Izmir lectures 2014
6. Covering theory.

Covering theory provides an important method to construct indecomposable repre-
sentations of a directed quiver with cycles using for example the universal cover of the
quiver.

6.1. Locally finite-dimensional quivers.

A quiver @ is said to be locally finite provided any vertex z is head or target of
only finitely many arrows. A representation M of a quiver @ is said to be locally finite-
dimensional provided all the vector spaces M, are finite-dimensional. Let us denote by
Mod k@) the category of locally finite-dimensional representations of ¢ (and by MOD kQ
the category of all the representations of Q).

If a module M is a (not necessarily finite) direct sum of modules with local endo-
morphism rings, say M = P, ; M;, we say that any indecomposable module occurs with
finite multiplicity, provided for any module N, the number of indices i« € I such that M;
is isomorphic to N is finite. Recall that the theorem of Krull-Remak-Schmidt-Azuyama
asserts that the number of indices ¢ € I with M, isomorphic to N does not depend on the
decomposition.

Theorem. Any indecomposable representation in Mod kQ has local endomorphism
ring, any representation in Mod kQ is the direct sum of indecomposable representations,
each one occurring with finite multiplicity.

Proof. First, let M be an indecomposable locally finite-dimensional representation
of Q. We show that for any endomorphism f = (f;)zeq, of M either all the maps f,
are nilpotent (in this case f is said to be locally nilpotent) or else that all non-zero maps
fr are automorphisms. Recall that given a finite-dimensional vector space V and an
endomorphism ¢ of V, there is a (unique!) direct decomposition V' =V’ @ V" of vector
spaces such that ¢(V’) C V' (V") C V" so that the restriction ¢’ = ¢|V’ is bijective,
whereas the restriction ¢/ = ¢|V" is nilpotent.

Looking at the vector space endomorphism f, of M,, we obtain in this way a direct
decomposition M, = M, & M} such that f,(M.) C M, and f,(M)) C M/, with f, =
f=| M. bijective, and f. = f,|M nilpotent. Let a: x — y be an arrow of @, thus there
is given M, : M, — M,. With respect to the direct decompositions M, = M, & M we
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M, = M, & M. and M, = MZ’/ &) MZ'/’ in order to write M, in matrix form M, = [g g].
Since f is an endomorphism of M, there is the commutativity condition M, f, = f,Ma,
thus also M, f! = f,;Ma for all ¢ > 0. In terms of matrices, this means that

ABl T o 1 _ [t o A B
CD o (D] Lo (] lep)’

can write f, in matrix form [ ] Similarly, we use the direct decompositions

in particular, we have
B(f))' = (f,)'B, and C(f;)" = (f))'C,
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for all ¢ > 0. Since f,/ is nilpotent, the maps B(f,)" and (f,/)'C are zero for ¢ large. Since
f2 is invertible, we conclude that B =0, C = 0.

This shows that we have vector space decompositions M, = M. @ M/ such that for
any arrow «: x — y, the map M, maps M, into M, and M/ into M/, thus M = M'® M"
is a direct decomposition of kQ-modules. By assumption M is indecomposable, thus either
M = M’ or M = M". In the first case, all non-zero maps f, are automorphisms, in the
second case, f is locally nilpotent.

It follows as usual that the set of locally nilpotent endomorphisms of M is an ideal in
the endomorphism ring End(M) of M and that this ideal is the unique maximal ideal of
End(M), thus End(M) is a local ring.

Now let us consider arbitrary locally finite-dimensional representations M of ), where
@ is a locally finite quiver. Without loss of generality, we may assume that () is connected,
thus clearly @)y is a countable set. Since the assertion of the theorem is well-known for
finite quivers, we assume that @ is infinite, thus we can label the vertices as an infinite
sequence z(1),z(2),... and we put X(t) = {z(1),z(2),...,z(t)}.

If X is a set of vertices of (), we say that M € Mod kQ is X' -indecomposable provided
for any direct decomposition M = M’ @ M", we have M/, =0 for all z € X or M =0 for
all z € X. Note that we do not require that M, # 0, not even that M # 0, thus a direct
summand of an X-indecomposable module is X'-indecomposable.

A finite direct decomposition M = @." | M (i) is called an X-decomposition provided
all the M (i) are X-indecomposable. If X is a finite set, then any M € Mod kQ has an
X-decomposition (but note that the direct summands M (i) in an X-decompositions are
usually not unique, not even up to isomorphism).

