number n, there is a natural number t = t(n) with the
following property:

Let k be any field and let q be any regular quadratic form over k of dimension n.
Then if K is a purely transcendental extension of k of degree t, every Witt index which
does occur for q over some extension of k is also obtained as the Witt index of qK′ for
a finite separable extension K ′ of K.

A possible choice for t is the dimension of the unipotent radical of a Borel subgroup
of SOq × ks, where SOq is the special orthogonal group of q, and ks is some separable
algebraic closure of k.

Proof. The number t as described in the last part of the theorem is exactly half of the
number of the roots in a root system of G := SOq × ks and depends on the dimension
of q only, not on the choice of the field k or of q itself.

It follows from [9, 5.2 and 5.3] that a generic splitting tower {Ki}i=0,...,h of q can be
obtained, except possibly for the last field Kh, as a subsequence of the function fields
of the connected components Vν of the k-varieties of ν-dimensional totally isotropic
subspaces of q for ν = 0, . . . , [n/2]. For Kh we obtain a similar description, however

the corresponding variety is defined over k(
√
d(q)). Hence each Ki is finitely and

separably generated over k. The variety Vν ×k ks is isomorphic to a quotient of G
by some maximal proper parabolic subgroup Pν of G, and its dimension equals the
dimension of the unipotent radical of Pν which is contained in the unipotent radical of
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some Borel subgroup. Let ti denote the transcendence degree of Ki. Then ti ≤ t, and
hence, using a separating transcendence basis, we can embed Ki into a finite separable
extension K ′

i of K such that K ′
i is a purely transcendental extension of Ki. Thus Ki

and K ′
i are k-specializations of each other and therefore the Witt indices of qKi

and of
qK′

i
are the same. This proves the theorem.

2.4 Remark. The theorem shows: Extending the field of definition of q by some
purely transcendental field extension K of course does not increase the Witt index of
q, but it does increase the magnitude of maximal subtori of SOq to an extent which is
required to produce a more subtle splitting behavior of qK in the formation of separable
extensions of K.

The theorem is not restricted to the case of characteristic 6= 2. The proof holds in
general, except that one has to replace the field k(

√
d(q)) by the corresponding field

extension obtained by the Arf invariant.
The given bound is not optimal. As the proof shows it suffices to take for t the

maximum of the dimensions of the unipotent radicals of maximal proper parabolic
subgroups which are computed in [9, Cor. 5.5].

A theorem analogous to 2.3 holds in general for reductive groups. This will be
discussed elsewhere.

3. On forms of height two.

3.0 Definition ([3, §1, p. 340]). A quadratic form q over k is called good if its leading
form is defined over k.

We now assume that q is anisotropic.

3.1 Remark.
i) It follows from [11, 9.2 iii), p. 19] that, for a good form q over k, the leading form

of q is always defined by a unique Pfister form over k.
ii) Let q be a good form of height 2 and odd dimension. Then q is known to be

excellent (cf. [11, §10, p. 27]). This implies that dim q = 2r−2s+1 with 2 ≤ s < r,
and the splitting pattern of q is given by (0, 2r−1−2s+1, 2r−1−2s−1) [5, 2.8 p. 187].
We refer also to [3, 1.2, p. 340].

In case of degree 1 we have:

3.2 Remark. Let q be of even dimension. If deg q = 1, then d(q) 6= 1 and the leading
form of q is defined by 〈〈−d(q)〉〉 (cf. [10, 5.10 ii), p. 82]), hence q is good. If in addition
q is of height 2, then, by [11, 10.3, p. 28], we have the following two cases:
i) q is excellent. We then have q ∼= a〈1,−b〉 ⊗ ρ′ with a, b ∈ k∗ where ρ′ denotes

the pure part of some Pfister form ρ; that is, ρ′ is the orthogonal complement of the
subform 〈1〉 of ρ. In this case dim q = 2r − 2 with r ≥ 3, and the splitting pattern of q
is given by (0, 2r−1 − 2, 2r−1 − 1).
ii) q is not excellent. Then we have dim q = 4, and the splitting pattern of q is given

by (0, 1, 2).

We now assume that q is of height 2. In case of degree 2 we have for good forms:

3.3 Remark. Let q be good of height 2 and even dimension. If deg q = 2, then by [3,
Thm. 1.6, p. 342] either q is excellent with dim q = 2r − 4, r ≥ 4 and splitting pattern
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(0, 2r−1−4, 2r−1−2), or q is not excellent, q ∼= q1⊗〈〈a〉〉 with dim q1 = 4, which implies
dim q = 8 and splitting pattern (0, 2, 4).

Forms q of height and degree 2 that are not good are treated in 3.11. For good
forms of degree 3 we will obtain, as a special case of Theorem 3.9 below, the following
natural generalization of the above remarks.

