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Categorification

Replace by

elements objects

equations between elements isomorphisms between objects

sets categories

functions functors

equations between functions natural isomorphisms between functors
We replace by

numbers vector spaces

equality of numbers isomorphism of vector spaces

functions functors

The notion “categorification” was coined by L. Crane in 1998.



k field

Q = (Qo, Q1) finite quiver

(some say directed graph or digraph; multiple arrows are allowd)
Qo set of vertices, ()1 the set of arrows.

Example: Ni/%

the so-called 4-subspace quiver

M = (M, My)z,o a representation of Q:
for every vertex x there is given a finite-dimensional vector space M, ,
for every arrow a: x — y there is given a linear map M, : M, — M,

representations of ) “are” just the k()-modules:

k(@) the path algebra of ()

the vector space with basis the set of all paths (including paths of length zero),
as multiplication take the concatination of paths, whenever this is possible,
otherwise the product is set to be 0,

extend this multiplication of paths to the linear combination of paths bilinearly



mod k(@) the category of k@Q-modules (= representations of Q)

We assume: at every vertex x start and end only finitely many paths.

This yields an indecomosable projective module P(x),
as well as an indecomposable injective module Q(x).

The structure of mod kQ, for ) a connected finite quiver,

with no oriented cycles:

preprojectives

regular

preinjectives

maps go from left to right (and arbitrarily inside the regular part).




Exceptional modules.

These are the indecomposable k()-modules M without self-extensions
(i.e.: given a kQ-module M’ with submodule M and with M’/M isomorphic
to M, then M' =M & M).

The exceptional modules are indecomposable modules which are “generic”:
there is a neighborhood (in the Zariski topology) of isomorphic modules.

In particular, an exceptional module M is determined by its dimension vector
dim M = (dim My )zeq, -

The preprojective modules and the preinjective modules are always exceptional.



Example: The Kronecker quivers.

The n-Kronecker quiver has two vertices 0, 1,
and n arrows 0 — 1.

For a Kronecker quiver, the preprojectives and the preinjectives are the only
exceptional modules,

any other representation-infinite quiver (connected, finite, no oriented cycles)
has additional exceptional modules.

Now, let Q be the 3-Kronecker quiver.
04 @ ol

The preprojective kQ-modules P; have dimension vector (far, forio)
where fq, f1,... are the Fibononacci numbers 0,1,1,2,3,5,....



Fibonacci Numbers (introduced by Fibonacci (Leonardo da Pisa), 1202):

fo fi fo fs fa fs fo fr o fs fo fio fu

o 1 1 2 3 5 8 13 21 34 55 &9

they are recursively given by

fO:O7 f1:1
fn+1 = fn—l +fn

We also use Fibonacci numbers with negative indices
(with the same recursion formula; Knuth calls them NegaFibonacci Numbers)

J6 f5 [foa f3 f2o fu fo 1 fo f3 fa S5 Je
—8 5 -3 2 —1 1 o 1 1 2 3 5 8
Note that f_, = (=1)"T1f,.

We call the pairs (f:, fr+2) Fibonacci pairs.



Categorification of the Fibonacci pairs:

We call an indecomposable 3-Kronecker module M a Fibonacci module
provided dim Ext!(M, M) < 2.

There are three kinds of Fibonacci modules:
e The preprojective modules P; with dim P; = (fat, fot42), and ¢t > 0.
e The preinjective modules Q;, with dim Q; = (f2t12, for), with ¢ > 0.

e Families R; = R;(\) of regular modules with dim R; = (f2r—1, for+1)
and \ € Ps.




r0j /f
/l'
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Here we see the Grothendieck group Ko(kQ) = Z? C R2,
the bullets mark the position dim M of the Fibonacci modules M .

On Ky(kQ), the bilinear form (—,—) plays an important role:
<(33, y)7 (CC/y/)> = xa’ + yy/ — 333y', since

(dim M, dim M) = dim Hom (M, Ms) — dim Ext* (M, M)
for all modules My, M>, it is called Fuler form.

Let g be the corresponding quadratic form ¢(x,y) = ((z,y), (z,y)). Then:

The Fibonacci modules are precisely
the indecomposable 3-Kronecker modules M with |q(dim M)| = 1.



Recall that the pairs (f:, fi12) are said to be Fibonacci pairs.
Recursion formula for Fibonacci pairs, written in 3 different ways:

(1) Jtr2 = 3ft — fi—2.

