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On the occasion of the 60th birthday of Raymundo Bautista I want to outline1

his contributions to the development of the representation theory of artin algebras
in the years 1977 - 1985. I have to apologize, that in this way I only deal with a
small part of his scientific activities, but I hope that this will still provide a vivid
picture of his mathematical thoughts. A glance on the long list of publications of
Raymundo Bautista reveals his interest in rather different types of questions. Here
are the three main areas of his research:
• Representation Theory of Artin Algebras,
• BOCS Representations,
• Mathematical Physics,

and there are several other topics which he has considered, see for example his early
papers concerning the cohomology of finite groups. However, I feel competent only
to deal with the first area. As I have mentioned already, this report makes a further
restriction by concentrating on the years 1977 - 1985. This is a period which can
be covered in a unified way. But before I start, let me consider for a moment the
relationship between the representation theory of artin algebras and the other two
areas.

BOCS Representations.2 Recall that the abbreviation BOCS stands for
bimodules over categories. The BOCS representation theory was introduced by
Kleiner and Roiter in 1984 in order to formalize matrix calculations which were
introduced to deal with representations of finite dimensional algebras. Thus, there is
a strong relationship between the first two topics. However, the reduction techniques
used for BOCS representations are of a very different nature compared to those
methods used elsewhere in the representation theory of algebras.

Mathematical Physics. The relationship to the third area of investigation,
questions in mathematical physics, is much more loose: indeed, these investiga-
tions rely at least partly on methods in representation theory (however usually one

1 This is the written version of a lecture presented at the XV Coloquio Latinoamericano de

Álgebra, held at Cocoyoc, México, July 2003.
2 During the conference, there had been an additional lecture by Rita Zuazua, a former student

and present cooperator of Raymundo, on the development of BOCS representation theory and

Raymundos contributions.
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invokes representations of groups or Lie algebras, and not of artin algebras or BOC-
Ses), but also on methods in differential geometry and other parts of mathematics.
A corresponding review on Raymundos papers in mathematical physics would be
appropriate. Let me draw your attention at least to some of the topics covered in
these papers by quoting a few titles: Kaluza-Klein model for the unification of the
bosonic sector of the electroweak model with gravitation (a joint paper with Rosen-
baum, D’Olivo, Nahmad-Achar and Muciño, published in 1989 in the proceedings of
a meeting on General Relativity), SU(2)-multi-instantons over S2 × S2 and Yang-
Mills connections over homogeneous spaces, both being joint work with Muciño and
Rosenbaum, published in 1992, respectively 1993, and finally the 1996 paper in
the Journal of Mathematical Physics with the title Quantum Clifford algebras from
spinor representations, together with Criscuolo, Durdević, Rosenbaum and Vergara
as coauthors. For the 1998 Mexico conference on Interdisciplinary tendencies in
mathematics, Raymundo wrote a survey on Algebra, geometry and physics (pub-
lished in volume 26 of Aportaciones Mat. Comun.) which provides a synopsis of the
algebraic concepts of geometry viewed in the context of quantum groups. It should
be noted that here some classical concepts of differential geometry, such as vector
fields and differential forms, are considered from an algebraic point of view using
bimodule structures.

ICRA III and ICRA VII. As already mentioned, the following report will
focus the attention to the period 1977 - 1985. We want to describe Raymundo’s
impact on the development of the representation theory of artin algebras in these
years. There are regular meetings called International Conference on Representa-
tions of Algebras (ICRA), which provide an overview of the latest developments in
the subject and which aim to bring together all the specialists in the field. The first
two ICRAs were both held at Carleton University, Ottawa, in 1974 and in 1979, as
an initiative of Vlastimil Dlab. ICRA III was scheduled to take place 1980 (thus
just one year later) at Puebla. It was organized by Raymundo Bautista who was in
Puebla at that time. The international organizing board had a lengthy discussion
about reasonable intervals for such meetings and there was quite a lot of opposition
to have meetings in consecutive years. – However the 1980 meeting turned out to
be very fruitful with a lot of decisive new ideas: for example covering theory and
tilting theory were discussed at that conference. A further ICRA has been held in
Mexico in 1994 (ICRA VII, in Cocoyoc)3 Although this falls outside the proposed
time slot, it should nevertheless be mentioned for one reason: it was the last ICRA,
Maurice Auslander has participated, he died that year in November when visiting
Trondheim. Note that the Mexican research group in the representation theory of
algebras was initiated by Auslander and many of the topics investigated there were
in the lines of ideas of Auslander, or have to be considered as complementing his
views. In an obituary with the title The influence of Auslander in Mexico [B11],
Raymundo writes: Maurice’s influence was very important in the development of
our group. This influence was not only through the suggestion of specific mathe-
matical problems but through more general ideas of how to look at mathematics. He
recalls that Auslander visited Mexico in the summer of 1975 and gave lectures on
several subjects in the representation theory of algebras: We were impressed mainly
in the part of the lectures related to almost split sequences, then recently discovered

3 and there will be another one in Mexico, ICRA X, in August 2004.
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by M. Auslander and I. Reiten. From 1976 to 1977 Bautista and Martinez spent
nearly two years at Brandeis University: There, we had the opportunity of knowing,
and living in, an exciting atmosphere. We met many people through Maurice who
were interested in the representation theory of algebras. Thus, for example, I met in
this way both of them in 1976 and since then we had frequent contacts and enjoyed
the possibility to discuss all kinds of problems in representation theory.