3.4 Theorem. Let q be good of height 2 with even dimension. If deg q = 3, then either
q is excellent, dim q = 2r − 8 with r ≥ 5 and splitting pattern (0, 2r−1− 8, 2r−1− 4), or
q is not excellent, qK

∼= q1 ⊗ 〈〈a, b〉〉 is anisotropic of height 2 over some field extension
K of k with dim q1 = 4, hence dim q = 16, and splitting pattern (0, 4, 8).

Remark. In fact in [8, Thm. 2.12] it is shown that, for the non-excellent case, q ∼=
q1 ⊗ 〈〈a, b〉〉 holds already over k.

We denote by I(k) the fundamental ideal of even dimensional form classes in the Witt
ring of k.

3.5 Definition. Let n ∈ N. We say that property En holds if and only if for every
field k (of characteristic 6= 2) the following conditions i) and ii) are satisfied:
i) For every i ∈ {1, . . . , n+ 1} the map

〈〈−a1,−a2, . . . ,−ai〉〉 7→ (a1) ∪ (a2) ∪ . . . ∪ (ai)

extends to a homomorphism ei : I
i(k)→ Hi(k,Z/2Z) with kernel Ii+1(k).

ii) For every i ∈ {1, . . . , n} and for every i-fold Pfister form τ over k we have an
equality

ker(Hi+1(k,Z/2Z)→ Hi+1(k(τ),Z/2Z)) = ei(τ) ∪H1(k,Z/2Z).

3.6 Remark. i) e0 is the parity of the dimension, e1 is given by the discriminant, e2
by the Clifford invariant.
ii) Arason [1, 5.7, p. 490] resp. Jacob/Rost [6, Main Theorem, p. 552] have shown that
the homomorphisms e3 resp. e4 exists and that properties E2 resp. E3 hold.

The content of the following lemma can essentially be found in [11, §10, p. 29-30],
but, for convenience, we will give a proof here.

3.7 Lemma. Let q be an anisotropic form with dim q = 2N for some N ≥ 2, h(q) = 2
and deg q = n < N and assume that q is good with leading form defined over k by τ .
Then there is a field extension K of k such that qK is anisotropic, h(qK) = 2 and qK
and τK are divisible by an (n− 1)-fold Pfister form over K.

Proof. Let µ be a Pfister divisor of q of maximal degree r. Then if r > 0, by [11, 9.7,
p. 23], τ splits over k(µ) and hence µ divides τ . By [11, 10.1, p. 28], τ does not divide
q and hence r ≤ n− 1.

If r = n − 1 we are done. Hence let us assume that r < n − 1. After replacing q
by some scalar multiple we may assume that q represents 1 over k. It follows from [11,
10.5, p. 29] that q ⊥ (−τ) has index dimµ, and that we can write

(∗) q ⊥ (−τ) ∼= µ⊗ 〈1,−1〉 ⊥ α

where α denotes the anisotropic kernel of q ⊥ (−τ).
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Then dim q = 2N < 2N +2n− 2r+1 = dimα, and it follows from 1.12 that qk(α) is
anisotropic and h(qk(α)) = 2. Clearly the leading form of qk(α) is τk(α).

Tensoring (∗) by k(α) we find that the index of qk(α) ⊥ (−τk(α)) is bigger than
that of q ⊥ (−τ), hence we obtain from [11, 10.5, p. 29] that qk(α) has a Pfister divisor
of degree bigger than r, but ≤ n− 1. Repeating this procedure, if necessary, yields the
lemma.

3.8 Lemma. For n ≥ 1 let q = ψ⊗ϕ with an (n− 1)-fold Pfister form ϕ and an even
dimensional regular form ψ. Then the following holds.
i) ψ ⊥ −〈〈−dψ〉〉 ∈ I2(k) and q ∈ In(k), and the forms (ψ ⊥ −〈〈−dψ〉〉)⊗ϕ ∈ In+1(k)

and 〈〈−dψ〉〉⊗ϕ ∈ In(k) depend on q only.
ii) Assume that ei : I

i(k)→ Hi(k,Z/2Z) is defined for all i = 0, . . . , n+ 1.
Then the cohomology class

