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Why anisotropic groups ?

1888/9 Killing classifies semisimple groups

and introduces the types

An, Bn, Cn, Dn, E6, E7, E8, F4, G2

of semisimple Lie groups.

1961 Chevalley shows: These groups have a

Z-structur, (“Chevalley groups”)

Killing’s Classification holds over

algebraically closed fields.

1965ff Borel and Tits describe the

internal structure of these groups

insomuch they contain unipotent elements,

that is, up to their “anisotropic kernel”.

This reduces the classification and structure theory

to the investigation of anisotropic semisimple groups.

1984 T. A. Springer writes in a survey article over

linear algebraic groups:

The most difficult part of a classification of reductive k-groups

is the classification of semi-simple anisotropic k-groups . . .

A complete classification of all anisotropic k-groups seems out

of reach.

(Perspectives in Math., Anniv. of Oberwolfach, 1984, p. 477)

* Colloquium Talk, Regensburg, June 6., 1997
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Anisotropic Groups over Arbitrary Fields

Anisotropic groups have, by definition, no proper parabolic

subgroups.

Examples of anisotropic groups:

i) Compact semisimple Lie groups (alg. groups over R),

ii) SL1(D), D: finite dim. central simple k-division algebra,

Killing type An,

iii) SO(q), Spin(q), q: anisotropic quadratic form over k,

Killing type Bn, Dn,

iv) All Killing types have anisotropic “twists” over

suitable fields.

Some methods to investigate anisotropic groups:

1. Galois cohomological methods

2. Splitting Patterns (with J. Hurrelbrink.)

3. Excellence properties of algebraic groups (with I. Kersten.)
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Anisotropic Groups over Arbitrary Fields

1. Galois cohomological methods

Notation:

k : an arbitrary field,

ks : separable closure of k,

Γ = Gal(ks/k) : its Galois group.

G : semisimple linear alg. group über k.

H1(k, G) : poset of classes of 1-cocycles z : Γ → G(ks)

H1(k,Aut(G)) classifies all k-twists of G,

i.e., all groups G′ over k with G′(ks) ∼= G(ks).

A Galois cohomological invariant of G is a transformation

H1(k, G) −→ Hi(k, C),

functorial in field extensions of k, with

C = Torsion-Γ module

Hi(k, C) = Hi(Γ, C) (Galois cohomology)

This invariant is trivial if the cocycle of the split twist of G in

H1(k, G) is mapped to 1 ∈ Hi(k, C).

(Def. needs to be modified in more complicated situations.)
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Anisotropic Groups over Arbitrary Fields

Examples:

(For simiplicity: let tor C and char k be coprime.)

i = 1 : G adjoint : C := Aut(Dynkin(G)) (finite!)

G →֒ Aut(G) →→ C exact ⇒∃ δG : H1(k,Aut(G)) → H1(k, C)

the discriminant invariant

i = 2 : G inner, adjoint : G̃ s.c. covering,

C := center(G̃(ks)) (finite!)

C →֒ G̃ →→ G exact ⇒∃ δ2
G : H1(k, G) → H2(k, C)

x ∈ Hom(C, Gm) gives x∗ : H2(k, C) → H2(k, Gm) = Br(k),

the Brauer invariant is obtained by:

βG : C∗ := Hom(C, Gm) → Br(k), x 7→ x∗δ
2
G(c),

where c ∈ H1(k, G) is the class of the split twist of G.

i = 3 : G = Spin(q) : ∃ αG : H1(k, G) → H3(k,Z/2Z)

the Arason invariant

i ≥ 4 : G = Spin(q) : ∃ νi
G : H1(k, G) → Hi(k,Z/2Z)

(according to Voevodsky’s proof of the Milnor conjecture)

these maps are only “partially defined”: ν3
G = αG and

νi
G is defined on Ker νi−1

G for i > 3.
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Anisotropic Groups over Arbitrary Fields

Brauer invariant of inner twists (i.e. δG trivial):

C∗ ∼= Λ/Λr = 〈dual roots〉/〈roots〉.

Group structure of C∗:

An: ◦
ω

◦
2ω

· · · ◦
nω

C∗ ∼= Zn+1 = 〈ω〉

Bn: ◦ ◦ · · · ◦ > ◦
ω

C∗ ∼= Z2 = 〈ω〉

Cn: ◦
ω

◦
2ω

· · · ◦
(n−1)ω

< ◦
nω

C∗ ∼= Z2 = 〈ω〉

Dn: ◦
ω0

◦
2ω0

· · · ◦
(n−2)ω0

◦ ω

¡
@◦ ω′







26 |n : C∗ ∼= Z4 = 〈ω′ = −ω〉

2|n : C∗ ∼= Z2 × Z2 = 〈ω〉 × 〈ω′〉
ω0 = ω − ω′

E6: ◦
ω

◦
2ω

◦

◦ ◦
ω

◦
2ω

C∗ ∼= Z3 = 〈ω〉

E7: ◦
ω

◦ ◦
ω

ω
◦

◦ ◦ ◦ C∗ ∼= Z2 = 〈ω〉

E8, F4, G2 have trivial C∗.