Now we start with a module M € Mod k@) and want to decompose it. This is done in-
ductively, looking at the vertices z(1), z(2), . ... The direct summands M (v) of M obtained
in step t will be indexed by a set I(t) of sequences v = (v1,...,v;) of natural numbers. In
step 1, take an &X'(1)-decomposition

m(1)

M= M(v) =P M(v)

v1=1 I(1)

where I(1) is the set of numbers 1 < vy < m(1). Assume we have constructed already an
X (t)-decomposition M = @, M(v1,...,v:), then we take for any module M (v1,...,v;)
an {x(t + 1) }-decomposition

m(v1,...,v¢)

M(v17"'7vt): @ M(U17"'7Utvvt+1)‘

vi41=1

Of course, since M (vy,...,v¢) is X(t)-indecomposable, all the modules M (v1, ..., v, vi41)
are X (t + 1)-indecomposable. Thus, we obtain in this way an X (¢ + 1)-decomposition

M= € M@).

vel(t+1)
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with I(¢ 4+ 1) the set of sequences (v1,...,vey1) such that (vy,...,v:) belongs to I(t) and
1 <wvp1 <m(vy, ..., ).

Let I be the set of infinite sequences v = (v1,vg,...) such that (vy,...,vs) belongs to
I(t), for all t. For v € I, we define the module M (v) as M (v) = (), M (v1,...,v:). Note that
the restriction of M (v) to the full subquiver with vertices in X'(t) is equal to the restriction
of M(vy,...,v;) to this subquiver. This shows that M (v) is X (t)-indecomposable, for all
t and that M = @, M (v). Since M (v) is X (t)-indecomposable for all ¢, we see that M (v)
is either zero or else indecomposable. If we denote by I’ the set of indices v such that
M(v) # 0, then M = @, M(v) is a direct decomposition with indecomposable direct
summands.

It remains to stress that multiplicities have to be finite: If M, N are locally finite-
dimensional kQ-modules and N, # 0 for some vertex x, then in any direct decomposition
of M, the number of direct summands which are isomorphic to N is bounded by dim M,.

Remark. In the proof given above, we had to single out at the end the indices v € I
with M (v) = 0, thus replacing the index set I by I’. One may wonder whether one can
avoid this. Given a module M in Mod kQ, we have used {z}-decompositions M = @ M@,
Of course, in case M, = 0, we may require to use as decomposition just the trivial one
M = M, and for M, # 0, we may require that MQE") = 0 for all 7. In general, this will
reduce the size of I, but still some of the summands M (v) with v € I may be zero.

As an example, consider the quiver of type A, with arrows from right to left, and
the following representation M:

[0 0} [0 0]
10 10

In the first decomposition M = M(1) & M(2), we may assume that one of the direct
summands, say M (1), is simple projective. In the second step, we can decompose M (2) =
M(2,1) @ M(2,2) with M(2,1) of length 2, then, in the next step, M (2,2) = M (2,2,1)®
M(2,2,2) with M(2,2,1) of length 2, and so on. In this way, we obtain as index set I’
the set of sequences of the form (2,...,2,1,1,...) starting with s > 0 entries equal to 2,
all others equal to 1, with M(1,1,...) the simple projective module, all other modules
M(2,...,2,1,1,...) of length 2. But the set I contains in addition the constant sequence
(2,2,...) with M(2,2,...) =0.

k2 k2 < k2 «—

6.2. Automorphism of a quiver () which operate freely on ).

Let @ be a quiver and g an automorphism of (). We say that g operates freely on Qg
provided given a vertex x of () and a natural number s with g°z = x, we have g° = 1. Of
course, then G acts also freely on the arrow set @)1 (namely, if a: © — y is an arrow with
g(a) = a, then g(z) = x, thus g = 1).

If M is a representation of @), there is a representation MY defined as follows: (MY), =
My, for any vertex x, and (M9), = My, for any arrow o.

Lemma. Assume that g is an automorphism of Q which acts freely on Qo and has
infinite order. If M # 0 is a finite-dimensional representation of Q, then MY is not
isomorphic to M.



Proof. Let x be a vertex of (). Since g acts freely on )y and has infinite order,
the elements x, gz, g%,... are pairwise different. Let M # 0 be a finite-dimensional
representation of (). Let x be a vertex of Q) with M, # 0. If MY is isomorphic to M, then
dim(M?Y), = dim M, for all vertices y. Thus dim My, = dim(M?), = dim M, # 0. By
induction, it follows that Mg:, # 0 for all ¢ > 0. But then M has infinite support (since
the set x, gz, g%z, ... is infinite). This contradicts the fact that M is finite-dimensional.