My report will be divided into two parts. In the first part we will single out
the year 1985 and two fulminant papers which appeared in that year: a joint one
with Gabriel, Roiter and Salmerón, which shows the existence of multiplicative
bases for representation-finite and for minimal representation-infinite algebras, the
other one provides a solution of the second Brauer-Thrall conditions. In the second
part, we will concentrate on the earlier years 1977 - 1984. In this period, the basic
notions of the present representation theory of artin algebras have been elaborated,
and it was Raymundo who has pushed forward these developments considerably.
Let us mention some of the notions which will be discussed: irreducible maps,
Auslander-Reiten-quiver, knitting of components, replication numbers, sectional
paths, and the s-condition. In 1984, Raymundo gave a survey lecture at the XVIIIth
national congress of the Mexican Mathematical Society at Mérida [B10] under the
title Incursions into the representation theory of algebras (in Spanish) about his
own contributions as well as those of other Mexican mathematicians, and we may
just follow the paths which he has outlined there.

We will use the following conventions: we usually will consider an artin algebra
Λ (this means that Λ is an associative ring with unit element, and of finite length
when considered as a module over its center; note that this implies that the center
itself is of finite length, thus the center is a commutative artinian ring). Typical
examples of artin algebras are finite dimensional k -algebras, where k is a field. The
modules to be considered will be unital left Λ-modules of finite length. Note that
such a module can be written as the direct sum of indecomposable modules and
the theorem of Krull-Remak-Schmidt asserts that such a decomposition is unique
up to isomorphism. We say that Λ is representation-finite provided there are only
finitely many isomorphism classes of indecomposable Λ-modules.

1985. The Culmination.

The Brauer-Thrall conjectures. Let us start with what always will be
attached to Raymundo’s name: his solution of the second Brauer-Thrall conjecture.
First, I want to recall the statement of the two Brauer-Thrall conjectures: We
assume that Λ is a finite dimensional k -algebra, where k is a field.
(I) If Λ is not representation-finite, then there are indecomposable Λ-modules of

arbitrarily large length.
(II) If Λ is not representation-finite and k is an infinite field, then there are in-

finitely many natural numbers d1 < d2 < ... such that Λ has infinitely many
isomorphism classes of indecomposable modules of length di , for i = 1, 2, ... .
These conjectures were formulated in the late forties by Brauer and Thrall, with

the first written record in a paper of Jans in 1957. Actually, Brauer once mentioned
that he had posed these questions as a tutorial homework for his students in a course
on modular representations of finite groups, and he was surprised that none of the
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students handed in a solution. Concerning Brauer-Thrall I, for a long time only
some partial results (by Jans, Curtis and others) had been known. The solution by
Roiter in 1968 marks the beginning of modern representation theory of algebras,
and it had a strong influence on the further development. Roiter’s paper contained
a remark asserting that his proof would work not only for finite dimensional algebras
but for arbitrary artinian rings. It soon became clear that this assertion was wrong
and one had to wait until 1974 when Auslander published a proof which is valid in
general.

We now turn the attention to Brauer-Thrall II, say under the assumption that
k is an algebraically closed field. After having solved the first Brauer-Thrall con-
jecture, Roiter collaborated with Nazarova on Brauer-Thrall II, using matrix cal-
culations. They published a rather long paper which claimed to provide a proof
in general. However, the main part of the paper considered only the special case
where Ext1(S, S) = 0 for any simple module S , and only insufficient hints were
given how to deal with the general case. But even the proof of the special case was
incomplete and inaccurate. When the solution of Bautista was reported at ICRA
IV (Ottawa 1984), Roiter insisted that there also did exist a new Kiev proof - he
gave two lectures during the workshop and handed in a corresponding manuscript
for the proceedings. However this manuscript was withdrawn when it was pointed
out that there are several counter-examples to intermediate steps. Bautista’s proof
is given in the paper [B8] published in Commentarii Mathematici Helvetici. The
paper used the additional hypothesis that the characteristic of k is different from
2; this condition was removed by Bongartz in a subsequent paper. One easily can
show that the positive solution of Brauer-Thrall II, for k algebraically closed, im-
plies that Brauer-Thrall II is valid for any perfect field k . In case k is not perfect,
the problem is still open!