Meaning of βG:

The irreducible representation Gks
→ GLm(ks) with highest

weight ωα has k structure G → SL1(A), where A is a central

simple k algebra of class βG(ωα) in Br(k).
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Anisotropic Groups over Arbitrary Fields

Remarks:

1. G is of

{

outer type, if δG not trivial
inner type, if δG trivial

2. Tits (1990) defines:

G is of strongly inner type (SI), if βG, δG trivial.

Discovers (among other things) (over R) the series

B4m, B4m+3, D4m of SI anisotropic groups.

3. complementary concept (UR):

G is of Brauer type (BT), if GL splits for every field extension

L/k, for which βGL
is trivial.

4. Consequences:

i) groups of inner type An, Cn are always BT

ii) over p-adic fields, inner groups are BT.

iii) G2,F4,E8 are always SI, E6,E7 mixed, and anisotropic

SI types exist

iv) Bn,Dn are SI ⇔ the Clifford algebra is a matrix ring.

5. Theorem (UR). For every G, there is a generic Brauer split-

ting field K/k (i.e., βGK
generically trivial).

Question: Under which conditions is GK anisotropic ?

(“Anisotropic splitting”)
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6. Let char k 6= 2 and G of type Bn, Dn:

An outer group G is said to be of discriminant type, if GL

splits over every field extension L/k, for which δGL
is trivial.

For orthogonal groups of excellent quadratic forms we have

(UR, based on earlier work of M. Knebusch, I. Kersten/UR,

J. Hurrelbrink/UR, B. Kahn):

Theorem. Let G = SOq for some anisotropic excellent qua-

dratic form q over k with char k 6= 2.

i) Let dim q = 8m + ρ, where 0 ≤ ρ ≤ 7. Then one has the

following table for the Killing and the twist type of G:

ρ : Killing type: Twist type:

0 D4m strongly inner

1 B4m strongly inner

2 D4m+1 discriminant (outer)

3 B4m+1 Brauer (inner)

4 D4m+2 Brauer (inner)

5 B4m+2 Brauer (inner)

6 D4m+3 discriminant (outer)

7 B4m+3 strongly inner.
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ii) Let dim q = 8m + ρ, where 0 ≤ ρ ≤ 15. Then one has the

following table for the Killing and the twist type of G:

ρ : Killing type: twist type: l.c.i.

0 D8m (αG trivial, strongly inner) v2(16m)

1 B8m (αG trivial, strongly inner) v2(16m)

2 D8m+1 discriminant (outer) 1

3 B8m+1 Brauer (inner) 2

4 D8m+2 Brauer (inner) 2

5 B8m+2 Brauer (inner) 2

6 D8m+3 discriminant (outer) 1

7 B8m+3 Arason (strongly inner) 3

8 D8m+4 Arason (strongly inner) 3

9 B8m+4 Arason (strongly inner) 3

10 D8m+5 discriminant (outer) 1

11 B8m+5 Brauer (inner) 2

12 D8m+6 Brauer (inner) 2

13 B8m+6 Brauer (inner) 2

14 D8m+7 discriminant (outer) 1

15 B8m+7 (αG trivial, strongly inner) v2(16(m + 1))

G is said here to be of Arason type, if βG, δG is trivial, and if

GL splits for every extension L/k, for which αGL
is trivial.

l.c.i. is the lowest dimension with non trivial cohomological

invariant for G.
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With this technique, one can determine the Galois cohomolo-

gy of spin groups of excellent quadratic forms.

Example: Let

q(Xi) =

1000001
∑

i=1

X2
i .

Then, the following list describes the possible indices and di-

mensions of non trivial Galois cohomology for Spin(q) over

any field k:

Indices: Dimensions of n.t.c.

0 6 7 9 10 14 15 16 20

475713 6 7 9 10 14 15 16

491520 6 7 9 10 14 15

492097 6 7 9 10 14

499712 6 7 9 10

499777 6 7 9

499968 6 7

499969 6

500000 –none–

For example, the index 475713 occurs if and only if

216 ≤ s(k) < 220

for the level s(k) of k.

(s(k) = lowest s, such that −1 is a sum of s squares in k. If

s(k) is finite, then it is a power of 2.)
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Computation of the cohomological invariants

for G = Spin(q) and anisotropic excellent q:

Let q = q0, . . . , qh, dim qh ≤ 1

the “higher anisotropic kernels” of q.

Those are defined over k and unique up to isometry

(Knebusch).

Let q̃i = qi ⊥ H with H hyperbolic and dim q̃i = dim q.

Then Spin(q̃i) is a twist of Spin(q),

and if d(q) = d(qi), c(q) = c(qi),

then qi defines xi ∈ H1(k,Spin(q)).

These invariants give canonically

νai

G (xi) ∈ Hai(k, Z/2Z), i = 1 . . . , h.

ai is the maximal number with q − qi ∈ Iai(k) for i ∈

{1, . . . , h} .

