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Brick chain filtrations

Claus Michael Ringel

We deal with the category of finitely generated modules over an artin algebra
A. Recall that an object in an abelian category is said to be a brick provided its
endomorphism ring is a division ring. Simple modules are, of course, bricks, but
in case A is connected and not local, there do exist bricks which are not simple.
The aim of this survey is to focus the attention to filtrations of modules where all
factors are bricks, with bricks being ordered in some definite way.

In general, a module category will have many oriented cycles. Recently, De-
monet has proposed to look at so-called brick chains in order to deal with a very
interesting directedness feature of a module category. These are the orderings of
bricks which we will use.

The following survey relies on investigations by a quite large group of mathe-
maticians. We have singled out some important observations and have reordered
them in order to obtain a completely self-contained (and elementary) treatment
of the relevance of bricks in a module category. (Most of the papers we rely on
are devoted to what is called 7-tilting theory, but for the results we are inter-
ested in, there is no need to deal with 7-tilting, or even with the Auslander-Reiten
translation 7).

Outline. This is a report on a very important development in the last 10 years
which focuses the attention to the use of bricks in order to describe the structure of
arbitrary modules over artin algebras. It relies on the work of a quite large number of
mathematicians, see section 12 (but there are further related papers). We have singled
out some important observations and have reordered them in order to obtain a completely
self-contained (and elementary) treatment of the relevance of bricks in a module category.

The first three sections describe the main results presented in this survey. There is
Theorem 1.2 (with its strengthening 3.2) and the corresponding finiteness theorem 3.3;
this concerns the existence of brick chain filtrations. Theorem 2.2 asserts that looking
at finitely generated torsion classes, one only has to deal with torsion classes generated
by semibricks. Theorem 2.5 deals with the lower neighbors of a finitely generated torsion
class. The proofs of these results are given in Sections 4 to 9. Section 11 extends the view
to torsion classes which are not necessarily finitely generated (but is irrelevant for the brick
chain filtrations).

1. All modules have brick chain filtrations.

1.1. We deal with an artin algebra A; the modules to be considered are the left
A-modules of finite length.



Given a class X of modules, we denote by £(X) the class of modules which have
a filtration with all factors in X. If My,..., M,, are modules, let E(My,..., M,,) =
E{M,...,M,,}) (such a convention will be used throughout the paper in similar situa-
tions).

We recall that a brick is a module whose endomorphism ring is a division ring. A
finite sequence (Bj, ..., By,) is a brick chain, if all B; are bricks and Hom(B;, B;) = 0 for
i < j. A filtration 0 = My C My C --- C M,, = M will be called a brick chain filtration,
provided there is a brick chain (B, ..., B,,) (its type) such that M;/M;_; belongs to £(B;),
for 1 <i<m.

1.2. Theorem. Any module has brick chain filtrations.

The result will be strengthened in 3.2.

1.3. Some examples.

(1) If Sq, ..., S, are the simple A-modules, then (51, ...,.S,) is obviously a brick chain.
If Ext'(S;, S;) = 0 for all ¢ > j, then any sincere A-module M has a brick chain filtration
(M;); of type (S1,...,S,) (here, M; is the maximal submodule of M whose composition
factors are of the form Si,...,S;).

In particular, recall that A is said to be directed, provided the simple modules 51, ...,5,
can be ordered in such a way that Extl(SZ-, S;) =0 for all i > j. For such a directed alge-
bra A, all sincere A-modules M have a brick chain filtration of type (51, ...,S,) with the
additional property that the factors of the filtration are semisimple.

(2) If A is a cyclic Nakayama algebra with simple modules Si,...,S, such that
Ext'(S;,Si_1) # 0 for all 1 < i < n (where we write Sy = S,,), then any indecompos-
able module M, has a brick chain filtration with at most two factors: Let us assume that
the top of M is S,,. If the length of M is at most n, then M itself is a brick. Now assume
that the length of M is an + r with a > 1 and 0 < r < n. Let H be the module of length
n with top S,,. If r = 0, then M has a brick chain filtration of type (H). If r # 0, then M
has a brick chain filtration of type (B, H), where B is the factor module of H of length r.

(3) In contrast to many results in representation theory, here it is not helpful to
consider first indecomposable modules. Namely, arbitrary brick chain filtrations of modules
M and M’ do not determine a brick chain filtration of M & M’.

1.4. Duality. Let us denote by D the usual duality functor. Given a brick chain
filtration 0 = My C My C --- C M,,, = M of type (Bu,..., Bn), then clearly D yields a
corresponding brick chain filtration for D M, namely

0=bDM/DM,, CcCDM/DM,,_ 1 C---CDM/DM, CDM/DMy=DM,
and its type is (D By, ..., D By).
1.5. The proof of Theorem 1.2 and its strengthening 3.2 will be given in Section 7,
and will be based on the use of torsion classes. Definition and properties of torsion classes

will be recalled in the next section. Our construction of a brick chain filtration of a module
M will yield quite special filtrations, namely what we call “torsional” ones. Let us note
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already here: if a filtration (M;); of a module M is torsional, then the top of any module
M; is generated by the top of M. Thus, even in the case of a directed algebra, the brick
chain filtrations which we will construct are usually different from the obvious filtrations
mentioned in example (1) above.

2. Finitely generated torsion classes.

2.1. A class 7 of modules is said to be a torsion class provided T is closed under
factor modules and under extensions. The set of all torsion classes is a complete lacctive;
the meet of a set of torsion classes is just the set-theoretical intersection. Given a class
X of modules, we denote by T'(X) the smallest torsion class which contains X (thus the
set-theoretical intersection of all torsion classes containing X'). According to the Noether
theorems, T'(X) is just the class of modules which have a filtration whose factors are factor
modules of objects in X.

A torsion class T is said to be finitely generated provided there is a module M with
T = T(M). Of course, any torsion class 7 is the set-theoretical union of the finitely
generated torsion classes contained in 7.

Bricks B; are said to be Hom-orthogonal provided Hom(B;, B;) = 0 for all i # j. A
finitely generated module X is said to be a semubrick iff it is a direct sum of bricks such
that non-isomorphic bricks are Hom-orthogonal. A module M is said to be basic provided
it has no direct summand of the form N & N with N indecomposable. Thus, a finitely
generated module X is the direct sum €, B; of finitely many pairwise orthogonal modules
iff X is a basic semibrick.