Multiplicative Bases. Bautista’s proof of Brauer-Thrall II relies on the exis-
tence of a special basis for minimal representation-infinite algebras: a multiplicative
Cartan basis. The existence proof for such a basis is the main aim of the second
paper which we have to mention here: the joint work of Bautista, Gabriel, Roiter
and Salmerón with the title Representation-finite algebras and multiplicative bases,
which has appeared in the journal Inventiones Mathematicae [B-S]. We assume
again that Λ is a k -algebra with k an algebraically closed field. In addition, we
require that Λ is basic: this means that the factor algebra Λ of Λ modulo its radi-
cal is a product of copies of k (this additional requirement can always be achieved
by replacing Λ by a Morita equivalent algebra Λ0 ; note that for Morita equivalent
algebras, the module categories are equivalent). We say that a k -basis of Λ is a
multiplicative Cartan basis provided the following three conditions are satisfied:
(1) If b1, b2 belong to B , then b1b2 is either zero or belongs to B ,
(2) B contains a complete set B′ of orthogonal primitive idempotents.
(3) The non-idempotent elements of B generate the radical rad Λ of Λ.

If B is a multiplicative Cartan basis, let B′′ be the set of all non-idempotent
elements of B . Then it is easy to see that B is the disjoint union of B′ and B′′ ,
that the non-zero elements in (B′′)t form a basis of (rad Λ)t , for t = 1, 2, . . . , and
that for any element b ∈ B , there are idempotents e1, e2 ∈ B such that b = e1be2 .
The latter conditions just means that the basis B consists of homogeneous elements
with respect to the Cartan decomposition Λ =

⊕
i,j∈B′ eiΛej (this is the reason

why we prefer to call such a basis a Cartan basis, in contrast to the terminology of
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the paper which speaks of a “normed” multiplicative basis). The multiplicativity
property (1) asserts that one deals with a combinatorially defined algebra; however
in applications also the remaining properties turn out to be of great importance:
after all, any group algebra has, for trivial reasons, a basis with the multiplicative
property (1), but usually will not have a multiplicative Cartan basis.

The main result of [B-S] asserts that any representation-finite, as well as any
minimal representation-infinite algebra, has a multiplicative basis. The paper is
quite long, however it still is very condensed: the main method used is the so-
called cleaving procedure, a sort of partial covering theory, and in the numerous
applications of this method usually only the main ingredients are provided, whereas
the actual verifications are left to the reader.

In the Mathematical Reviews, I wrote in 1987: The result has a rather long
history. ... The general result was announced by Roiter in 1981, however his proof
was incomplete and partly incorrect. The first complete seems to have been given by
Bautista in his lectures at U.N.A.M. (Mexico) in the spring of 1983, but was not
published. Since Bautista’s proof was based on the ideas of Roiter, the result may
be referred to as a theorem of Roiter and Bautista. Gabriel was furious about this
comment and insisted that he also had a complete proof at the same time, thus
I wrote a corresponding addendum for the Reviews (I may add that at that time
he promised to send me a copy of his own draft, which however I never obtained).
I remember very well the spring 1983: I was visiting U.N.A.M. at that time and
listened to the lectures of Raymundo. What he presented was clearly his own work,
of course (as mentioned before) based on the old draft of Roiter, using contributions
of Salmerón and also suggestions of Gabriel4 . And I know that he sent his proof to
Gabriel, who then proposed many changes. Clearly, Gabriel made very remarkable
contributions to the final paper which strongly differs from Raymundo’s version:
indeed the various structure theorems for representation-finite and, more generally,
for “mild” algebras are due to a very fruitful collaboration of the authors of the
paper. These structure theorems deal with small factor algebras of Λ which have
to be considered as being nasty: there are three essentially different kinds, called
penny-farthing, dumbbell and diamond, and the essential observation asserts that
such factor algebras have only minor overlappings. We should also mention the
topological considerations in sections 8 and 10, dealing with the simplicial complex
of a ray category and showing the vanishing of a second cohomology group.

The structure theory presented in [B-S] has obviously scared away all other
mathematicians: One would expect to find a big variety of papers which are based
on this marvelleous investigation. But this is not the case! This is really a pity, for
several reasons: one should try to squeeze the arguments in order to obtain a more
comprehensive version; one needs corresponding results in the species case (thus
working with k -algebras, where k is not algebraically closed); and one should try
to understand the module theoretic behaviour in case one deals with slightly larger

4 I should add that Bautista himself stresses the parallel streamlines and the
progressive interrelation. He wrote to me: I cannot claim priority on this work. It
is true hat I had a preliminary version of a proof, but this was on the bases of joint
work with Salmerón, on discussions in Kiev in May 1982 with Roiter and Ovsienko
and on Gabriel’s advice (during his visit to Puebla at the end of 1982). This version
was never published, may-be in the future I will look again at this old manuscript.
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overlappings of critical parts: when do we still have tameness? when do we get wild
clusters, just as islands which can still be separated from the surrounding.