With νai

G (xi), the groups

Spin(q), q excellent,

can be described uniquely up to isomorphy.

Conversely: All relations between the νai

G (xi) in the coho-

mology ring H∗(k, Z/2Z) are known, i.e., if there is a set of

these elements fulfilling the relations, then there is a group of

the above type with these elements as invariants.
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2. Splitting Patterns

(jointly with J. Hurrelbrink.)

Explained just by an example.

Def. The Splitting Pattern SPG of G is the category of all

Tits-Dynkin diagrams of GL, where L/k ranges over all field

extensions of k;

morphisms are the rank increasing k-specializations.

Splitting patterns allow the distiction of anisotropic groups:

Let, e.g., G be of orthogonal type. Then, SPG is given by the

sequence of Witt indices of the underlying quadratic forms,

which may occur over extensions of k, morphisms are given

by the relation <.

Example. Let q be anisotropic, dim q = n.

q Pfister form: SPSO(q) = (0, n/2);

q “generic”: SPSO(q) = (0, 1, 2, . . . , [n/2]).

h(q) = #SPq − 1 is the height of q.

Thm. (Wadsworth/Knebusch) h(q) = 1 ⇔q is similar to an

orthogonal summand of a Pfister form of codim ≤ 1.
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Forms of height 2 are not completely known. However:

2.1 Thm. Let q be a form of even dimension with h(q) = 2, who-

se “leading form” is defined over k. Then q is of one of the

following types.

i) dim q = 2a−2b, a−1 > b > 0, SPq = (0, 2a−1−2b, 2a−1−2b−1),

and for every K/k the anisotropic kernel of qK is defined over

k, i.e., q is excellent.

ii) dim q = 2a, SPq = (0, 2a−2, 2a−1), q not excellent. In this

case there is L/k, such that qL is an anisotropic Pfister-Form.

(“Anisotropic splitting”)

Remark. Part i) was proved by Knebusch (1976), part ii)

verifies a conjecture by Knebusch, who had proved ii) for the

case a ≤ 3.

Proved 1993 by H-R under a cohomological condition, which

was proved 1996 by Voevodsky (Milnor-Vermutung). Also, in

1996, D. Hoffmann gave an elementary proof without using

Voevodsky’s result.

Recently (Hurrelbrink-R): Description of all quadratic forms

which are linear combinations of two Pfister forms (to appear

in Crelle J.)
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3. Excellence properties of algebraic groups

Def. G is called excellent, if for every L/k the anisotropic

kernel of GL is defined over k.

There is an analogue notion for Azumaya algebas.

3.1 Theorem (Kersten-R.): For an Azumaya algebra A over k

the following statements are equivalent:

i) A is excellent.

ii) The index of A is squarefree.

iii) Index and exponent of AL are equal for every L/k.

iv) G = SL1(A) is excellent.

3.2 Theorem (Kersten-R.): (char k 6= 2)

Let q be a regular quadratic form over k. Then equivalent:

i) G = SO(q) excellent

ii) For every extension L/k there is a quadratic form τ over

k and a ∈ L∗ with aτL
∼= (qL)an.

Hence: Excellence of orthogonal groups is more general then

excellence of quadratic forms.

(for Bn equivalent, but not for Dn).

Example: if q is anisotropic with dim q = 4 and d(q) 6= 1,

then SO(q) is excellent, but q is not.

More general, forms from 2.1. ii) have this property.
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Apparently, excellent groups have a very simple cohomologi-

cal nature (G = SO(q), q excellent: see above.).

G := SL1(D), D/k a skew field, central, finite dimensional

over k:

n = ind(D) squarefree:

i) exp(D) = ind(D) (Brauer)

ii) SK1(D) := G(k)/[D∗, D∗] = 1 (Wang)

iii) H1(k, G) →֒ H3(k, µ⊗2
n ) (n, char k coprime) (Merkurjev-Suslin)

iv) G excellent (Kersten-R)

n = ind(D) not squarefree:

• ∃ L/k with exp(DL) 6= ind(DL) (K-R)

• ∃ “anisotropic splitting: exp. reduction” (K-R)

• ∃ D/k with SK1(D) 6= 1 (Platonov, Draxl)

• H1(k, G) → H3(k, µ⊗2
n ) i.g. not injective (Merkurjev)

• G not excellent (K-R)

Conjecture (Suslin, 1991):

SK1(Dk(G)) = 1 ⇔ ind(D) squarefree

One knows (Merkurjev 1993):

G rational (i.e., k(G)/k purely transcendental.) ⇒ SK1(Dk(G)) = 1

char k 6= 2 und 4 | ind(D) ⇒ SK1(Dk(G)) 6= 1.

Excellence of G is a sort of “rationality property” of G.

By 3.1: G excellent ⇔ ind(D) squarefree.

Question :

G rational ⇔ SK1(Dk(G)) = 1 ⇔ G excellent

⇔ H1(k, G) →֒ H3(k, µ⊗2
n ) for n, char k coprime
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