Example. Let us present a typical example of a quiver () with an automorphism g
of finite order p > 2 acting freely on )y and an indecomposable representation M of @)
such that M9 = M

Q 1 2 p—1 p M
(@) (@] (@] (@] k. k. k. k
lMl lMl
(@] o o (e) k. k. k. k
1 2’ (p—1)" p

Here, M is defined by M, = k for all vertices x and M, = 1j for all arrows a. The
automorphism ¢ of @ is defined by ¢(i) = i+1 and ¢(i') = (i+1)" (modulo p). Note that
qo(dim M) = 0, thus dim M is not a real root. This has to be the case, as the following
proposition shows.

Proposition. Let Q be a locally finite quiver and g # 1 an automorphism of QQ which
acts freely on Qo. If M # 0 is a finite-dimensional indecomposable representation of Q
with ¢(dim M) = 1, then M9 is not isomorphic to M.

Proof. If ¢ has infinite order, then use the Lemma. Thus, we assume that g has finite
order p > 2. Let @ be a set of representatives of the various g-orbits in Qp, and @} a set
of representatives of the various g-orbits in ;. Let d = dim M. Since M is isomorphic
to M9, we have dy(,) = d, for any vertex z. If a is an arrow, then t(g(a)) = g(t(a)) and
t(h(a)) = g(h(a)), thus also di(g(a)) = d¢(a) and di(g(a)) = di(a)- It follows that

q(d) = Z d; — Z di(a)dn(a) =P< Z d; — Z dt(a)dh(a)>

r€Qo acQ1 z€Q) a€Q)

is divisible by p. Since p > 2, this contradicts the assumption that ¢(dim M) = 1.

6.3. Groups operating freely on a quiver.

Assume now that there is given an automorphism group G of a quiver ) which operates
freely on @Qg. We denote by /G the orbit quiver: if x is a vertex of @, let m(x) be the
G-orbit of z, if a: © — y is an arrow, let w(«): w(x) — m(y) be the G-orbit of «, thus
m: @ — Q/G is a morphism of quivers.

Our interest concerns the functor my: mod kQ — mod k(Q/G) which is defined as
follows: If N is a finite-dimensional representation of (), then

(ﬂ-)\N)z = @ N, (7T)\N)7 - @ Na,

zem—1(2) acm—1(vy)



for all vertices z and all arrows v of @Q); this functor m) is usually called the push-down
functor.

Any kQ-module N may be considered as a G-graded k(Q/G)-module so that
mAN is the corresponding k(Q/G)-module obtained from M by forgetting the
grading. Thus, such a push-down functor is just a forgetful functor. Parallel
to the development of covering theory by Gabriel, Bongartz and Riedtmann, the
(equivalent) theory of dealing with group-graded algebras and the corresponding
graded modules was developed by Gordan and Green.

Theorem. Let QQ be a locally finite quiver and G a group of automorphisms of Q
which acts freely on Qy. Let N be a finite-dimensional indecomposable representation of
Q) such that the representations N9 for g € G are pairwise non-isomorphic. Then mw\IN
is an indecomposable representation of Q/G. If N' is a finite-dimensional indecomposable
representation of Q such that the representations mxN and w\N' are isomorphic, then
there is g € G such that N’ is isomorphic to NY.

Proof. We need a further functor, namely m;: mod k) — Mod kQ which is defined as
follows: If M is a finite-dimensional k(Q/G)-module, then

(WM)JE = Mﬂ'(.’b)? (W.M)oz = Mﬂ(a)7

for all vertices x and all arrows « of @); this functor is called the pull-up functor (note
that by definition 7w M is locally finite-dimensional, thus in Mod k£Q). Of course, for any
element g € G, we have (r M)9 =7 M.

Given a finite-dimensional k@Q-module NN, let us consider 7 m\N. For = a vertex of @),
we have

(rmN)e = (MN)r@y = P Ny

yerm—In(zx)

The set 7~ !7(z) is by definition the G-orbit of =, thus

_ — g — g
(m AN = gea Now) = @QEG Ne = (@gGGN ) '

It follows that
_ g
7(‘71)\N = @ge NY.

Since by assumption the modules NY are pairwise non-isomorphic (and indecomposable),
we have obtained in this way a direct decomposition of 7 7y N using pairwise non-isomorphic
modules with local endomorphism rings.