2.2. Theorem. For any artin algebra A, the map X — T(X) provides a bijec-
tion between the isomorphism classes of basic semibricks and the finitely generated torsion
classes.

In particular, any finitely generated torsion class is generated by a finite set of bricks.
Of course, this implies that any torsion class if generated by a set of bricks.

The proof of Theorem 2.2 is given in 5.6 (the surjectivity of the map) and 8,8 (the
injectivity of the map). Actually, in Section 5, we construct explicitly an inverse of the
map, thus let us add:

Addendum. Any module M has a factor module X which is a semibrick and such
that T(M) = T(X), see Proposition 5.6. Namely, we introduce for any module M its
“iterated endotop” et™ M, see 5.4, and we show that X = M/et> M is a semibrick with
T(M) = T(X). The indecomposable direct summands of X will be called the top bricks of
M, see 5.7.

2.3. The algebra A is said to be brick finite provided there is only a finite number of
isomorphism classes of bricks, and torsion class fiite provided there is only a finite number
of torsion classes.

Corollary. An algebra is brick finite iff it is torsion class finite, and in this case any
torsion class is finitely generated.



Proof. Clearly, an algebra which is brick finite has also only finitely many isomorphism
classes of basic semi-bricks. Assume that A is brick finite, let 7 be any torsion class. We
start to construct an inclusion chain of torsion classes 7 = 7o C 71 C --- C 7Ty where
T; = T(Bo,...,B) with bricks By, By,...,B;. If T; is a proper subset of T, there is
a brick Biyq1 € T \ Ty, thus we let T;11 = T(Bo,...,Bi+1). Since A is brick finite, the
procedure stops, thus 7 is generated by a finite number of bricks.

The bijection of Theorem 2.2 asserts that the number of isomorphism classes of semi-
bricks is equal to the number of finitely generated torsion classes. U

2.4. Remark. The bijection provided by Theorem 2.2 is of great interest, since it
allows to consider the set of isomorphism classes of basic semibricks as a partially ordered
set, using the natural partial ordering of the set of torsion classes due to set-theoretical
inclusion.

This poset structure of the class of semibricks (thus also of the class of bricks) provides
the foundation for the notion of a brick chain as used in Theorem 1.2.

2.5. A pair of torsion classes 7' C T” will be said to be neighbors provided there is
no torsion class 7 with 7/ C T C T”; here, T’ is called a lower neighbor of T" and T is
called an upper neighbor of T'.

Given a module N, let - N be the class of all modules M with Hom(M, N) = 0. It
is easy to see that ~ N is closed under extensions and under factor modules, thus it is a
torsion class.

2.6. Theorem. Let M be a module. The map B — T(M) N B provides a bijection
between the isomorphism classes of the top bricks B of M and the lower neighbors of T'(M).
Any torsion class properly contained in T'(M) is contained in at least one of the torsion
classes T(M)N+B.

The module B is the only brick C in T(M) with T(M)N+B =T(M)N+C.

Theorem 2.6 asserts that the module B is the only brick C'in T'(M) with T(M)N+B =
T(M)N+C. The brick B lies, of course, in T(M) \ +B, but it is not necessarily the only
brick in T(M) \ + B. Example: Take the As-quiver 1 < 2 and consider M = 1 ® 2; let
B = 2. Then T(M) is the class of all modules, - B are the modules with top in add 1, thus
the two bricks 2 and ? both belong to T(M) \ + B.

The proof of 2.6 will be given in section 8.

2.7. A torsion class T is said to be completely join irreducible provided the join T, of
the torsion classes properly contained in 7 is still properly contained in 7 (and thus 7, a
lower neighbor of 7).

Corollary. The map B +— T (B) provides a bijection between the isomorphism classes
of the bricks and the completely join irreducible torsion classes.

Proof. Theorem 2.2 sends a brick to the torsion class T (B); according to 2.6, 7 (B) has
a unique lower neighbor, namely 7, = 7 (B)N~+B and any torsion class properly contained
in 7 is contained in 7T.. This shows that 7 (B) is completely join irreducible.
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Conversely, assume that 7 is a completly join irreducible torsion class. Clearly, T is
finitely generated: Let M be any module in 7 \ 7., where 77 is the join of the torsion
classes properly contained in 7, then 7 = T (M). Let By, ..., B; be the top bricks of M,
thus 7 = T(M) = T(B,...,Bt). According to 2.6, 7 has ¢ lower neighbors. Since T is
completely join irreducible, we have ¢t = 1, thus 7 is generated by a brick. U

2.8. Remark. Let 7(M) be a finitely generated torsion class and B a top brick
of M. The torsion class T(M) N+ B is not necessarily finitely generated. As a typical
example, consider the Kronecker algebra A and let M = B be a simple regular Kronecker
module. Then T(M) N+ B is the torsion class of all preinjective Kronecker modules (and
this torsion class is not finitely generated).

2.9. What about upper neighbors? According to Theorem 2.5, any finitely gener-
ated torsion class has only finitely many lower neighbors. But a finitely generated torsion
class may have infinitely many upper neighbors! For example, let A be the Kronecker al-
gebra and M any non-zero regular module. If R is simple regular and not a factor module
of M, then T (M, R) is an upper neighbor of T'(M), and non-isomorphic simple regular
modules R.R’ lead to different upper neighbors T'(M, R) and T (M, R’). It follows that the
number of upper neighbors of T'(M) is max(|k|, Ro).

Whereas a lower neighbor of a finitely generated torsion class does not have to be
finitely generated, any upper neighbor of a finitely generated torsion class is (trivially)
finitely generated: Namely, if AN is an upper neighbor of the torsion class T'(M), then
N = T(M,N) for any module N in N '\ T(M). Of course, there are even bricks B in
N\ T(M), namely suitable top bricks of N, where N belongs to N'\ T'(M).

2.10. Remark. Throughout the paper, we usual draw the attention to finitely
generated torsion classes. For the benefit of the reader, let us mention here some typical
(and quite diverse) examples of torsion classes which are not finitely generated. We take
as A the Kronecker algebra, or, more generally, an n-Kronecker algebra with n > 2.

(a) The class Z of preinjective modules is a torsion class. which is not finitely generated.
The torsion class 7 is generated by any infinite set of indecomposable preinjective modules.
Here, we deal with the union of an increasing sequence of finitely generated torsion classes.
Note that Z has no lower neighbor.