It seems to be customary to hide priority fights (especially in birthday lectures)
and to refrain from inquiring into the parallelity of arguments and ideas. But
why? When Gabriel in his ICRA lectures 1979 tried to give some historical account
about parallel streamlines, he stressed the following: The interrelation between these
various works may be difficult to track. Even the authors are not always aware of
them, since ideas ooze away and resurge. The only possibility to avoid priority fights
seems to be to choose a research topic no-one else will be interested in and will take
the pain to put his energy into! As long as one directs the attention to questions
of general interest, one has to cope with competing teams in other research groups
and with parallel results.

1977 - 1984. The Foundation of the Theory.

The radical of an additive category. As before, we denote by Λ an artin
algebra. Let mod Λ be the category of all Λ-modules. Now mod Λ is an additive
category and such a category is quite similar to a ring (there is an addition and the
composition of maps is like a multiplication - both addition and multiplication are
only partially defined, but they satisfy the usual ring axioms). The only difference
is that in general there is no global identity element, but many idempotents (the
identity elements of the various objects). Thus one often calls an additive category
A a “ring with several objects”. As a consequence, one can try to generalize the
usual concepts of ring theory to additive categories, and often this works out very
well. Under this analogy, Λ-modules correspond to additive functors from A (or
its opposite category) to the category of abelian groups; thus the category mod Λ
corresponds to a functor category. For example, the Jacobson radical of a ring
is the intersection of the annihilator of the simple modules - thus the Jacobson
radical of an additive category A should be the intersection of the annihilator of
the simple (additive) functors. Let us apply these considerations to the additive
category A = mod Λ. Any simple functor on this A is of the form S = SM , indexed
by an indecomposable Λ-module M ; with SM (X) = 0 for any indecomposable Λ-
module X which is not isomorphic to M , whereas SM (M) = End(M) (the factor of
End(M) modulo its radical). It turns out that the Jacobson radical J = rad mod Λ
of mod Λ can also be described as follows: it is an ideal of mod Λ; thus we have to
single out, for any pair X, Y of Λ-modules, the subgroup J(X, Y ) ⊆ Hom(X, Y ) . A
morphism f : X → Y belongs to J(X, Y ) , provided for any indecomposable direct
summand Xi of X with inclusion map ui : Xi → X, and for any indecomposable
direct summand Yj of Y with projection map pj : Y → Yj , the composition pjfui

is non-invertible.
Having defined the radical J = rad modΛ, we may consider its powers J t ,

where t is a natural number. Of particular interest is J2 and the factor J/J2 . If
X, Y are indecomposable modules, then the elements of J(X, Y ) \ J2(X, Y ) are
just the irreducible maps X → Y in the sense of Auslander-Reiten: these are the
non-invertible maps which have no proper product-factorizations. One may call the
factor group J(X, Y )/J2(X, Y ) the bimodule of irreducible maps; it is an End(X)-
End(Y )-bimodule, it controls the structure of the Auslander-Reiten sequences of
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mod Λ, since for an Auslander-Reiten sequence

0 → X →
⊕

i
Yi → Z → 0

with indecomposable modules Yi (of course X, Z also are indecomposable), all the
maps X → Yi and Yi → Z involved in the sequence are irreducible, and any irre-
ducible map between indecomposable modules arises in this way. More precisely,
the dimension of J(X, Y )/J2(X, Y ) as an End(X)-space or as an End(Y )-space
measures the multiplicities of X or Y respectively, occurring as middle term of
Auslander-Reiten sequences. It seems that Bautista was the first to notice that the
notion of the Jacobson radical of an additive category may be used as a starting
point for presenting the basic notions of the Auslander-Reiten theory; the corre-
sponding paper [B7] was published quite late, but apparently was written during
his time at Brandeis - it reflects his early interest in the Auslander-Reiten theory.

