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Before we start: Submodule lattices.

M a A-module of finite length, SM its submodule lattice.

Examples: SM

S simple module Ij

Se S, 5,5 simple, S5’
Sas’, S, S simple, S~ 5

: S@S’
Z S@S’

Z/47.
7. /A7 { 27,/47.



A Kronecker algebra

M = Q(a) (injective)

M = P(b) (projective)
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The Auslander bijections.
A artin algebra, mod A the left A-modules of finite length

[— Y) the set of right equivalence classes of maps ending in Y
Definition: f<f’ <= f=f'h for some h.
Call [fY={f'|f=f'=Xf} the right equivalence class of f

It is a poset, even a lattice.
[FYSIF) <= f=f'h

Any right equivalence class contains a right minimal map f
Recall that this means: f: X—Y, X=X'0X", f(X")=0 = X"'=0

“[— Y) the subset of all [f) with f “right C-determined”.

In the special case when C' is a generator:
f right C-determined <= Ker f € add7C
(=D Tr the Auslander-Reiten translation.)



The lattice structure of [— Y).

Given fll Xl — Y, fQZ X2 — Y.

Y
X1® Xo N\ e join
X1 {%] [ﬂ\ X5
‘JN /f;
pullback oo meet

Remark: Even if f1, fo are right minimal,
the maps [f1 f2] and f} f1 usually are not right minimal.



Right C-determination. f: X — Y morphism, C' a module.

f is right C-determined provided any f': X’ — Y such that
f'¢ factors through f for all ¢: C' — X', factors through f.

C ﬁ> X’ / X' f
¥ \
\\\\ \ h\)\

If addC = add C’, then f right C-determined iff f right C’-
determined.

f right C-determined = f right (C' & C')-determined.
The subset ©[— Y) of [+ Y) is closed under meets.

Warning. Usually it is not closed under joins.



It may not be advisable to look for subsets of [— Y) closed
under joins. The closure under joins may become very large!

For C' = A, the lattice “[— Y) is just the submodule lattice
SY of Y.

Example: A = Kronecker algebra with sink a, let Y = Q(a).

Q(a)
7NN
R R/ R// e
~\t1/47
S(a)
0 o
R, R’ R",---: the indecomposable representations of length 2

(note: the join in “[— Y') of maps f; # f» in the height 2 layer
isl: Y —=Y),

the join in [— Y') of pairwise different maps f;: R; — Y is the
direct sum map [f1,...,fu]: R1 & --- @& R, — Y (and these
maps are right minimal).

If |k| = oo, the smallest subposet of [— Y') closed under joins
and containing the inclusion maps R — Y (with R regular of
length 2) has infinite height.



Auslander’s First Theorem.

=)= ),

where C' runs through all the A-modules
or through representatives of all multiplicity-free generators.

This is a filtered union of meet-semilattices.

If M is a module, let SM be the lattice of all submodules.
Consider Hom(C,Y) as a I'(C')-module, where I'(C) = End(C)°P.

Second Theorem. There is a poset isomorphism

ney: “[=Y) — SHom(C,Y).

with ney (f) = ImHom(C, f) = f - Hom(C, X)
= {h € Hom(C,Y') | h factors through f}.



Transfer from S Hom(C,Y) to “[— Y).

ney: “[=Y) — SHom(C,Y).

S Hom(C,Y) is a modular lattice of finite height,
thus also “[— Y) is a modular lattice of finite height.

S Hom(C,Y) has two distinguished elements: zero and one.
one ly Hom(C,Y)

Zero Ny (0) = 27 0

Jordan-Hé6lder Theorem (composition series and factors)
— my lecture today.

Krull-Remak-Schmidt Theorem (indecomposable summands)
— the corresponding theory for “[— Y') is not yet clear.

Quiver Grassmannian (SM considered as algebraic variety)
— next week!



The Jordan-Hé6lder Theorem for ©[— Y).

Height of the lattice “[— Y)
= length of a maximal chain of non-invertible maps

Xn—>Xn_1%“°%X1—>X0:Y

with all X; — --- — X¢ = Y right minimal, right C'-determined.

Let h;: X; — X;_1 be maps with composition f = hy...h;.
(h1,ho, ..., ht) is called a right C-factorization of f of length t
iff all h; are non-invertible and

all f; = h;--- hy are right minimal, right C-determined.

A right C-factorization (hq, ha, ..., ht) is mazimal provided it
has no proper refinement.

Proposition Any right C-factorization (hy,...,h:) has a re-
finement which is a maximal right C'-factorization and all maz-
imal right C-factorizations of (hi,. .., hy) have the same length.
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In particular: any right minimal right C'-determined map f has
a refinement which is a maximal right C-factorization,
its length ¢ will be called the C-length of f, written |f|c.