(b) The modules without a non-zero preprojective direct summand is the torsion class
T(R), where R denotes the class of all regular modules. It is easy to see that T'(R) is not
finitely generated and that it has no upper neighbor.

Let us discuss the case n = 2 in more detail. Let X be a non-empty set of pairwise non-
isomorphic simple regular Kronecker modules (thus X is a set of pairwise Hom-orthogonal
bricks). The torsion classes 7 (X) are the torsion classes 7 with Z C T C T(R), thus
the torsion classes 7 with Z C 7 C T(R) correspond bijective to the subsets of the
set of isomorphism classes of simple regular modules. Note that any torsion class 7 (X)
has infinitely many neighbors: maybe only finitely many lower neighbors (this happens
iff X' is finite, thus iff 7(X) is finitely generated) or only finitely many upper neighbors
(this happens iff X contains representatives from almost all isomorphism c?asses of simple
regular modules), but altogether the number of neighbors is max(|k|, Rg).
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For the Kronecker algebra, all torsion classes 7 but one are of the form T'(B), where
B is a (may-be infinite) set of pairwise orthogonal bricks; the only exception is T = Z.

3. Torsional brick chain filtrations.

We have mentioned above that Theorem 1.2 can be strengthened. We need some
definitions.

3.1. A submodule U of a module M is said to be torsional provided U belongs to
T(M). If M has a brick chain filtration (M;); of type (Bi,. .., By, ), and all the submodules
M; are torsional submodules of M, then also all the bricks B; belong to T'(M).

Looking at filtrations (M;); of a module M, one may request that all the submodules
M; are torsional submodules of M. There is the following stronger property: A filtration
0=My C My C--- C M, will be said to be torsional provided M; _; is a torsional
submodule of M;, for all 1 < i < m. If (M;); is a torsional filtration of M, then M;
belongs to T'(M;), for all 1 < ¢ < ¢, thus we have the inclusion chain 0 = T'(My) C T'(M;) C
-+« CT(M,,) =T (M), and therefore all the submodules M; are torsional submodules of M
(but the converse is not true: let M be a serial module with composition factors 1,2,2, 1,2
going upwards, with an endomorphism with image of length 2; and take the filtration
(M;)o<i<s with M; of length 0,2,3,5 for ¢ = 0,1,2,3; then, all the submodules M; are
torsional submodules of M, but M; is not a torsional submodule of Ms).

3.2. Theorem. Any module has torsional brick chain filtrations.

As we will see in 9.2, the torsional brick chain filtrations of a module M can be
constructed easily by induction: Let B be a top brick of M and M’ minimal with M /M’
in £(B). Since M’ is a proper submodule of M, by induction there is a torsional brick chain
filtration of M', say 0 = My C My C --- C M,,—1 = M'. Let M,, = M. Then (M;)o<i<m
is a torsional brick chain filtration of M. As a consequence of this procedure, we have:

3.3. Theorem. Any module has only finitely many torsional brick chain filtrations.

Note that this means that any module M determines a finite set of bricks which can
be used as building blocks in order to reconstruct the module M, namely the bricks which
occur in the types of the finitely many torsional brick chain filtrations of M.

If (M;); is a torsional brick chain filtration of type (B, ..., By,), then by definition all
the bricks B; belong to T'(M). Now, the brick B,, is (obviously) even a factor module of
M, but the remaining bricks B; do not have to be factor modules of M. Here is a typical
example: Let M be serial with composition factors going up: 1,2,2,1,2, with torsional
brick chain filtration 0 C M; C M, where M7 = Bj is the submodule of length three: here,
M, is not generated by M.

4. Some preliminaries.

4.1. Lemma. Let M’ be a non-zero module in T'(M). Then Hom(M,M') # 0.
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Proof: M’ has a filtration 0 = M{j C M C --- C M,, = M, where all the factors
M;/M;_, are non-zero factor modules of M. Since Mj it is a factor module of M, we get
a non-zero homomorphism M — M{ — M'. O

4.2. Examples of non-isomorphic bricks B’, B with B’ € T'(B). According to Lemma
4.1, Hom(B, B") # 0. (On the other hand, we will see in 6.4 that Hom(B’, B) = 0.)

Example 1: B = ? and B’ = 2. Here, we have an epimorphism B — B’. (Or, if we
2
want to have the same support: Let B = 1, and B’ = i)
1

2
Example 2: B = ?, and B’ = 2. Here, we have a monomorphism B — B’ and B, B’
1
have the same support.

Example 3: B = ?, and B’ = g Here, we have a non-zero map B — B’ which is

neither epi nor mono.

4.3. Lemma. A non-zero module M is a brick iff it has no non-zero proper torsional
submodule.

Proof. Let M be a module. If M is not a brick, there is an endomorphism f of M
such that f(M) is non-zero and a proper submodule. Since f(M) belongs to T'(M), we
see that f(U) is a torsional submodule of M.

Conversely, assume that U is a non-zero proper submodule which is torsional. Since
U belongs to T' (M), there is a non-zero submodule U’ of U which is a factor module of M.
We get a non-zero and not invertible endomorphism M — U’ C U C M, thus M is not a
brick. 0

5. The endotop and the iterated endotop of a module.

We are going to show the surjectivity assertion of Theorem 2. We need the notion of
the endotop et M of a module M.

5.1. Endotop. Denote by E = End(M) the endomorphism ring of M (operating on
the left of M), and rad E its radical. Then (rad )M is a submodule of M and we define
et M = M/(rad E)M, and call it the endotop of M; by definition, the endotop of M is a
factor module of M.

5.2. Examples: Let A be the local algebra k(z,y) with rad® = 0. If M is indecom-
posable, et M may be decomposable: Let M is the 3-dimensional indecomposable module
with simple socle and top of length 2, then et M is the direct sum of two copies of the
simple module, Also, et M may not be a semibrick: Let M be uniserial of length 3 with
M /rad® M not isomorphic to rad M. Then et M = M/rad® M is a serial module of length
2, thus not a brick. This leads us below to consider not only et, but the iterations et?, see
5.4.

If A is the Kronecker algebra, and M a regular Kronecker module, then et M is just
the regular top of M.