In case Λ is representation-finite, Jn = 0 for some n , and in this case the
elements of J \ J2 clearly generate J . Now dealing with the additive category
mod Λ, one is interested to obtain a description by generators and relations - as
in any algebraic theory. It turns out that the basic relations to be considered are
those which arise from the Auslander-Reiten sequences. Knowing generators as
well as basic relations, one may try to invoke a corresponding combinatorial object,
the Auslander-Reiten quiver Γ(Λ) of Λ which is defined for an arbitrary artin
algebra as follows: its vertices are the isomorphism classes of the indecomposable
Λ-modules, there is an arrow [X] → [Y ] (we denote the isomorphism class of a
module Z by [Z]), provided there exists an irreducible map X → Y, and one
endows the arrow [X] → [Y ] with the dimensions of J(X, Y )/J2(X, Y ) as an
End(X)-space and as an End(Y )-space. In addition, one fixes the pairs ([X], [Z]) ,
so that there exists an Auslander-Reiten sequence starting in X and ending in Z
(and one writes τ [Z] = [X] and calls τ the Auslander-Reiten translation). One
may wonder whether it is possible to recover the category mod Λ from these data.
This question apparently was raised for the first time by Bautista. The final answer
was given by Riedtmann: in case we deal with a field k of characteristic 2, then
there are examples of representation-finite algebras Λ, such that modΛ is not
the mesh category of its Auslander-Reiten quiver Γ(Λ), but if we deal with an
algebraically closed field of characteristic different from 2, then mod Λ is the mesh
category of Γ(Λ). But even in characteristic 2, the question has a positive answer
for all algebras with at least one indecomposable module which is faithful. Thus, in
general, we look at all the factor algebras Λ/I(M) , where I(M) is the annihilator
of an indecomposable module M , and we may consider Λ as being built up from
these local data Λ/I(M) .

The irreducible maps usually considered are morphisms f : M → N with M
or N indecomposable. It should be stressed that Bautista’s paper [B7] considered
irreducible maps in general, without the indecomposablity condition. It is proved
that one may restrict to study irreducible maps of the form f : Mm1

1 → Mm2
2 with

both M1, M2 indecomposable, and that such irreducible maps are related to definite
bilinear forms as introduced by Hopf. A further study of this relationship was done
by Brenner, Butler and King5 .

5 See the paper Irreducible maps and bilinear forms, Linear Algebra and Appli-
cations 365 (2003), 99-105.
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The Auslander-Reiten quiver. The idea of dealing with what now are called
Auslander-Reiten components can be found in Auslander’s second Philadelphia pa-
per6 . When I visited Brandeis in 1976, I proposed to visualize these components,
and as examples I presented the preprojective components of the generalized Kro-
necker quivers. At that time, all the known Auslander-Reiten sequences had middle
terms which are direct sums of at most two indecomposable modules and Auslander
was wondering whether this could be a general feature, in contrast to these com-
ponents which showed that there is no bound on the number of indecomposable
summands. The new examples made the problem of describing the possible shapes
of the Auslander-Reiten components much more intriguing. The first one who took
up this challenge was Raymundo. When he visited Bonn in 1977, he brought with
him some examples which he had calculated: Auslander-Reiten quivers of quivers
of finite representation type7 . Let us recall that the path algebra k∆ of a con-
nected finite quiver ∆ is representation-finite if and only if the underlying graph
∆ is one of the Dynkin diagrams An, Dn, E6, E7, E8 , as Gabriel has shown. It was
interesting to see that the Auslander-Reiten quiver Γ(k∆) is a full translation sub-
quiver of Z∆; with the indecomposable projectives as the boundary on one side,
the indecomposable injectives as the boundary on the other side. What seemed to
be strange at the time was the fact that these two boundary parts are not always
parallel8 .

The knitting procedure. There is an inductive procedure in order to con-
struct the Auslander-Reiten quiver (or at least parts of it) for various algebras. Since
the Auslander-Reiten sequences yield what are called “meshes”, this algorithm is
called the “knitting of components”. There does not seem to exist a written hint
about the origin. Apparently it was used at many different places as early as 1977
- definitely at U.N.A.M. as well as at Bonn, but may-be also at Liverpool and
Trondheim. Let X be an indecomposable module, and assume we know all the
indecomposable modules Wi with an irreducible map Wi → X (thus either X is
projective and we know its radical, or else X is not projective and we know the
Auslander-Reiten sequence ending in X ). Actually, we are only interested in those
modules Wi which are non-injective, say that these are the modules W1, . . . , Wt .
We suppose in addition that for all these modules Wi the Auslander-Reiten se-
quences 0 → Wi → Xi → Yi → 0 are known (observe that X occurs as a direct
summand of Xi , for any i), and that we know all the indecomposable projective
modules P1, . . . , Ps, such that X is a direct summand of rad Pi , for 1 ≤ i ≤ s.
Then all the irreducible maps starting in X are of the form X → Yi and X → Pj ,
and we can construct in this way the minimal left almost split map f : X → r(X) ,
where r(X) is a direct sum of a suitable number of copies of the modules Yi and
Pj . Note that in case f is not injective, X is an injective module (and then f is

6 Applications of morphisms determined by modules. In: Representation Theory of Algebras.

Proceedings of the Philadelphia Conference 1976. Marcel Dekker (1978), section 6.
7 He included these examples in his Brandeis paper [B7] mentioned above; but note that one

of the examples is odd.
8 This still was considered a mystery when Gabriel presented his survey on the Auslander-

Reiten theory at ICRA II, Ottawa 1979, but is explained in the written version of these lectures

(Springer LNM 831): For the Dynkin types An,D2n−1 and E6 , one has to use the (unique)

diagram automorphism of order 2.
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surjective having as kernel the socle of X ). Of course, otherwise f and its cokernel
yield an Auslander-Reiten sequence starting in X .