ẽn+1(q) := en+1((ψ ⊥ −〈〈−dψ〉〉)⊗ϕ) ∈ Hn+1(k,Z/2Z)

depends on q only.
If q ∈ In+1(k), then ẽn+1(q) = en+1(q).
If π is some n-fold Pfister form and a ∈ k∗ we have ẽn+1(aπ) = en+1(−〈〈−a〉〉⊗π).
Proof. i) The form ψ ⊥ −〈〈−dψ〉〉 has even dimension and discriminant 1. It is therefore
in I2(k) by [13, Ch. II, 2.2, p. 40]. After tensoring it with ϕ we obtain a form in In+1(k).
Since in the Witt ring of k we have

q ⊥ (−ψ ⊥ 〈〈−dψ〉〉)⊗ϕ ∼ 〈〈−dψ〉〉⊗ϕ,

this shows the congruence

(∗) q ≡ 〈〈−dψ〉〉⊗ϕ mod In+1(k),

hence 〈〈−dψ〉〉⊗ϕ ∈ In(k). If q = ψ′⊗ϕ′ is another decomposition of q with an (n− 1)-
fold Pfister form ϕ′, then ψ′ is also even dimensional. By the above we obtain

〈〈−dψ〉〉⊗ϕ ⊥ −〈〈−dψ′〉〉⊗ϕ′ ≡ q ⊥ −q ∼ 0 mod In+1(k).

Since the left hand side is a difference of two n-fold Pfister forms and hence isotropic of
dimension 2n+1 and the right hand side is in In+1(k) it follows from the Arason-Pfister
Hauptsatz [13, 3.1, p. 289] that the left hand side is trivial in the Witt ring, hence
〈〈−dψ〉〉⊗ϕ = 〈〈−dψ′〉〉⊗ϕ′. This proves i).

ii) Clearly ẽn+1(q) depends only on q by i).
If q ∈ In+1(k) then, by (∗), it follows that 〈〈−dψ〉〉⊗ϕ ∈ In+1(k), and this form

must be split by the Arason-Pfister Hauptsatz. Hence ẽn+1(q) = en+1(q).
We write the n-fold Pfister form π = 〈〈−b〉〉⊗ϕ with some (n− 1)-fold Pfister form

ϕ and obtain from the above

ẽn+1(aπ) = en+1((a〈〈−b〉〉 ⊥ −〈〈−b〉〉)⊗ϕ)
= en+1(−〈〈−a〉〉⊗π).
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3.9 Theorem. Assume that property En (from 3.5) holds. Let q be a good form of
height 2 and even dimension. If deg q = n, then either q is excellent, dim q = 2r − 2n

with r ≥ n + 2 and splitting pattern (0, 2r−1 − 2n, 2r−1 − 2n−1) or q is not excellent,
qK
∼= q1⊗〈〈a1, . . . , an−1〉〉 is anisotropic over some field extension K of k with dim q1 =

4, which implies dim q = 2n+1, and splitting pattern (0, 2n−1, 2n).

For n = 2, this theorem was communicated to us by B. Kahn [7, 8], see also [3,
Thm. 1.6, p. 342].

In the special cases n = 1, 2, 3 the reader will recognize the relationship to our
statements in 3.2, 3.3 and 3.4.

The standard non-excellent example for 3.9 which is in generic position is given
by the form

q = 〈X1, X2, X3, X4〉 ⊗ 〈〈Y1, Y2, . . . Yn−1〉〉
over k = Q(X1, . . . , X4, Y1, . . . , Yn−1), say. The form q is anisotropic over k, since

otherwise 〈〈1, 1〉〉⊗〈〈1, . . . , 1〉〉 would not be anisotropic over Q. OverK := k(
√
−X1X2),

we have
qK
∼= (〈1,−1〉 ⊥ 〈a,−aX3X4〉)⊗ 〈〈Y1, . . . , Yn−1〉〉
∼= 2n−1 × 〈1,−1〉 ⊥ a〈1,−X3X4〉 ⊗ 〈〈Y1, . . . , Yn−1〉〉
∼= 2n−1 × 〈1,−1〉 ⊥ a〈〈−X3X4, Y1, . . . , Yn−1〉〉

with the last orthogonal summand being anisotropic over K. Thus we have i(qK) =
2n−1. Hence h(q) > 1 and q is not similar to a Pfister form, so, q is not excellent.

If, for some field extension F of k, the form qF is isotropic, then qF
∼= q1 ⊗ Θ

with dim q1 = 4,Θ = 〈〈Y1, . . . , Yn−1〉〉, and q1 isotropic over F (cf. [2, Thm. 1.4, proof,
p. 185]). So q1

∼= 〈1,−1〉 ⊥ 〈b, c〉 and qF ∼= 2n−1 × 〈1,−1〉 ⊥ 〈b, c〉 ⊗Θ with 〈b, c〉 ⊗Θ
being similar to a Pfister form. If 〈b, c〉⊗Θ is anisotropic over F we have i(qF ) = 2n−1.
Otherwise it will split completely and i(qF ) = 2n. In any case we find h(q) ≤ 2.