5.3. Proposition. Let M be a module. Then M belongs to T(et M), therefore
T(M)="T(et M). The kernel of the canonical map M — et M is torsional.

Proof. Let fi,...,ft be a basis of E = radEnd M. Let (radEnd M)™ = 0. The
image of g = (f;): @, M — M is (rad E)M = radg M = M, and et M = M /M. Let
M;iq1 = g(M;) for all j > 0 with My = M. Then M,, = 0. By induction, all modules
M;/M;jy, are generated by et M. This shows that T'(M) C T'(et M). On the other hand,
we also have T'(et M) C T'(M), since et M is a factor module of M. Thus M and et M
generate the same torsion-class.

The kernel M’ of the canonical map M — et M is by definition the image of the map
g, thus generated by M. Therefore M’ belongs to T'(M). O

5.4. We iterate the construction et and get epimorphisms
M — et M — (et)*M — - - .

Since M is of finite length, the sequence stabilizes eventually; in this way we get the iterated
entotop et> M = et® M for a > 0.

Example. Let A be a suitable artin algebra with two simple modules 1 and 2. For
n > 0, let M[n] be a serial module of length n + 2, with composition factors going up:
(1,...,1,2,1) (thus starting with n factors of the form 1). Then, for 0 < i < n, we have
et M[n] = M[n —i]. For 0 <i < n, the module M][i] is not a brick, but et™ M[n] = M[0]
is a brick (with composition factors (2,1)).

5.5. Proposition. Let M be a module. The iterated endotop X = et>™ M s a
semibrick and T (M) = T(X); the kernel of the canonical map M — et> M is a torsional
submodule of M.

Proof. It is obvious that the iterated endotop of a module is always a semibrick,
since the sequence M — et M — (et)2M — --- stabilizes precisely when End(et® M) is
semisimple. Proposition 5.3 yields that the torsion classes T(et’ M) are equal, for all 7 > 0.

The kernel K of the canonical map M — et® M has a filtration whose factors are
the kernels K; of the canonical maps et M — et*™! M, for all i > 0. According to 5.3, all
modules K; belong to T'(M), thus K belongs to T'(M). O

5.6. Corollary. A torsion class T is finitely generated iff there is a semibrick X with
T=T(X). O

Corollary 5.6 shows that the map X +— T'(X) from the class of semibricks X to the set
of finitely generated torsion classes is surjective. This is part of the assertion of Theorem
2.2.

5.7. Since the iterated endotop of a module M is a semibrick, the indecomposable
direct summands of the iterated endotop are bricks and will be called the top bricks of M.



6. Extensions of modules in + B by modules in £(B), where B is a brick.

6.1. Proposition. Let B be a brick and Y a module in *B. Let X = B®Y. If M
is in T(X), then M has a submodule M’ in T(Y') such that M /M’ belongs to E(B).

Of course, if Hom(M, B) # 0, then M’ is a proper submodule of M. And conversely,
if M’ is a proper submodule of M, then Hom(M, B) # 0.

6.2. Proof. Let M’ be a submodule of M which belongs to T'(X) with M /M’ € £(B),
and minimal with these two properties. We claim that M’ belongs to +B.

Thus, assume for the contrary that there is a non-zero map f: M’ — B. Since M’
belongs to T'(B,Y), there is a filtration 0 = My C M; C --- C M,, = M’ such that all
factors F; = M;/M;_; are factor modules of B or of Y. Let s be minimal such that f|M;
is non-zero. Thus, f vanishes on M,_; and induces a map f: M’/M,_; with non-zero
restriction to Fs = Mg/Ms 1. Let us denote by u: Fy — M'/M,_; the inclusion map.
Thus, the composition f-u: Fy — B is a non-zero map.

Now Fj is a factor module of some B or of Y. Since Hom(Y, B) = 0, Fs cannot be
a factor module of Y, thus Fj is a factor module of B. Also, since B is a brick, there is
no non-zero map from a proper factor module of B to B, thus we see that Fx, = B and
that the composition f - u: B = My/M,_; C M'/M,_, — B is an isomorphism. This
shows that u is a split monomorphism. It follows that there is a submodule M" of M’
with My_1 C M"”, such that M, N M" = M,_, and M, + M" = M’'.

My=0

It follows that M’ /M" ~ M,/Ms_1 = B, and that M" /M;_1 ~ M'/M,. Since M /M’ and
M'/M" belong to £(B), also M/M" belongs to £(B). On the other hand, M" /M, ~
M' /M, has a filtration by factors isomorphic to F; with s + 1 < i <t and Ms_; has the
filtration with factors F; where 1 <14 < s— 1. Since all the factors F; belong to T(X), also
M" belongs to T'(X). Altogether we see that M” is a submodule of M which belongs to
T'(X) and such that M /M’ € £(B), Since M" is a proper submodule of M’, this contradicts
the minimality of M’. It follows that M’ belongs to +B. O

6.3. Corollary. Let B be a brick and X a semibrick such that B is a direct summand
of X. Let M be in T'(X), Then any non-zero map M — B is surjective,

Proof. We can assume that X is basic. Let X = B@Y, then Y belongs to *B. Given
M in T(X), we can apply Proposition 6.1. Let f: M — B be a non-zero map. According
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to 6.1, there is a submodule M’ of M which belongs to - B such that M/M’ belongs to
£(B). Since f vanishes on M’, we get an induced map f: M/M’ — B, and f is non-zero.
However, any non-zero map in £(B) with target B is an epimorphism. Since f is surjective,
also f is surjective. O

6.4. Corollary. Let B, B’ be non-isomorphic bricks, and assume that B’ is in T(B),
Then Hom(B', B) = 0.

Proof. Assume there is a non-zero map f: B’ — B. According to 6.3, the map f
is surjective. Since B’ belongs to T(B), we know from 4.1 that there is a non-zero map
g: B — B’. Since f is surjective, the composition gf: B’ —+ B — B’ is non-zero. Since
B’ is a brick, this means that ¢gf is an isomorphism. Thus f is a (split) monomorphism.
Altogether we see that f is bijective, thus B and B’ are isomorphic. O

Remark. If B is a brick and Y a module in B, then T(Y) is usually properly
contained in T(B,Y) N+ B. For example, consider the quiver with vertices 1,2, one arrow
1< 2 and aloop at 2. Let Y = 0 and M a serial module with composition factors going
up 1,2,2. Let B be the submodule of M of length two. Then M belongs to T(B) N+ B.