For any artin algebra Λ, the knitting algorithm constructs inductively the
reachable modules, according to their distance to the simple projective modules.
Those of distance 0 are the simple projective modules themselves; in case Z is
indecomposable and not projective, and

⊕
i Yi → Z is a minimal right almost

split map with indecomposable modules Yi , then Z is reachable with distance m
provided all the modules Yi are reachable and the maximum of the distances of
these modules Yi is m−1.

Note that the algorithm for constructing reachable modules may stop for two
reasons: either we have obtained all the indecomposables, thus Λ is representation-
finite and has a directed Auslander-Reiten quiver (Λ is then said to be representation-
directed), or else we encounter an indecomposable direct summand Xi of the radical
of an indecomposable projective module P such that some other indecomposable
direct summand of rad P is not reachable.

The s-condition. The knitting procedure works well in case any indecompos-
able projective module P to be considered has an indecomposable radical rad P
or, more generally, in case all the indecomposable direct summands of rad P are
isomorphic. The so called s-condition of Bautista-Larrion-Salmerón [BLS] provides
a criterion for dealing with the case when rad P has non-isomorphic indecompos-
able direct summands. Here, we assume that we deal with an algebra Λ given by
a directed quiver ∆ with relations. Note that the indecomposable projective mod-
ules P (i) are indexed by the vertices i of ∆ (here P (i) is the projective cover of
the simple module concentrated at the vertex i). The s-condition for P (i) deals
with the support of the indecomposable direct summands of radP (i) : one has to
require that these subquivers are not only disjoint, but actually belong to different
connected components of the quiver which is obtained from ∆ by removing all the
proper successors of i . If Λ is connected and representation-finite, then all the
indecomposable projective modules satisfy the s-condition if and only if Γ(Λ) is
simply-connected (this explains the letter s).

Let us exhibit an easy example of what may happen in case the radical of an
indecomposable projective module is the direct sum of two non-isomorphic modules.
We start with the path algebra Λ0 of a quiver of Dynkin type A2 . There are up
to isomorphism precisely three indecomposable Λ0 -modules: a simple projective
module S , a simple injective module T and a length 2 module I with socle S and
top T . Let Λ be the “one-point-extension” of Λ0 using S ⊕ T , thus Λ is given by
the following quiver with the indicated zero relation:

◦
◦

◦.................................................................................................................................. ..................................
.................

.............................
................ ................................................................ ............

....
...
....
..................

The algebra Λ is representation-finite (there are 9 isomorphism classes of indecom-
posables), however there are only two isomorphism classes of reachable modules,
those of S and I . In particular, the indecomposable projective module P with
radical S ⊕T belongs to a cyclic path, since both Ext1(P/T, T ) and Ext1(T, P/T )
are non-zero.

The structure of Auslander-Reiten components. For several years, Ray-
mundo’s work was devoted to the problem of determining the possible structure of
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Auslander-Reiten components. Some of these investigations deal with the global
structure, others focus the attention to local properties. We have already men-
tioned his interest in knitting components. What one obtains in this way are the
so-called preprojective components, and, using the dual procedure, the preinjective
components. Algebras with preprojective or preinjective components are of spe-
cial interest since the corresponding modules are given by combinatorial data and
thus can be handled quite easily. On the other hand, many algebras which are
needed in applications are of this kind, in particular, any hereditary algebra has a
preprojective and a preinjective component.

Actually, in case Λ is a hereditary algebra, the structure of all the compo-
nents is known. We may assume that Λ is connected and wild9 . There is one
preprojective and one preinjective component, the remaining components are of the
form ZA∞ . This result is contained in a paper by Auslander, Bautista, Platzek,
Reiten and Smalø [A-S], but also in a paper of mine: again one of the situations
where different mathematicians were trying to compete. The question was raised
at the 1977 Oberwolfach conference in an evening lecture, where I outlined such
a result for a special class of hereditary algebras (those with large “growth num-
ber”). The long list of names involved in the subsequent investigations shows the
great interest in this question.10 After all, components of the form ZA∞ yield only
Auslander-Reiten sequences where the middle terms are direct sums of at most two
indecomposable modules, in accordance with Auslander’s expectation.