Proof: fi12—3fi+ fi—2 is just the sum of fiio— fiy1 — fi, of fey1—fi— fi1
and of —(f; — fi—_1 — fi_2), thus equal to zero.

The same recurrence formula works not only for going up, but also for going
down:

(2) ft—2:3ft_ft+2a

And we can write:

(3) Jt—2 + fir2 = 3f:.



Categorification of the recursion formula for Fibonacci pairs:
For (1) and (2), there are the reflection functors o4 and o_

Let M = (My, Ms,a, 3,7) be a 3-Kronecker module
let (04 M)y = My, let (0, M), be the kernel of the map (o, 8,7): M7 — My;
if M is indecomposable and not Py, then dim(kernel) = 3dim M; — dim M.

(0_M); = My and o4 M), is the cokernel of the map (a, 8,v)t: My — M3;
if M is indecomposable and not Qg, then dim(cok) = 3 dim M5 — dim M;.

(3) is categorified by the Auslander-Reiten sequences
O—>Pt_1%(Pt>3—>Pt+1 — 0

0= Qi1 — (Q1)° = Qi—1 — 0

for ¢t > 1 and
0= Ri1(A\) = Ex(N) = Riv1(A) — 0

with an indecomposable module E;(\) having dimension vector 3dim R;(\).



Categorification of the recursion formula for Fibonacci numbers:

There are exact sequences of the following form:
O_>Pt—1_>Pt_>Rt_>07

0O—PFP_1—>R— R;—1 —0.

Let us write the dimension vectors instead of the modules:

_f2t—2_ i f2t ] _f2t—1_

0— — — — 0,
i Jot i _f2t+2_ _f2t+1_
_f2t—2_ _f2t—1_ _f2t—3_

0— — — — 0
i Jot ] _f2t+1_ _f2t-1_




Iteration:

P; has a filtration
Ph C P C-- CP1 CH

with factors
Pi/Pi—l = Rz

This corresponds to the summation formula for = 2221 foi_1.

The corresponding filtration for the modules R; splits nearly everywhere:
R; has a submodule R; with

Rgzpo@Pléé---@Pt_l and Rt/RQZRO

This corresponds to the summation formula fo,11 =1+ Z’;:l foi.



The universal covering.

The universal covering of the 3-Kronecker quiver @ is the 3-regular tree T
(the tree such that any vertex has precisely 3 neighbours).

The fundamental group of @ is the free (non-abelian) group I' in 3 generators.
The I'-graded representations of () are the representations of T,
Claim: The exceptional 3-Kronecker modules are gradable.

More generally: For every Fibonacci pair, there are gradable modules with this
dimension vector.

Next, we exhibit the graded versions of the modules P, with 0 <t <5






Observe that the numbers on any circle are constant all Walks from the center
going outwards are of the following form ...

7 3 4 1 1

The push-down functor for the covering (= the forgetful functor for the grading)
yields the preprojective 3-Kronecker module P, with dim Py = (21, 55).

The graded pieces of the vector space (Py)o of dimension 21 are

three vector spaces of dimension 3 and twelve vector spaces of dimension 1,
and (Py); is decomposed into one subspace of dimension 7, six subspaces of
dimension 3, and twenty-four subspaces of dimension 1.



A partion formula for even index Fibonacci numbers (Fahr-R., 2008)

There are natural numbers a;[m] (defined inductively) with

Jar = 3 Z 22 . qy[2m+-1],
m>0
fat+2 = a¢[0] + 3 Z 221 q,[2m).
m>1

Here is the table for ¢t <6.

t 1 a0 ar[l] ae[2] ae[3] ar[4] a;[5] arl6] ael7] acl8] ae[0} -+ 1 far  faso
0 1 0 |
12 11 3 8
2! 7 3 4 1 1 91 55
3129 12 18 5 6 1 1 144 377
4'130 53 8 25 33 7 8 1 1 ' 087 2584
51611 247 414 126 177 42 52 9 10 1 | 6765 17711
6 46368 121393

12965 1192 2062 642 943 239 313 63 75 11
|

For example, for ¢t = 3, we obtain the following two equalities:

144 = f1o=3-12+12-5+48-1
377 = f14=29+6-18+24-6+96- 1.