7. The existence of torsional brick chain filtrations.

7.1. Proposition. Let B be a top brick of the module M. Then M has a proper
submodule M' which belongs to T(M) N+ B, such that M /M’ belongs to £(B).

Proof. Let X = et>® M. Then B is a direct summand of X. Then T(M) = T(X) by
Proposition 5.5, thus M belongs to T'(X). Now use Proposition 6.1. U

7.2. Proof of Theorem 3.2. According to 7.1, M has a proper submodule M’ in
T(M)N~+B such that M/M’ belongs to £(B) for some brick B.

By induction, M’ has a brick chain filtration 0 = My € My C --- C M,,_1 = M’ of
type (B1,..., Byn—1) such that any M;_; is in T'(M;) for all 1 <i < m — 1. Note that we
have T'(My) C T(M;) C ---T(My,—1) = T(M").

Let M,, = M and B,,, = B. Now, for 1 <¢ < m—1, the module M; maps onto B;. But
M; € T(M') C +B. As a consequence, Hom(B;, B) = 0. This shows that (B,..., B,,) is
a brick chain. Of course, the filtration M; is of type (B, ..., By,). Also, M;_4 is in T'(M;)
for all 1 <4 <m — 1, by induction, and for + = m by 7.1. U

7.4. Some examples of torsional brick chain filtrations.

(1) If M is a brick, the filtration presented by Theorem 3.2 is the trivial one 0 C M.
Namely, assume M is a brick and 0 = My C M; C --- C M,, = M is a torsional brick
chain filtration. Then M; belongs to T'(M), thus Hom(M, M;) # 0, (see Lemma 3.1).
A non-zero map M — M, gives rise a non-zero composition M — M; C M,, thus the
inclusion M; C M is a split epimorphism and therefore the identity map.

(2) Not every brick chain filtration (M;); of a module M is torsional. For example,
let A be the quiver 1 < 2 and M the sincere indecomposable module. There is the brick
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chain filtration 0 C My C My = M, where M; is the socle of M. Of course, M; is not
contained in T'(M).

(3) Here is a module with two torsional brick chain filtrations. We start with the
quiver with vertices 1,2, 3, two arrows 1 £ 2, one arrow 2 < 3 and one zero relation, and
form a node 1 = 3. The injective module I(1) is of length four, with socle 1, second layer
2 @ 2, and third layer 1. There is the filtration with the following factors going up: first
the socle 1, then an indecomposable module of length two, finally a copy of 2. Another
filtration has only two factors going up: first the injective envelope of 1 in the category of
modules of Loewy length at most two, then the simple module 1.

(4) For a Nakayama algebra, any indecomposable module M has only one torsional
brick chain filtration (M;);, and this filtration has length at most 2. Namely, let S be
the top of M. Then all bricks in T (M) have top S. Assume that M has precisely m
composition factors of the form S, and U is the unique submodule of M with top S which
is a brick. Then either M isin £(U), then 0 C M is the only torsional brick chain filtration
of M. Else 0 C U C M is the only torsional brick chain filtration of M.

(5) Duality. We have mention in Section 1 that using the duality functor D, we
obtain from a brick chain filtration (M/;); of M a corresponding brick chain filtration for
D M. But we should stress: If the filtration (M;); is torsional, the dual filtration does not
have to be torsional. As a typical example, let A be a connected Nakayama algebra with
two simple modules and an indecomposable module M of length three, let U be its socle.
Then M has the brick chain filtration (0 C U C M). This filtration is torsional, whereas
the dual filtration is not torsional.

There are brick chain filtrations (M;); of modules such that neither the filtration (M;);
nor the dual filtration (D M/ D M;) is torsional. Here is an example: Let A be a connected
Nakayama algebra with three simple modules and M indecomposable of length four. Let
U be the submodule of M of length two. Then (0 C U C M) is a brick chain filtration,
however neither this filtration nor its dual is torsional.

8. The lower neighbors of a finitely generated torsion class.

We are going to prove Theorem 2.5, thus we determine the lower neighbors of the
torsion class T'(M). Let By, ..., By be the top bricks of M and let X = &), B; (thus X is
a brick and T'(M) = T(X), see Section 5). Let T; = T(X)N+B; for 1 <i < m.

8.1. Since B; belongs to T'(X), but not to +B;, we see that T; is a proper subclass of
T(X). Let j # i. Since Hom(B;, B;) = 0, we see that B; belongs to *B;, thus to 7; and
therefore T; # 7T;. It follows that the torsion classes T; are pairwise different.

8.2. For any module N in T(X)\ +B;, there is an epimorphism N — B;, thus B;
belongs to T(N).

For the proof, we can assume that i = 1. Since N is not in + By, there is a non-zero
map f: N — Bj. Corollary 6.3 asserts that f is surjective. Thus By is in T'(V). O

8.3. Let us show that 7; is properly contained in T(X) and that the torsion classes T;
are pairwise different. By definition, 7; is contained in T'(X). Since B; belongs to T'(X)
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and not to +B;, we see that 7; is a proper subclass of T(X). Next, let us assume that
i # j. Now B; does not belong to +B;. But B; is orthogonal to Bj, thus B; does belong
to - B;. This shows that T; # T;. O

8.4. Any torsion class N which is properly contained in T(X) is contained in some T;.
Proof. Assume, for the contrary, that N is properly contained in 7'(X), but not contained
in any 7;. Then A is not contained in any of the torsion classes +B;. Thus, for any 7, there
is a module M; which is contained in A, thus in 7'(X), and not in L+ B,. Since M; is not
contained in +B;, there is a non-zero map f;: M; — B; According to 6.3, f; is surjective.
This shows that B; is contained in T'(M;) C N. Therefore, T(X) = T(By,...,Bn) CN.
The reverse inclusion is given by assumption. Altogether, we see that N' = T(X), a
contradiction. U

8.5. The torsion class T; is a lower neighbor of T(X) and any lower neighbor of T'(X)
is obtained in this way. Proof. Let N be a torsion class with 7; C N C T(X). Since N
is properly contained in T'(X), we can use 8.4 in order to see that A’ C 7; for some j.
Therefore 7; C N C T;. According to 8.3, we have i = j and 7; = N. This shows that 7;
is a lower neighbor of T'(X).