Sectional paths. Most of the advances of the representation theory of artin
algebras in the last 30 years are based on combinatorial investigations, dealing
with quivers and posets, with corresponding quadratic forms and root systems,
the most decisive ones seem to be those concerning the structure of Auslander-
Reiten components. The Auslander-Reiten quiver of an artin algebra is a translation
quiver: this means, it is a locally finite quiver Q = (Q0, Q1) with an injective map
τ : Q′

0 → Q0 where Q′
0 is a subset of Q0 such that the number of arrows y → z

is equal to the number of arrows τz → y , for every vertex y ; in a translation
quiver, the vertices which do not belong to Q′

0 are said to be projective, those
which do not belong to τ(Q0) are said to be injective. By now, there is a vast
literature dealing with translation quivers which arise for artin algebras (but also
for posets and vectorspace categories, for isolated singularities or orders), and all
these investigations rely on the pioneering work of Bautista. One of the basic ideas
which he introduced concerns the study of sectional behaviour [B3]: of sections and
slices, of sectional paths and sectional cycles. The idea is to study subquivers of a
translation quiver which contain precisely one, or only at most one, representative
from each τ -orbit.

Let us start with the notions of sectional paths and sectional cycles. By defi-
nition, a path in a quiver Q = (Q0, Q1) of length n is of the form (x0, x1, . . . , xn) ,
where xi are elements of Q0, such that there is at least one arrow xi−1 → xi , for

9 If Λ is connected and tame, then one has a similar statement: there is one preprojective

and one preinjective component, the remaining components are so called tubes: they are obtained

from translation quivers of the form ZA∞ by factoring out some power of the translation.
10 In his Ottawa lectures in 1979, Gabriel put oil into this priority fight by praising only my

work: but actually my first attempt for a general proof was incomplete, as he himself has pointed

out, and my final solution was completed only after the paper [A-S] was sent around!
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every 1 ≤ i ≤ n . Now, a path (x0, x1, . . . , xn) in a translation quiver is said to be
sectional provided τxi+1 6= xi−1, for all 0 < i < n .

The translation quivers which arise as Auslander-Reiten quivers of artin alge-
bras do not have loops (since one knows that irreducible maps are either monomor-
phisms or epimorphisms, but of course never isomorphisms), thus in this case a path
is sectional if and only if any subpath of length 2 contains at most one represen-
tative from any τ -orbit. It is easy to exhibit sectional paths (x0, x1, x2, x3) with
x0 = τx3 ; consider the path algebra of the quiver ◦

◦
◦................................................................................................ ..................................

................................
................ .................................................. ............

.... , let x0 = (001), x1 =
(011), x2 = (112), x3 = (122) (here we specify isomorphism classes of indecompos-
able modules by noting the corresponding dimension vector, note that the modules
mentioned are uniquely determined in this way).

A path (x0, x1, . . . , xn) is called cyclic provided xn = x0. Such a cyclic path
is said to be sectional, provided it is a sectional path and, in addition, we also have
τx1 6= xn−1 (or, equivalently, provided also the path (x1, . . . , xn, x1) is sectional).
Note that there do exist paths which are both cyclic and sectional, but are not
sectional cyclic paths: Let Λ be a uniserial local k -algebra of length n , say Λ =
k[T ]/〈Tn〉 , where k[T ] is the polynomial ring in one variable T with coefficients
in a field k and n ≥ 2. The regular representation P = ΛΛ is an indecomposable
module which is both projective and injective. Let R be its radical; this again is
an indecomposable module and R is isomorphic to the factor module of P modulo
its radical. Thus the inclusion map R → P as well as the projection P → R are
both irreducible maps and ([P ], [R], [P ]) is a sectional path in Γ(Λ). On the other
hand, τR is isomorphic to R , thus ([R], [P ], [R]) is not sectional.

As we have seen, there do exists paths which are both cyclic as well as sectional,
but Bautista and Smalø [BS] have shown that an Auslander-Reiten quiver never
contains sectional cyclic paths. This has several important consequences, let us
note at least the following: If X, Y are indecomposable modules and if there exists
irreducible maps X → Y and Y → X , then X is isomorphic to τX or Y is
isomorphic to τY (an indecomposable module Z which is isomorphic to τZ is
said to be homogeneous, thus the claim is that at least one of the modules X, Y is
homogeneous). For, if neither X nor Y is homogeneous, then ([X], [Y ], [X]) is a
sectional cyclic path, but this is not possible.

Replication Numbers. We now turn to the question of finding properties
of Γ(Λ), where Λ is a representation-finite k -algebra and k is algebraically closed.
The first such property is the famous four-in-the-middle theorem of Bautista and
Brenner [BB1]: it asserts that for a representation-finite algebra, the middle term of
any Auslander-Reiten sequence decomposes into at most 4 indecomposable modules,
and in case it decomposes into 4 indecomposable modules, then precisely one of these
summands is both projective and injective, whereas the remaining ones are neither
projective nor injective.

