The representation theory of Dynkin quivers
and the Freudenthal-Tits magic square.

Theorem. If () is a quiver of Dynkin type
Ana Dna E67 E77 ES?

then Q) is representation-finite. Any connected quiver
which is not of Dynkin type has a subquiver Q) of Fu-
clidean type

~

Ana ﬁna IE(% IE'% ES?
and thus is representation-infinite.

If @) is of Dynkin type, then there exists a maximal
indecomposable representation M.

If @ is of Euclidean type, there are countably many
1-parameter families of indecomposable reps.

(Ref: Gabriel, or better: Yoshii-Backstrom-Gabriel-Kleiner.

And Donovan-Freislich, Nazarova for the structure of rep 6)
The types A,,,D,,, and A,,,D,, are easy to handle.

Our aim: To discuss the exceptional cases

E67E77E8 and IfE‘j‘:"Gai[;j77IE’S'



To be more precise, this is our aim:
For Eg, E7,Eg: To construct the max. indec. rep M.

For EG, IE7, IES: To construct a representation in each
T-orbit of simple regular representations

(in particular, to construct a primitive one-parameter
family of indecomposable representations).

The structure of rep @ is well-known:

There are the preinjective and the preinjective rep-
resentations, they are obtained from the projective
or, respectively, the injective representations using
the Auslander-Reiten translation 7.

In addition, there are the regular representations.
This is an abelian exact subcategory /R which is se-
rial. The (relative) simple objects in R are called the
simple regular representations: these are the repre-
sentations which one needs to know.

It is sufficient to to construct at least one element in
each T-orbit of simple regular representations.

(Note that all the 7-orbit of simple regular represen-
tations are periodic, and the period is 1 for all but
at most three 7-orbits.)



(1) Special triples.

Let Q be a connected quiver and = a fixed vertex.
A special triple for (Q,x) is a set of representations
A(1), A(2), A(3) of @ which are Hom-orthogonal, in-
decomposable, and A(i), # 0 for 1 <14 < 3.

Theorem. There are precisely three cases (Q,x)
with a unique special triple, namely

As Dg E;

@) @)

()
oo\@oo@ooooooooo@

Example: The special triple for Ay with linear orien-
tation (left), with the center the unique sink (right):

11111, 01110, 00100 11100, 01110, 00111.

For [E; with subspace orientation:

1 2 0
1122117 123221° 0O11111°

Remark: The important word is unique. Usually
(for example if @) is of infinite representation type),
there will be many special triples. For very few pairs
(@, x), there is no special triple.
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Two steps of the proof.

(a) The hammock for x has to be thin. Other-
wise, there is a first indecomposable module M with
dim M, = 2. Its direct predecessors are a special
triple, its direct successors are a special triple. Con-
tradiction.

(b) Thus x is a vertex of A,,, a branch vertex of D,,,

a branch vertex of Eg of rank 3, or the branch vertex
of E; of rank 4.



Recall that the one-point extension of a quiver Q at a vertex
y 1s of the form

G-

the vertex z is called the extension vertex.

The three cases of our Theorem yield as one-point
extensions of A at x quivers of the following form:

oY
x Uy x Y
Eg E- Eg
A further one-point extension now at y yields:
2
X zZ U x T z
Eg [E7 [Es

Altogether, there is the following extension scheme:

(Az) —» Q@ — @

A5 — K¢ — ]Eﬁ
Dg — K — E7
E7 — Eg — Eg



Thick subcategories. Given a quiver () and pair-
wise orthogonal representations A(1), ..., A(m) with
endomorphism ring k.

Let £(A(1),...,A(m)) be the extension closure and
['(A(1),..., A(m)) the Ext-quiver of A(1),..., A(m).
It has vertices 1,...,m;

the number of arrows i—j is dim Ext’(A(7),A(5))).

Then:
E(A(1),...,A(n)) ~ repl'(A(1),...,A(n))
Example 1. A(1), A(2), A(3) a special triple. Then

o o o T=D(A(1),A(2),A(3)).

rep I’ is a semisimple category with three simples.