Conversely, if N is a lower neighbor of T'(X), then we use again 8.4. We see that A is
contained in 7; for some 4. It follows that N' = 7;. Thus, the classes 7; are the only lower
neighbors of T'(X). O

8.6. We claim that B; is the only brick C in T(X) with T; = T(X) N +C. Thus, let
C be a brick in T(X) with 7; = T(X) N+C. Since T; C +C, we see that C is not in +B;.
Since C is in T(X), but not in +B;, Corollary 6.3 provides an epimorphism f: C — B;.
Also, B; is not in +C, that means Hom(B;, C') # 0. The composition with the epimorphism
f: C — B; yields a non-zero map C' — B; — C. Since C' is a brick, the composition has
to be an isomorphism, thus the map f: C' — B; is a split monomorphism. Since B; is
indecomposable, it follows that B; and C' are isomorphic. U

8.7. Summary. The assertions 8.3 and 8.5 show that the map B; — 7; provide
a bijection between the bricks B; and the lower neighbors of T'(X). Note that for any
module M with T' (M) = T'(X), the bricks B; are just the top bricks of M. 8.4 shows that
any torsion class N which is properly contained in T'(X) is contained in some 7;. For the
final assertion of Theorem 3.5, see 8.6. This concludes the proof of Theorem 2.6. O

8.8. Proof of the injectivity assertion in Theorem 2.2. The map [X]|+— T(X)
from the set of isomorphism classes of basic semibricks to the set of torsion classes is
injective. Thus, let X, X’ be basic semibricks with 7'(X) = T'(X’). If B’ is a brick which is
a direct summand of X, then according to Theorem 3.5, the torsion class T'(X)N+(B’) is a
lower neighbor of T(X) = T'(X’), thus this torsion class is of the form T(X) N+ B for some
indecomposable direct summand B of X, and since B’ is a brick in T(X) with T(X)N+B =
T(X) N +(B’), the bricks B and B’ are isomorphic. Thus, any indecomposable direct
summand of X’ occurs as a direct summand of X, and similarly, any any indecomposable
direct summand of X occurs as a direct summand of X’. This shows that X and X’ are
isomorphic. O
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8.9. Given a pair 7' C T of neighbors with 7’ finitely generated, also T is finitely
generated (but the converse is not true). Theorem 2.5 allows to attach to any pair 7' C T of
neighbors, where 7T is finitely generated, a brick C, namely the brick C with 7/ = TN+C.
This is the brick labeling procedure for pairs of neighbors. To repeat: For the brick
labeling of 77 C T we use the uniquely determined brick B in 7 with 7/ = T N+ B.

9. The torsional brick chain filtrations.

9.1. Proposition. Let (M;); be a brick chain filtration of M of type (Bi, ..., Bm),
and assume that all the submodules M; are torsional submodules of M. Then B,, is a top

brick of M.

Proof. Since M; belongs to T'(M), also its factor module B; belongs to T'(M). This
shows that T'(Bi,...,By,) € T(M). On the other hand, M has a filtration with factors
B, therefore T (M) C T'(B, . .., By). This shows that

T(M)=T(By,...,By) =T(Y & B),

where Y = @Z_ll B; and B = B,,,. We note: Since (By,..., B,,) is a brick chain, we have
Hom(Y, B) = 0.

Now, T(Y®B) = T'(et>*(Y @ B)), We calculate inductively et*(Y @ B) for all a > 0. We
claim that et*(Y @ B) = Y, ® B, where Y, is a factor module of Y with Hom(Y,, B) = 0. For
a =0, we put Y, =Y. Assume we have et®(Y & B) = Y, ® B, where Y, is a factor module of
Y with Hom(Y,, B) = 0. Since Hom(Y,, B) = 0, the radical maps in the endomorphism ring
of Y, ® B map into Y,. If U, is the sum of these images, then et®(Y ® B) = Y1 @ B with
Yo+1 = Y, /U,. Also, we have Hom(Y, 11, B), since any non-zero homomorphism Y,; — B
would yield a non-zero homomorphism Y, — Y,1; — B. Since we deal with modules of
finite length, there is some a such that U, = 0, and therefore et>(Y & B) =Y, & B. This
shows that B is a direct summand of et>*(Y & B) =Y, & B.

Since B is a direct summand of et (Y @ B), it is a direct summand of et M, see But
this means that B = B,,, is a top brick of M. O

9.2. Corollary. Let M be a non-zero module with top bricks Ty,...T;. For 1 <1 <t,
let M® be the maximal submodule of M which belongs to T(M)N~+T;. The torsional brick

chain filtrations of M are the filtrations obtained from a torsional brick chain filtration of
M by adding the inclusion M@ C M. O

9.3. Proof of Theorem 3.3. For any module M, let (M) € NU{oco} be the number

of torsional brick chain filtrations of M. Of course, we have ¢(0) = 1. For M # 0, let M®
be the maximal submodule of M which belongs to T(M) N +T;. Then, according to 9.2,

SM) =Y o(MD),

This shows that ¢(M) is finite, for all modules M, as asserted in Theorem 3.3. U
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10. More about brick chain filtrations.

10.1. A module M will be said to be homogeneous provided M belongs to £(B) for
some brick B. Note that if M is non-zero and belongs to £(B), where B is a brick, then
B is uniquely determined, as the following Lemma shows.

Lemma. If B is a brick and M is a non-zero module in E(B), then B is the image of
an endomorphism of M and B is the only brick which occurs as image of an endomorphism
of M.

Proof. First, we show that B occurs as the image of an endomorphism of M. Since
M Dbelongs to £(B), there is a filtration 0 = My C My C --- C M,, = M of M such that
all factors are isomorphic to B. A corresponding map M — M /M,, 1 ~ B~ M; C M is
an endomorphism of M wich image isomorphic to B.

Conversely, let f be an endomorphism of M whose image is a brick. Since £(B) is
an exact abelian subcategory, the image M’ of f belongs to £(B). Now M’ is a non-zero
module in £(B). As we have seen in the first part of the proof, M’ has an endomorphism
with image f(M') being isomorphic to B. But we assume that M’ is a brick, thus the
image of an endomorphism of M’ is either zero or M’ itself. This shows that M’ = f(M’),
thus M’ is isomorphic to B. O

Examples. If A is a local algebra, then all modules are, obviously, homogeneous. But
it is interesting to observe that also for the Kronecker algebra, all indecomposable modules
are homogeneous.

