The Auslander bijections.

- Auslander, M.: Functors and morphisms determined by objects. In: Representation Theory of Algebras. Lecture Notes in Pure Appl. Math. 37. Marcel Dekker (1978), 1-244. Also in: Selected Works of Maurice Auslander, AMS (1999).
- Auslander, M.: Applications of morphisms determined by objects. In: Representation Theory of Algebras. Lecture Notes in Pure Appl. Math. 37. Marcel Dekker (1978), 245-327. Also in: Selected Works of Maurice Auslander, AMS (1999).
- Auslander, M., Reiten, I., Smalø, S.: Representation Theory of Artin Algebras. Cambridge Studies in Advanced Mathematics 36. Cambridge University Press. 1997. Chapter XI.
- Ringel, C. M.: The Auslander bijections: How morphisms are determined by modules. Bulletin of Mathematical Sciences (to appear). arXiv:1301.1251

Before we start: Submodule lattices.

M a Λ -module of finite length, SM its submodule lattice.

Examples:

SM

S simple module

 \int_{0}^{S}

$$S \oplus S', \quad S, S' \text{ simple, } S \not\simeq S'$$

$$S \stackrel{S \oplus S'}{\longleftrightarrow} S'$$

$$S \oplus S', \quad S, S' \text{ simple, } S \simeq S'$$

$$S \stackrel{S \oplus S'}{\longleftrightarrow} S'$$

$$\mathbb{Z}/4\mathbb{Z}$$

$$\begin{array}{c}
\mathbb{Z}/4\mathbb{Z} \\
2\mathbb{Z}/4\mathbb{Z}
\end{array}$$

 Λ Kronecker algebra

 $\mathcal{S}M$

$$M = Q(a)$$
 (injective)

 $\begin{array}{c}
Q(a) \\
& \\
\operatorname{soc} Q(a) \\
0
\end{array}$

$$M = P(b)$$
 (projective)

$$\Lambda = k, \quad M = k^4$$

 \mathbb{P}_3

 \mathbb{G}_2^2

 \mathbb{P}_3

The Auslander bijections.

 Λ artin algebra, mod Λ the left Λ -modules of finite length

 $[\to Y]$ the set of right equivalence classes of maps ending in YDefinition: $f \leq f' \iff f = f'h$ for some h. Call $[f) = \{f' | f \leq f' \leq f\}$ the right equivalence class of f

It is a poset, even a lattice.

$$[f\rangle \leq [f'\rangle \iff f=f'h$$

Any right equivalence class contains a right minimal map fRecall that this means: $f: X \to Y, X = X' \oplus X'', f(X'') = 0 \Longrightarrow X'' = 0$

 $^{C}[
ightarrow Y
angle$ the subset of all [f
angle with f "right C-determined".

In the special case when C is a generator: f right C-determined \iff Ker $f \in \operatorname{add} \tau C$ ($\tau = D$ Tr the Auslander-Reiten translation.)

The lattice structure of $[\rightarrow Y\rangle$.

Given $f_1: X_1 \to Y$, $f_2: X_2 \to Y$.

Remark: Even if f_1, f_2 are right minimal, the maps $[f_1f_2]$ and f'_2f_1 usually are not right minimal. **Right** C-determination. $f: X \to Y$ morphism, C a module.

f is right C-determined provided any $f': X' \to Y$ such that $f'\phi$ factors through f for all $\phi: C \to X'$, factors through f.

If add $C = \operatorname{add} C'$, then f right C-determined iff f right C'-determined.

f right C-determined $\implies f$ right $(C \oplus C')$ -determined.

The subset $^{C}[\rightarrow Y\rangle$ of $[\rightarrow Y\rangle$ is closed under meets.

Warning. Usually it is not closed under joins.

It may not be advisable to look for subsets of $[\to Y\rangle$ closed under joins. The closure under joins may become very large!

For $C = \Lambda$, the lattice $C[\to Y]$ is just the submodule lattice SY of Y.

Example: $\Lambda = \text{Kronecker algebra with sink } a$, let Y = Q(a).

 R, R', R'', \cdots : the indecomposable representations of length 2 (note: the join in $C[\to Y]$ of maps $f_1 \neq f_2$ in the height 2 layer is $1: Y \to Y$),

the join in $[\to Y]$ of pairwise different maps $f_i: R_i \to Y$ is the direct sum map $[f_1, \ldots, f_n]: R_1 \oplus \cdots \oplus R_n \to Y$ (and these maps are right minimal).

If $|k| = \infty$, the smallest subposet of $[\to Y]$ closed under joins and containing the inclusion maps $R \to Y$ (with R regular of length 2) has infinite height.