Let us show now that m) is indecomposable. Thus, assume there is given a direct
decomposition 7y = M & M’ of k(Q/G)-modules. Then

o NI=gmN=nM&r M.
g

According to 6.1 and the Krull-Remak-Schmidt-Azumaya theorem, there is a subset H C
G such that 7 M is isomorphic to P,y NI If M # 0, then H is not empty. Since
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(m.M)?% = m M for all g € G, it follows that m M is also isomorphic to @, .y Nhg_ for
all g € G, thus there is a direct decomposition of 7w M into indecomposable modules such
that one of the summands is isomorphic to N. Assume now that both M, M’ are non-
zero. Then there is a direct decomposition of 7 M @ 7w M’ = 7w, N into indecomposable
modules such that two of the summands are isomorphic to N. This contradicts the theorem
of Krull-Remak-Schmidt-Azuyama.

Finally, assume that N, N’ are finite-dimensional indecomposable representation of Q
such that the representations m\/N and m\N’ are isomorphic. Then 7\ N is isomorphic
to @, cq VY as well as to P o(N')?. Again using the assumption that the modules
N9 are pairwise non-isomorphic (and indecomposable) and that N’ is indecomposable,
the theorem of Krull-Remak-Schmidt-Azumaya implies that N’ is isomorphic to some NY.
This completes the proof.

Corollary. Let Q) be a locally finite quiver and G a torsionfree group of automorphisms
of Q which acts freely on QQo. Then wy provides an injective map from the set of G-orbits

of isomorphism classes of indecomposable kQ-modules to the set of isomorphism classes in
indecomposable k(Q/G)-modules.

Proof. This is a direct consequence of the theorem using the lemma in 6.2.

Remark. The map given by 7 is injective, but usually not surjective. A typical
example is provided the quiver @ of type A, with bipartite orientation

AYAYAE

and the shift automorphism ¢ so that there are precisely two g-orbits, the sources and the
sinks. Then /G is the Kronecker quiver. Obviously, the indecomposable representation
M of Q/G with M, = k for both vertices and M, = 1 for both arrows is not isomorphic
to a representation of the form m\ V.

6.4. Representations of the 3-Kronecker quiver.

In order to study the 3-Kronecker quiver

we may start with its universal cover @), this is the 3-regular tree with bipartite orientation
(mentioned already in the second lecture):



The free group G with two generators operates freely on @ such that /G is just the 3-
Kronecker quiver. Since G is torsionfree, we can use the last corollary in order to see that
any finite-dimensional indecomposable representation N of () yields a finite-dimensional
indecomposable representation m\/N of /G and that given finite-dimensional indecom-
posable representations N, N’ of (), the representations my/N and 7w\ /N’ are isomorphic if
and only if N and N’ belong to the same G-orbit.

One obtains in this way many different representations of Q/G, for example all the
indecomposable preprojective or preinjective representations and this reveals some of the
internal structure of these representations.

In the case of a finite directed quiver Q”, Coxeter functors C,,,, and C, have been
introduced above. In order to use such functors also for our quiver ), we proceed as
follows: let N be a finite-dimensional representation of @, let Qf be a finite subset of Qg
containing all vertices x with N, # 0 and let Q" be the full subquiver of ) whose vertices
y are those elements of Qg with a path of length at most 2 in @ starting in Q} and ending
in y. Then Q" is a finite directed quiver, thus the Coxeter functors Cqn and C%,, do exist
and it is not difficult to see that the modules Cy,,(N) and C,, (N) do not depend on the
choice of Qf, thus we just write C~(N) and Ct(N), respectively.

Also it is easy to see that for any finite-dimensional representation N of k@, we
have C~(m\N) = mA\C~ N and CT(m\N) = mxCTN. At the end of this section, we will
exhibit the dimension vectors first of a simple projective kQ-module S, then those of C~ S
and (C~)2S. Under the push-down functor 7y, the k(Q/G)-modules 7S, mAC~S and
72(C7)2S are the indecomposable preprojective k(Q/G)-modules with dimension vectors
(1,0), (8,3), (55,21), respectively.

As an example, let us draw the attention to the k@Q-module (C7)2S. The vector
spaces of dimensions 55 and 21 used in the k(Q/G)-module 7(C~)2S are decomposed
in (C7)2S into quite small subspaces: the 21-dimensional space into three subspaces of
dimension 3 and 12 subspaces of dimension 1, the 55-dimensional space into one subspace
of dimension 7, six subspaces of dimension 4 and 24 subspaces of dimension 1.

Recall that the numbers 21, 55, and, more generally, the dimensions of the vector
spaces used in any preprojective k(Q)/G)-modules are even index Fibonacci
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numbers. Thus, the covering theory provides partition formulas for the even
index (and also for the odd index) Fibonacci numbers, see [Fahr-Ringel].