The filtrations for the graded modules ([-] denotes shift of the grading)

There are exact sequences of the following form:
0— Pt—l[l] — Pt[O] — Rt[O] — 0,

0 — P;_1[1] = R¢[0] = R;—1[1] — 0.

This yields a filtration of P[0]
Po[t] C Pl[t— 1] C --- C Pt_l[l] C Pt[O]

with factors
Pt —i]/Pi_1[t — i+ 1] = R;[t — 1].

For the modules R;[0] we obtain a submodule R}[0] with

R0l =Rl ® Pt —1]@---® P[]  and  RJ0]/R.0] = Rolt].



Let us return to the n-Kronecker algebras, in general.

They are considered as fundamental objects of non-commutative algebra,
of non-commutative geometry.

There is the distinction:

n<l1 finite type
n=2 tame type
n>3 wild type

And there is the following table:

.H(liOdUH spacglof coefficients of the

n eco(])ag eorfgathes exceptional modules
n =2 P, 0,1, 2, 3, 4, 5, ... N
n =3 Py 0, 1, 3, 8, 21, 55, ... Fibonacci
n=4 P5 0, 1, 4, 15, 56, ... (A001353)

Sloane



An Application



Exceptional modules of quivers.
Let () be a finite quiver without oriented cycles.

Recall: Exceptional modules are indecomposable and have no self-extensions,
they are “generic”,

using matrices for presenting the linear maps M, , we may change the coeffi-
cients slightly without changing the isomorphism class,

in particular: we can assume that all matrix entries are non-zero.

However, also the opposite is true: We can change nearly all coefficients without
changing the isomorphism class:

Theorem (R. 1998) Ezceptional modules are tree modules.

An indecomposable module of dimension n is a tree module if it can be exhibited
by matrices using altogether precisely n — 1 non-zero coefficients.

(1) For any indecomposable module of dimension n, at least n — 1 non-zero
coefficents are needed.

(2) If we can use precisely n— 1 non-zero coefficients, then we can assume that
these coefficients are equal to 1.

Thus: Tree modules can be exhibited by 0-1-matrices.



Schofield induction: If M is an exceptional k()-mdoule and not simple,
then there is a non-trivial exact sequence

0— M — M — M —0,

where Mj, My are exceptional,

and orthogonal: Hom(M;, M3) = 0 = Hom(Ms, M) .

Moreover, [a,b] = dim N, where N is a non-simple exceptional representation
of the e-Kronecker quiver, with e = dim Ext'(My, M7).

There are 3 exceptional modules which play a role: M;, My, N
(M7, M5 are again kQ-modules, N is an e-Kronecker module, all are of smaller
dimension than M ).

These three exceptional modules determine M completely.
The tree structure of M can be obtained directly from their tree structures.



Example. Consider the 4-subspace quiver 15)4

o) ) %3 7’0 (¢) 1 (]2 lLS
87\\\;:§\#4:;///i§ \\\\\;:b\kéi;/////
(@)
There is an exceptional representation M with dimension vector 3 252 2 ,

we can take M; with dimension vector ! 010 O and My with 0 111 1
then e =2 and a =3, b= 2. Altogether we obtaln the follovvlng tree

My T S 1 M
BN VI
' 1 \\\ '/~.. 1 \‘\
L g O B N
1 \ \



We obtain the following matrices

TG

o O

o

-1 07

1 07

0 0 07

o O

S

— O




Schofield induction: For M exceptional, not simple, there is an exact sequence
0— M*— M — M, —0,

with My, M5 exceptional and orthogonal, and
[a,b] = dim N, where N is a non-simple exceptional representation of the
e-Kronecker quiver, e = dim Ext' (M, M;).

We need the tree structure of the exceptional e-Kronecker modules,
for arbitary e.

Using covering theory, we obtain an exceptional representation N of the n-
regular tree such that N, = (k — k) for some arrow a: z — y, where one of
x,y is a leaf.

This is the most trivial case of Schofield induction:
0= Q' -k N

The representation N is obtained from a representation N’ of a subquiver @’
of T as follows: There is a vertex x with dim N, = 1 and we use a new arrow
a starting or ending in  and prolong the representation N’ , using the identity
map k — k.



Conclusion.

Exceptional modules are inductively constructed
using smaller orthogonal exceptional modules M, My with Ext' (M, M;) = k,

and using (if necessary) covering theory.