Auslander's First Theorem.

$$[\to Y\rangle = \bigcup_C{}^C [\to Y\rangle,$$

where C runs through all the Λ -modules or through representatives of all multiplicity-free generators.

This is a filtered union of meet-semilattices.

If M is a module, let SM be the lattice of all submodules. Consider Hom(C, Y) as a $\Gamma(C)$ -module, where $\Gamma(C) = End(C)^{op}$.

Second Theorem. There is a poset isomorphism

$$\eta_{CY}: \ ^{C}[\to Y\rangle \longrightarrow \mathcal{S}\operatorname{Hom}(C,Y).$$

with $\eta_{CY}(f) = \operatorname{Im} \operatorname{Hom}(C, f) = f \cdot \operatorname{Hom}(C, X)$ = $\{h \in \operatorname{Hom}(C, Y) \mid h \text{ factors through } f\}.$ Transfer from $S \operatorname{Hom}(C, Y)$ to $C \rightarrow Y$.

$$\eta_{CY}: \ ^C[\to Y\rangle \longrightarrow \mathcal{S}\operatorname{Hom}(C,Y).$$

 $\mathcal{S} \operatorname{Hom}(C, Y)$ is a modular lattice of finite height, thus also $C[\to Y)$ is a modular lattice of finite height.

 $\mathcal{S}\operatorname{Hom}(C,Y)$ has two distinguished elements: zero and one.

one
$$1_Y$$
 $\operatorname{Hom}(C,Y)$ zero $\eta_{CY}^{-1}(0) = ??$ 0

Jordan-Hölder Theorem (composition series and factors) — my lecture today.

Krull-Remak-Schmidt Theorem (indecomposable summands) — the corresponding theory for $^C[\to Y)$ is not yet clear.

Quiver Grassmannian (SM considered as algebraic variety) — next week!

The Jordan-Hölder Theorem for ${}^C[o Y \rangle$.

Height of the lattice $C[\to Y]$ = length of a maximal chain of non-invertible maps

$$X_n \to X_{n-1} \to \cdots \to X_1 \to X_0 = Y$$

with all $X_i \to \cdots \to X_0 = Y$ right minimal, right C-determined.

Let $h_i: X_i \to X_{i-1}$ be maps with composition $f = h_1 \dots h_t$. (h_1, h_2, \dots, h_t) is called a right C-factorization of f of length t iff all h_i are non-invertible and

all $f_i = h_i \cdots h_1$ are right minimal, right C-determined.

A right C-factorization (h_1, h_2, \ldots, h_t) is maximal provided it has no proper refinement.

Proposition Any right C-factorization $(h_1, ..., h_t)$ has a refinement which is a maximal right C-factorization and all maximal right C-factorizations of $(h_1, ..., h_t)$ have the same length.

In particular: any right minimal right C-determined map f has a refinement which is a maximal right C-factorization, its length t will be called the C-length of f, written $|f|_C$.

Proposition Let $f: X \to Y$ be right minimal and right C-determined. Then

$$|f|_C = |\operatorname{Hom}(C, Y)| - |\eta_{CY}(f)|,$$

Here, $|\operatorname{Hom}(C, Y)|$ is the length of $\operatorname{Hom}(C, Y)$ as $\Gamma(C)$ -module, and $|\eta_{CY}(f)|$ the length of its submodule $\eta_{CY}(f)$.

Proof: $|\operatorname{Hom}(C,Y)|$ is the height of $[1_Y\rangle$, and $|\eta_{CY}(f)|$ is the height of $[f\rangle$ in $^C[\to Y\rangle$.

The C-length of a map f. Two special cases for C.

Case 1. C projective.

The right minimal, right C-determined maps $f: X \to Y$ are (up to right equivalence) just the inclusion maps of submodules X of Y such that the socle of Y/X is generated by C.

If $f: X \to Y$ is right minimal and right C-determined, then f is injective and

$$|f|_C = \sum_{\substack{S \text{ with} \\ P(S)|C}} [\text{Cok}(f) : S].$$

 $\eta_{CY}^{-1}(0)$ is the inclusion $X \to Y$, where X is the intersection of the kernels of all maps $Y \to Q(S)$, with S simple, P(S)|C.

The C-length of a map f. Two special cases for C.

Case 2. Assume that K has semisimple endomorphism ring.

Let $C = \tau^- K$ and assume that $\mathcal{P}(C, Y) = 0$. $f: X \to Y$ right min., right C-det. $\Longrightarrow f$ is surjective and

$$|f|_C = \mu(\operatorname{Ker}(f)).$$

 $\eta_{CY}^{-1}(0)$ is given by universal extension $0 \to K' \to X \to Y \to 0$ with $K' \in \operatorname{add} K$.