10.2. A filtration 0 = My C My C --- C M,, = M will be said to be directed provided
Hom(M;/M;_1,M;/M;_1) =0 forall 1 <i<j<m.

Proposition. Let M be a module with a filtration 0 = My C My, C --- C M,, = M.
Then (M;); is a brick chain filtration iff (M;); is a directed filtration and all the factors
are homogeneous.

Proof. First, assume that (M;); is a brick chain filtration, say of type (B, ..., Bn).
Since M;/M;_1 belongs to £(B;), all the factors of the filtration are homogeneous. Also,
for i < j, we have Hom(B;, Bj) = 0. Therefore Hom (M, /M;_1, M;/M;_1) = 0.

Conversely, assume that (M;); is a directed filtration (with proper inclusions) and
all factors are homogeneous. Since F; = M;/M;_; is a homogeneous module, there is a
brick B; with F; € £(B;). Since F; is non-zero, B; occurs both as a submodule and as
a factor module of F;. Thus, any non-zero homomorphism f: B; — B; yields a non-zero
homomorphism F; — F}. Since the given filtration is directed, we see that Hom(B;, B;) =
0 for i < j. Thus, (Bi,..., B,,) is a brick chain. O

10.3. The composition factors which occur in the top of a module M give rise to
interesting brick chain filtrations of M:

Proposition. Let M be a module. If S is a simple module which occurs in the top of
M, then M has a brick chain filtration of type (B, ..., By,) with B, = S.

Proof. Let M’ be the minimal submodule of M such that M/M’ has only S as
composition factor, thus M /M’ belongs to £(S) and S does not occur in the top of M’.
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Now take a torsional brick chain filtration (M;)1<i<m—1 of M’, say of type (Bi,..., Bm—1)
and let M,, = M. Since we deal with a torsional filtration of M’, the modules M;, thus
also the bricks B; are in T (M), thus the top of B; is generated by M’. As a consequence,
Hom(B;, S) = 0. This shows that (By,..., By,) with B, = S is a brick chain, and that
the filtration (M;)1<i<m is a brick chain filtration of type (Bi,..., Bn). O

10.4. A module M has usually several brick chain filtrations, and the length of these
filtrations seem to be unrelated. As a typical example, let A be the path algebra of the
directed quiver of type A,, and M the indecomposable sincere A-module. It is easy to see
that M has brick chain filtrations of length m, for any 1 < m < n.

By definition, a module M is homogeneous iff (0 C M) is a brick chain filtration.
A homogeneous module which is not a brick has only one brick chain filtration, namely
(0 € M). But bricks usually have several brick chain filtrations:

Proposition. A brick which is not simple has at least two brick chain filtrations.

Proof. Let M be a brick. Then (0 C M) is a brick chain filtration of length 1.

Let S be a simple module which occurs in the top of M. According to 10.3, there is a
brick chain filtration (M;)1<i<m with M, /M,,_1 in £(S). We claim that m > 2. Namely,
if m = 1, then M itself belongs to £(S). But since M is a brick, we must have M = S,
thus M is simple. O

10.5. Question. Are there modules with infinitely many brick chain filtrations?

11. Brick labeling in general.

We consider now also torsion classes which are not necessarily finitely generated.

11.1. Proposition. Let 7' C T be a pair of torsion classes.
(a) If M belongs to T\ T’ and is of minimal length, then M is a brick and T' C + M.
(b) If B is a brick and T' C 1B, let N =T(T',B) and N' = N N 1B, then

T CN cNCT

and the torsion classes N' C N are neighbors. Any module M € N has a submodule
M’ € N’ such that M/M' € E(B). In particular, B is the unique module in N\ N of
smallest length.

Proof. Let M be in 7 \ 77, then according to 5.5, also X = et® M is in T \ T’ (since
T(M)=T(X)). There is an indecomposable direct X’ of X which belongs to 7\ 7'. We
have epimorphisms M — X — X'. Thus, if we assume that M is of minimal length in
T\ 7', then M = X’ is a brick. The minimality condition also implies that 7/ C M.
Namely, given a module M’ in 77 and a homomorphism f: M’ — M, then f(M) belongs to
T, thus M/ f(M) does not belong to 7’. By the minimality of M we must have f(M) = 0.

Next, assume that B is a brick and that 7 C B, let N' = T(T, B). It is trivial that
T CN' CN CT,and N # N, since B belongs to N and not to +B.
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Let M be any module in N'\ N’. We claim that there is a submodule M’ of M which
belongs to N’ such that M/M’' € &(B). Since M is in N' = T(T’,B), there is Y € T’
such that M belongs to T(Y, B). According to 6.1, there is M’ € T(Y, B) N+ B such that
M/M' € £&(B). But T(Y,B)N+B CT(T',B)Nn+B = N".

It follows that A/ C N are neighbors: namely, if M € N\ N, then its submodule M’
is a proper submodule, thus M /M’ maps onto B, thus T (N’, M) contains T’ as well as B,
and therefore is equal to . O

11.2. Remark. If we label the pair 7/ C T of neighbors by the brick B with
T’ = T N+ B, then we have on the one hand: B belongs to 7 and not to 7. On the other
hand, for every module M in 7", in particular for the bricks in 7', we have Hom(M, B) = 0.

Thus we obtain in this way the Hom-condition which is used in the definition of a
brick-chain: If 77 C 75 € T3 C T4 is a chain of torsion classes with 77 C 75 as well as
T3 C T4 being neighbors, and B is the label for 7; C 73, whereas B’ is the label for 73 C 7y,
then Hom(B, B’) = 0.

12. Final remarks: History and references.

12.1. The terminology “semibrick” seems to be due to Assai [A]. T used to call the
indecomposable direct summands of a basic semibrick an “antichain” of bricks, but this is
in conflict with Demonet’s important notion of a brick chain (and to say that “an antichain
of bricks is a brick chain”, sounds rather odd).

12.2. The results presented here are usually considered as part of the so-called -
tilting theory (what-ever this means). There seems to be a strange reluctance to deal with
bricks. For example, many authors prefer to speak about 7-tilting finiteness instead of
brick finiteness (these properties are equivalent, see [DLJ]): here, 7-tilting finiteness means
that there are only finitely many 7-tilting modules (whatever this means). Whereas brick
finiteness is very easy to grasp, 7-tilting finiteness is much less intuitive!