Proposition Let f: X — Y be right minimal and right C'-
determined. Then

[fle = [Hom(C, Y)| = [ney (f)],

Here, | Hom(C, Y| is the length of Hom(C,Y') as I'(C')-module,
and |ncy (f)| the length of its submodule ney (f).

ly),
= Y).

Proof: |Hom(C,Y)| is the height of |
and |ncy (f)| is the height of [f) in ©
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The C-length of a map f. Two special cases for C.
Case 1. C projective.

The right minimal, right C-determined maps f: X — Y are

(up to right equivalence) just the inclusion maps of submodules
X of Y such that the socle of Y/X is generated by C.

If f: X — Y is right minimal and right C-determined, then f
is injective and

[fle =) [Cok(f): S].

Swith
P(s)|C

775}1/(0) is the inclusion X — Y, where X is the intersection of
the kernels of all maps Y — Q(S), with .S simple, P(S)|C.
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The C-length of a map f. Two special cases for C.
Case 2. Assume that K has semisimple endomorphism ring.

Let C = 7~ K and assume that P(C,Y") = 0.
f: X — Y right min., right C-det. = f is surjective and

[fle = n(Ker(f)).

775}1/(0) is given by universal extension
0K —-X—Y —0with K/ €add K.

Example. A the Kronecker algebra,
Y = (2,3) (preinjective);
C' = (3,2) (preprojective), thus K = (1,0).

End(C') = k, thus S Hom(C, Y)) is the subspace set of Hom(C,Y").

Hom(C,Y) = k*, thus we deal with the geometry of Pj.
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A Kronecker algebra, dimY = (2,3), dim C = (3, 2).

C’[_> Y> ~ Sk4 - dim vector
P (2,3)
Py gmA e N e (3,3)
G% ...... (4,3)
I \ \ L e (5,3)
N (6,3)

Height 4: 1y
Height 3: multiplicity-free regular modules of length 6,
Height 2: modules with dimension vector (4, 3),

both indecomposables, as well as decomposables.
Height 1: modules with dimension vector (5, 3),

both indecomposables, as well as decomposables.
Height 0: the projective cover of Y.
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The C-type of C-neighbors.
f, f’ right minimal, right C-determined maps with [f) < [f’).

Call (f, f') C-neighbors provided |f|c = |f'|c + 1,
provided [f) < [f’) and there is no f” with [f) < [f") < [f")

Let (f, f’) be C-neighbors, f: X —» Y, f/: X' =Y.

(f, f)) is of type Cy, provided Cy an indecomposable direct
summand of C' and there is ¢: Cy — X’ such that f'¢ does
not factor through f.

(Such a summand Cy must exist, since otherwise f’ would fac-
tor through f, since f is right Cy-determined.)

Proposition If (f, f') is of type Cy, then as T'(C)-modules:

ney (f)/ney (f) ~ top Hom(C, Cy)

Note that Hom(C, Cy) is a simple I'(C')-module.
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Proposition If (f, f') is of type Cy, then as T'(C')-modules:

ney (f)/mey (f) ~ top Hom(C, Cy)

Corollary The type of a pair of C-neighbors is uniquely deter-
mined.

Example. We consider the quiver of type A4 with two sinks
and one source.

o Ky Ch o
N N NN o
° 02 f1 Y ° f1 %1
N NN s
e g S f2 g1t
/ AN A R

f1 is surjective with kernel K,
f1f2 is injective, the socle of the cokernel is generated by Cs
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Intervals of height 2.
Consider intervals of height 2 which are not linearly ordered.

Such an interval in a submodule lattice SM is of the form SN
with N = S @ S and simple modules S, S’.
There are two possibilities:

I. No diagonals II. With diagonals
N N
S s’ S S
S S S=5

The number of elements of height 1
is 1+| End(S)]
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Corresponding pictures for “[— Y): Y

I. No diagonals. fy \f2

X1 X5
The modules X, X may be \ /
isomorphic or non-isomorphic! *
Example 1. ) Example 2.
A the Kronecker quiver A extended Kron. quiver
“l=Y) S “I=Y) Q@)

)

C' = R(0) & R(c0) C = R(0) EB"R"(OO)

What matters are not X, Xo, but the C-types of fi, fs.

Here, the C-types are non-isomorphic.
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Corresponding pictures for “[— Y):

II. With diagonals. f// \

Xl/

Again, the modules X, X', X", ... \\ /

may be isomorphic or non-isomorphic!

Example 1. , Example 2. -
A the Kronecker quiver A hereditary of type G2 ¥
a a k
“[=Y) [1}

¢ //\
i //\ B [

¥ AN /
Ny A
C= AN C:P(a):[ﬂ

Again, what matters are not X, X'/, but the C-types of f, f’.

Here, the C-types are isomorphic!
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