Therefore, h(q) = 2 with splitting pattern (0, 2n−1, 2n).
Proof of Thm. 3.9. Everything is clear if q is excellent, since we know all dimen-

sions and splitting patterns of excellent forms of any height and degree, by [5].
Thus we assume that q is not excellent and that the leading form of q is defined

by an n-fold Pfister form τ over k.
Step 1. qk(τ) is similar to a Pfister form of degree ≥ n+ 1. This follows from [11,

10.1 ii), p. 28]. Hence we know that dim q = 2r for some r ≥ n + 1 and we want to
show that r = n+ 1. In other words, we know that qk(τ) ∈ In+1(k(τ)) and we want to

show that qk(τ) 6∈ In+2(k(τ)).
Step 2. By 3.7, there is a field extension K of k such that qK is anisotropic and

divisible by an (n− 1)-fold Pfister form, and qK is still of height 2.
Thus we might as well assume that already over k we have q = q1⊗Θ for some

(n− 1)-fold Pfister form Θ and some form q1 whose dimension is an even power of 2.
Step 3. By 3.8 we obtain ẽn+1(q) ∈ Hn+1(k,Z/2Z).
Assume that qk(τ) ∈ In+2(k(τ)), which means, by En (3.5 i)), that en+1(qk(τ)) = 0.

By En (3.5 ii)) and 3.8 we obtain for some a ∈ k∗

(1) ẽn+1(q) = en(τ) ∪ (a) = en+1(〈〈−a〉〉⊗τ).
Since τk(q) is the leading form of q, there is an f ∈ k(q)∗ such that (qk(q))an = fτk(q),
and we obtain using 3.8 ii)

(2) ẽn+1(qk(q)) = en+1(−〈〈−f〉〉⊗τk(q)).
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Let ρ := fτk(q) ⊥ −aτk(q). Then, in the Witt ring of k(q), we have an equivalence

ρ ∼ (−〈〈−f〉〉 ⊥ 〈〈−a〉〉k(q))⊗τk(q),

hence we conclude that ρ ∈ In+1(k(q)), and equations (1), (2) yield en+1(ρ) = 0. It now
follows from En (3.5 i)) that ρ ∈ In+2(k(q)). Since dim ρ = 2n+1, the Arason-Pfister
Hauptsatz [13, Ch. X, 3.1, p. 289] tells us that ρ splits; in other terms, aτk(q)

∼= fτk(q).
Since a ∈ k∗, we conclude that also fτk(q) is defined over k; that is, the anisotropic

kernel of q over k(q), and hence all higher kernels of q, are defined over k. This means
that q is excellent [11, 7.14, p. 6], which is a contradiction.

So, indeed, dim q = 2n+1 and dim q1 = 4.
Step 4. It only remains to determine the splitting pattern of an anisotropic form

q = q1⊗Θ of height 2 with dim q1 = 4 and a Pfister form Θ.
It follows from [2, Thm. 1.4, p. 185] that if q1⊗Θ is isotropic, then there is an

isotropic form q′1 with q1⊗Θ ∼= q′1⊗Θ. Thus i1(q) ≥ dimΘ, which in our case yields
i1(q) = 2n−1; that is, q has splitting pattern (0, 2n−1, 2n) (cf. the standard example
above).

3.10 Corollary. If En holds, then there are no anisotropic forms q of height 2 and
degree n with leading form defined over the base field and dim q = 2N with N ≥ n+2.

Hence if the condition En holds, then the answer to the question 10.6 posed by
M. Knebusch [11, 10.6, p. 30] is negative. In particular, 3.6 ii) shows that the answer
is negative for n = 2, 3.

Let us now discuss the situation when q is of height 2 but not good. Then q is
not excellent, hence if dim q is odd, then dim q ≥ 11 by 1.16. If dim q is even, then
deg q ≥ 2 by 3.2, in particular dim q ≥ 6.

3.11 Theorem. Let q be an anisotropic form of height 2 which is of even dimension
and not good. If deg q = 2, then q is of dimension 6 and has splitting pattern (0, 1, 3).

This theorem is due to B. Kahn [8, 2.11]. We will give here a proof based on 1.6.

Proof. As in 1.6, we have E(q) = M2r (D) for some skew field D, and it follows from
the assumption on the degree that D 6= k and that d(q) = 1. If D were a quaternion
skew field, then the leading form of q would be defined over k by [11, 9.8, p. 23]. Hence
D is the product of at least two quaternion skew fields.

Since the height is 2 we are in case ii) of 1.6, hence dim q = 6 and the splitting
pattern is (0, 1, 3).

3.12 Remark. In [3, Prop. 2.8, p. 348] it was proved that forms as in 3.11 have a
dimension ≤ 26.

3.13 Remark. The standard example of a (6-dimensional) quadratic form of height 2
and degree 2 that is not good is given by

q = 〈X1, X2, X3, X4, X5,−X1X2X3X4X5〉

over k = F (X1, X2, X3, X4, X5); see Prop. 1.2.
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