Example 2. The Q-reps A(1), A(2), A(3), S(y):

A(l)o
A(2)0<— 0S5(y) F=T"(A(1),A(2),A(3),5(y))
A(3)o

The quiver I' is of type Dy.

I' has a unique maximal indecomposable representa-
1

tion, its dim vector is 1 2.
1

This corresponds in £(A(1), A(2), A(3),S(y)) to an

indecomposable module M with
M|A=A(1)® A(2)® A(3) and dim M, = 2.

In this way, we obtain as M the maximal ()-module.

Let us stress a special feature of D4: It is the only
Dynkin diagram with an automorphism of order 3.



Example 3. The Q-reps A(1), A(2), A(3), S(y), S(2):

A(1)o P=T"(A(1),A(2),A(3),5(y),5(y))
A(2)0 = g <— 0S5(z)

A(3)o

This is an extended Dynkin quiver of type 154. It has
1

a one-parameter family with dimension vector 12 1.
1

This corresponds in £(A(1), A(2), A(3),S5(y)), S(2)
to a 1-parameter family of indecomposable modules
M (\) with

M)A =AQ1)® A(2) ® A(3)
and dimM(N), =2, dim M (M), = 1.

1

Similarly for all the multiples of 12 1.
1

In this way, we obtain the l-parameter families of
(-modules.

And the representations A(7) with

A()|A=A() and dimA(i), =1, A(@), =0

are simple regular reps in the three regular 7-orbits.
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Since A(i), = 0, the representations A(¢) are rep-
resentations of (). Let us add some remarks about

the relationship between M and the representations
A(2) and A(7).

First of all, there is an exact sequence of the form

0— A(1) D AR)® AB3) = M — S(y)* — 0.

It follows, that A(i) is a factor module of M (for
example, A(1) ~ M/(A(2) ® A(3))).

In this way, we obtain an exact sequence

0—>M— A(l) ® A(2) ® A(2) — S(y) — 0.

The projection map M — A(7) is the composition of
the irreducible maps in a sectional path. Note that
M is a wing module (as defined in SLNM 1099),
and the representations A(1), A(2), A(3) belong to
the boundary of the Auslander-Reiten quiver of kQ).




Deleting x, we deal with Ay LI Ay, Ay, Dg.

One may construct the special triple A(1),A(2),A(3) starting
with the representations A(i)|A\{z}, see [R].

Starting with A\ {z} the one-point extension scheme
of our Dynkin diagrams looks as follows:

A\ A{z} A Q
AQ L AQ — A5 — E6
A5 — ]D6 — E7

E6 — E7 — Eg

We discuss this arrangement of Dynkin types later
(this is part of the Freudenthal-Tits magic square).

10



(2) The numbers t = 2,4, 8.

(2.1) For A = Ay, D¢, E7, we have

P(z)=7"I(z) with t= {421 :

(2.2) The number of indecomposable A-modules N
with N, # 0 is
9

3(t+1):{15.

27
These A-modules can be arranged as follows (non-
zero maps go from left to right):

o™
<

(A;x) (]Dé,x) (E7,x)
Always, the special triple is seen in the middle.

(23) Consider Q — E67 E7, Eg

O

©) ©) ©) oO— +++ —0O——0O

a b

[{M | indec.,dim M, = 1,dim M, = 0}| = 4¢,
{M | indec.,dim M, = 1,dim M, = 1}| = 4t.
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A famous theorem of Hopf [11], Bott and Milnor [4]
and Kervaire [12] asserts:

There 1s a t-dimenstonal real division algebra with
t>2ff
t= 2,4, 8.

Hurwitz (1898/1923): the only real normed division
algebras different from R are

C, H, O

The quaternions H were found by Hamilton in 1843. In the
same year, Graves discovered the octonions, two years later
also Cayley. The octonions O form an 8-dimensional real vec-
tor spaces which is a division algebra, but the multiplication

1s not associative.

We have exhibited already several 2 — 4 — 8 assertions
in the representations theory of K4, K7, Eg.