Example. Λ the Kronecker algebra,

Y = (2,3) (preinjective);

C = (3, 2) (preprojective), thus K = (1, 0).

 $\operatorname{End}(C) = k$, thus $\mathcal{S} \operatorname{Hom}(C, Y)$ is the subspace set of $\operatorname{Hom}(C, Y)$.

 $\operatorname{Hom}(C,Y)=k^4$, thus we deal with the geometry of \mathbb{P}_3 .

 Λ Kronecker algebra, $\operatorname{\mathbf{dim}} Y = (2,3), \operatorname{\mathbf{dim}} C = (3,2).$

 $C[\rightarrow Y \rangle \simeq \mathcal{S}k^4$: dim vector \mathbb{P}_3 \mathbb{G}_2^2 $\cdots \cdots (4,3)$

 $\mathbb{P}_3 \qquad \cdots \qquad (5,3)$

Height 4: 1_Y

Height 3: multiplicity-free regular modules of length 6,

Height 2: modules with dimension vector (4,3),

both indecomposables, as well as decomposables.

Height 1: modules with dimension vector (5,3),

both indecomposables, as well as decomposables.

Height 0: the projective cover of Y.

The C-type of C-neighbors.

f, f' right minimal, right C-determined maps with $[f] \leq [f']$.

Call (f, f') C-neighbors provided $|f|_C = |f'|_C + 1$, provided $|f\rangle < |f'\rangle$ and there is no f'' with $|f\rangle < |f''\rangle < |f'\rangle$

Let (f, f') be C-neighbors, $f: X \to Y$, $f': X' \to Y$. (f, f') is of type C_0 , provided C_0 an indecomposable direct summand of C and there is $\phi: C_0 \to X'$ such that $f'\phi$ does not factor through f.

(Such a summand C_0 must exist, since otherwise f' would factor through f, since f is right C_0 -determined.)

Proposition If (f, f') is of type C_0 , then as $\Gamma(C)$ -modules:

$$\eta_{CY}(f')/\eta_{CY}(f) \simeq \operatorname{top} \operatorname{Hom}(C, C_0)$$

Note that $\operatorname{Hom}(C, C_0)$ is a simple $\Gamma(C)$ -module.

Proposition If (f, f') is of type C_0 , then as $\Gamma(C)$ -modules:

$$\eta_{CY}(f')/\eta_{CY}(f) \simeq \operatorname{top} \operatorname{Hom}(C, C_0)$$

Corollary The type of a pair of C-neighbors is uniquely determined.

Example. We consider the quiver of type \mathbb{A}_4 with two sinks and one source.

 f_1 is surjective with kernel K_1 ,

 f_1f_2 is injective, the socle of the cokernel is generated by C_2

Intervals of height 2.

Consider intervals of height 2 which are not linearly ordered.

Such an interval in a submodule lattice SM is of the form SN with $N = S \oplus S'$ and simple modules S, S'. There are two possibilities:

I. No diagonals

II. With diagonals

The number of elements of height 1 is $1+|\operatorname{End}(S)|$

Corresponding pictures for $^{C}[\rightarrow Y\rangle$:

I. No diagonals.

The modules X_1, X_2 may be isomorphic or non-isomorphic!

Example 1.

 Λ the Kronecker quiver

b ₩ Example 2.

 Λ extended Kron. quiver

 $C[\rightarrow Y\rangle$ S(b)

$$C = R(0) \oplus R(\infty)$$

$$C = R(0) \oplus R(\infty)$$

What matters are not X_1, X_2 , but the C-types of f_1, f_2 .

Here, the C-types are non-isomorphic.

Corresponding pictures for ${}^C[o Y \rangle$:

II. With diagonals.

Again, the modules X, X', X'', \dots may be isomorphic or non-isomorphic!

Example 1. Λ the Kronecker quiver

Here, the C-types are isomorphic!

$$C =$$

Example 2. Λ hereditary of type \mathbb{G}_2 \downarrow $\stackrel{b}{\downarrow}$ $\stackrel{K}{\downarrow}$ $\stackrel{C}{[\rightarrow Y)}$ $\stackrel{\begin{bmatrix} 1\\1 \end{bmatrix}}{\begin{bmatrix} 1\\2 \end{bmatrix}}$ \cdots $\stackrel{\begin{bmatrix} 1\\2 \end{bmatrix}}{\begin{bmatrix} 1\\3 \end{bmatrix}} = P(b)$ $C = P(a) = \begin{bmatrix} 0\\1 \end{bmatrix}$

Again, what matters are not X, X', but the C-types of f, f'.