12.3. Torsion pairs. Torsion pairs (7, F) were introduced by Dickson [Di] as a
generalization of the use of torsion and p-torsion subgroups in abelian group theory, thus
generalizing a feature of the category of Z-modules to R-modules, were R is an arbitrary
ring. In this paper, torsion classes play a decisive role, but we never mention the corre-
sponding torsionfree class. Of course, since the dual of a torsion class is a torsionfree class,
any result about torsion classes provides a corresponding result about torsionfree classes.
In this way, the paper yields many assertions about torsionfree classes. But we should
mention an intriguing feature of our topic: if we dualize the bijection between chains of
torsion classes and brick chains, we obtain a corresponding bijection between chains of
torsionfree classes and again brick chains, since the dual of a brick chain is a brick chain.

Throughout the paper, we have used the notation A for the torsion class of modules
M with Hom(M,N) = 0 for all N € N, where N is an arbitrary class of modules.
Correspondingly, given a class M of modules, one writes M= for the (torsionfree) class of
all modules N with Hom(M, N) = 0 for all M € M. In this way, one obtains all torsion
pairs as (tNV, (tA)1), or also as (+(M1), M1), starting with arbitrary module classes
N, M. Of course, - (M) is nothing else than the torsion class T'(M) generated by M (and
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LN~ is the torsionfree class generated by N'). The torsion pairs (7, F) were introduced
to focus the attention, for any module M, to the largest submodule U of M which belongs
to T, its T-torsion submodule (then M /U is the largest factor module of M which belongs
to F) In this light, Proposition 6.1 deals with torsion pair (+ B, (+B)1), namely with the
L B-torsion submodule M’ of M, and asserts that the (torsion-free) factor module M /M’
belongs to £(B).

Note that the main results 1.2 and 3.2 are shown by an iterative use of 6.1: In this
way, we deal with a chain of torsion classes in order to obtain a filtration (M;); of the
given module M with factors M;/M,_, in module classes of the form £(B;).

12.4. In contrast to the classical example, torsion classes in general are not hereditary
(where hereditary means that the torsion class T is closed under submodules). Of course,
the torsion classes T'(M) considered in our paper are usually not hereditary, and we take
care of this feature when we focus the attention to what we call “torsional” submodules.

The brick-chain theorems 1.2 and 3.2 should be seen in the light of the original example
of abelian group theory: any finitely generated module M has a filtration (M;)o<i<ym, where
the factors M;/M;_1 with 0 < i < m are in E(Z/p;7Z), for pairwise different prime numbers
pi, whereas M, /M, is in £(Z). In abelian group theory, this filtration always splits. In
our case, we cannot expect that the filtrations provided in 1.2 and 3.2 split, just look at
indecomposable modules M which are not bricks.

12.5. The relevance of torsion classes when dealing with finite length categories was
seen already by Auslander and Smalg [AS].

12.6. Wide subcategories and torsion classes. Given an abelian category, the
exact abelian subcategories which are closed under extensions are now usually called wide
subcategories. The rather obvious relationship between semibricks and wide subcategories
was mentioned in [R1] under the name “simplification”. The search for semibricks (or wide
subcategories) which generate a given torsion class was initiated by Ingalls and Thomas
[IT]. Theorem 2.2 generalizes some of their considerations. Actually, the injectivity of the
map in 2.2 has been shown by Marks and Stovicek in [MS].

The relevance of the endotop of a module is well-known and was stressed by Asai when
looking at 7-rigid modules (our proof of 5.5 follows closely Asai [A]).

12.7. Brick labeling, The brick labeling as presented in sections 8 and 11 is due to
Barnard, Carroll and Zhu [BCZ]. Actually, neighbor pairs 7' C T of torsion classes have
attracted a lot of interest and several different denominations are used in the literature:
that 7" covers T, that there is an arrow 7" — 7' in the Hasse quiver of the lattice of
torsion classes, or one speaks about minimal inclusions of torsion classes. The brick B
used as label is called a minimal extending module for T’ in [BCZ].

The bijection 2.7 between bricks and completely join irreducible torsion classes has
been exhibited in Theorem 1.0.5 in [BCZ].

12.8. Brick chains. As we have seen, given a chain of torsion classes, the brick
labeling of the neighbor torsion classes yields a brick chain. This observation was used
by Demonet [De] to consider not only the finite brick chains considered in the paper, but
to deal with arbitrarily large totally ordered sets of bricks with the corresponding Hom-
condition, called again brick chains. Of special interest are those brick chains which cannot
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be further refined, since they correspond bijectively to the chains of torsion classes which
cannot be refined. This bijection is essential for an understanding of the lattice of all
torsion classes.

The relevance of this bijection is the following: Since the set of all torsion classes is,
in a natural way, a partially ordered set, using the set-theoretical inclusion, the bijection
transfers this ordering to bricks and semibricks.

12.9. Upper neighbors. We were able to discuss the lower neighbors of a finitely
generated torsion class, but (unfortunately) not its upper neighbors. As we have seen, the
lower neighbors of a finitely generated torsion class are easily determined. To determine
the upper neighbors of a torsion class 7 is much more subtle and is related to the question
whether 7 is functorially finite or not. This is the place where 7-tilting theory (and
mutations) come into play! If 7 is functorially finite, 7 has only finitely many upper
neighbors and there is also no problem to determine them. It would be nice if the following
assertion were true: If a finitely generated torsion class is not functorially finite, then it
has infinitely many upper neighbors. Actually, given a finitely generated torsion class T,
it may be important to look not only at its upper neighbors, but to look at the upper
neighbors of any lower neighbor of 7. Altogether, one should be aware that here we are
in the realm of the second Brauer-Thrall conjecture.

12.10. Special brick chain filtrations have been used already a long time ago. In
particular, we have shown in [R2] that for a hereditary k-algebra, where k is an algebraically
closed field, any exceptional module is a tree module, The basis of the proof is Schofield
induction, dealing with brick chain filtrations of length 2.

12.11. In this report, we have assumed to be in the context of artin algebras. Actually,
nearly all the results presented here are valid more generally in arbitrary length categories,
thus for example for finitely generated modules over left artinian rings.
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