Question. Is there a relationship between the mod-
ule categories of the exceptional quivers

E67 E77 ES
and the division algebras

C,H,O.
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(3) The Freudenthal-Tits magic square.

Recall: The one-point extension scheme looks as fol-

lows:
A2 — As — Eg

A5 — ]D@ — E7
E6 — E7 — Eg

Note:

— It is a symmetric matrix arrangement.
— It is the right lower corner of the Freudenthal-Tits
magic square

Here is the Freudenthal-Tits magic square: it con-
cerns certain Dynkin types:

Ay Ay, Cs Fy
Ay A2 A, Eg
Cs As Dg Er
Fy K¢ E; Eg

The magic square is naturally divided into its right
lower (3 x 3)-corner and the upper left boundary:
in the right lower corner, there are only simply laced
diagrams, and the rank increase is always 1.

This is the part we are interested in.
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The entries should be indexed by the pairs (A, B)
where A, B are the division rings R, C, H, O. Better:
index the columns using J(B) = J3(B), the (Jordan)
algebra of Hermitian (3 x 3)-matrices over B:

J(R) J(C) J(H) J(O)

Ay Ao Cs Fy
A, A2 Ay Eg
Cs As De K7
IFy 1% K7 g

cEa=

(Hermitian means: the transpose is the conjugate matrix.)

Due to Freudenthal and Tits, later also Vinberg and
others, there is a well-defined construction

L(A,B)=Der(A) & Ao ® J(B)y ® Der(J(B))

which yields the Lie algebra in question.
(Here, Ag are the purely imaginary elements in A, and J(B)o

the trace zero matrices).

Slogan. The exceptional Lie algebras only exist since
the octonions exist.

The exceptional Lie groups Eg, E7 and Eg may be
considered as the isometry groups of something like
the projective planes over C,H, O (see e.g. J. Baez).
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If B is of dimension t = 1,2,4,8, then J(B) is of
dimension

3(t+1)=6, 9, 15, 27.

(the diagonal entries are real, this gives the dimen-
sion 3, the upper triangular entries are arbitrary and
determine uniquely the lower ones, this gives 3t).

Recall that the numbers 9, 15, 27 have appeared in
(2.2).
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Rubenthaler (TAMS 2008) has shown how to re-
cover the octonions inside the Lie algebra g = g(Eg).

Let h be a Cartan subalgebra and ® C R® the root

system. Let ®(a,b) be the set of roots of the form
*

a—s—k—x—p and g(a,b) = EB@ECID(a,b) 8o

Then g decomposes as follows:

H V//
V/

where H = h 4+ g(0,0), and
V =g(1,0), V' =g(0,1), V" =g(1,1).
The Lie multiplication is a bilinear pairing
[—,—-]: VeV - V"
Note that this bilinear pairing is non-degenerate!

Instead of looking at this bilinear form, we also look a the

corresponding “triality”:

VeV e (V" - k.
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Rubenthaler shows that there are natural identifi-
cations V ~ V' and V ~ V" (again using just Lie
products, or Weyl group elements) such that the bi-
linear pairing

[— -] VeV = V"
yields a bilinear pairing
—o— VRV -V

which is precisely the octonion multiplication.

Actually, Rubenthaler exhibits explicit root vectors
a,b, c in g with the following property:

If one defines for v, vy € V

v @ vy = |a, vy, |b, |c, va]l]]],

then
—eo—: VRV =V

is the octonion multiplication.

Question: Is it possible to use the Hall algebra con-
struction for Eg, in order to obtain a quantized ver-
sion of the octonions?
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A baby model for the sequence t =1, 2,4, 8, oc.

Let ¢t be the number of indecomposable representa-
tions M of the m-subspace quiver () with odd di-
mensional total space My:

m 0 1 2 3 4
Q Al AQ AS Dél 64
t 1 2 4 8 o0

Detailed information:

m 0 1 2 3 4
Q Al AQ AB ]D)4 ]54
dim My =1 1 2 4 8 16
dim My = 3 0 0 0 0 16

(for ]54, there are 16 indecomposables with dim My =
i if 7 is odd and infinitely many if 7 is even).
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