This result turns out to be a special case of a very general result which sheds
light on the number 4 and which incorporates also other observations of Raymundo.
Namely, we may reformulate this result as follows: the “replication number” of the
Euclidean diagram D̃4 is equal to 1. If Γ is a translation quiver and M is a subset
of Γ0 , we may apply powers of τ and τ−1 to M and we say that the replication
number of M is t provided there are natural numbers p, q ≥ 0 with n = p + q + 1,
such that the following properties are satisfied:
(1) The set τpM contains a projective vertex,

11
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(2) The sets τ iM for 0 ≤ i < p do not contain any projective vertices.
(3) The sets τ−iM for 0 ≤ i < q do not contain any injective vertices.
(4) The set τ−qM contains an injective vertex.
If M is a subset of Γ0 which does not contain a projective vertex, we may say
that the subsets M and τM are parallel, and we may extend this concept to an
equivalence relation on the set of subsets of Γ0 . If the replication number of some
subset M is n (where n is a natural number), then the parallelity class of M
contains precisely n sets. The subsets M we are interested in are the supports of
sectional subquivers with underlying graph a Euclidean diagram: here, a subquiver
∆ is called sectional, provided any path in ∆ is sectional, and the Euclidean dia-
grams are the graphs Ãn, D̃n, Ẽ6, Ẽ7, Ẽ8 (also called “extended Dynkin diagrams”
or “affine diagrams”) which occur in Lie theory as simply laced Cartan data of affine
Kac-Moody algebras.

Now, Bautista and Brenner [BB2] have shown the following remarkable facts:
If Γ is the Auslander-Reiten quiver of a representation-finite algebra over an al-
gebraically closed field, and ∆ is a sectional subquiver of Γ, then the replication
number is finite and there is an effective bound b in terms of Lie theory. The bound
is optimal, corresponding examples can be constructed using tilting theory. In fact,
the combinatorial information used here may be expressed in terms of Z∆: of in-
terest are the pairs (x, y) of vertices in Z∆ with a path from x to y, such that
Hom(x, y) = 0 in the mesh category k〈Z∆〉.

As we have mentioned, a special case is the four-in-the-middle theorem, here we
consider the Euclidean diagram D̃4 . The case Ã1 concerns the case when dealing
with a pair of vertices x, y and two arrows x → y . In this situation, the replication
number is 0. This means: the existence of two indecomposable modules X, Y such
that the bimodule of irreducible maps from X to Y is at least two-dimensional,
implies that Λ is representation-infinite.

Finite Posets. When dealing with representations of quivers, one often en-
counters the problem to find, for a given vector space Vω, a basis which is compatible
with several subspaces Vi of Vω . These problems are called subspace problems and
one knows that already the 5-subspace problem is wild. However, one may be in the
fortunate situation to know some inclusion relations between the given subspaces. If
S is a finite poset, one calls (Vω, Vi)i∈S an S -space provided Vω is a vector space,
any Vi is a subspace of Vω , and i ≤ j in S implies Vi ⊆ Vj . A general theory of
S -spaces was established parallel to the development of the representation theory
of artin algebras, with substantial contributions by the Kiev school of Nazarova and
Roiter, by Gelfand and Ponomarev, by Gabriel and Loupias, as well as Brenner and
Butler. Many of the techniques which have been developed in the representation
theory of algebras have analogies for the category of S -spaces of a given poset S ,
but there are also genuine methods which seem to work only for S -spaces, such as
the Kiev differentiation algorithms. As we have mentioned, questions in the repre-
sentation theory of artin algebras lead to problems on S -spaces, but there is also
a transfer in the opposite direction: Let S+ be obtained from S by adjoining a
largest element (say ω ), thus we may consider any S -space (Vω, Vi)i∈S as a repre-
sentation of the incidence algebra I(S+) of S+ ; thus we may consider the category
of S -spaces as a full subcategory of mod I(S+) .

The study of S -spaces puts some old geometrical considerations into their
proper context. For example, if Ct = {s1 < s2 < · · · < st} is a chain, then a Ct -
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space is nothing else than a vector space with a filtration (or a “flag”) consisting of
t subspaces. Let us consider the special case when S is the disjoint union of three
chains C1, C2 and C4 , as depicted to the left. Then S+ is the partially ordered set
shown to the right, note that I(S+) is just the path algebra of a quiver of Dynkin
type E8
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(these drawings are the corresponding Hasse diagrams).
A poset S is said to be subspace-finite, provided there are only finitely many iso-

morphism classes of indecomposable S -spaces. In case the incidence algebra I(S+)
is representation-finite, S is subspace-finite. However, the converse is not true.

For example, the poset: •••
• •
...........
...........
...........
........

...........
...........

...........
........

is subspace-finite, however I(S+) is representation-
infinite.

Here is Kleiner’s list of the minimal subspace-infinite posets S :
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For all these posets S , the incidence algebra I(S+) is a tame concealed algebra,
it is a tilted algebra of the indicated Euclidean type (actually, in all cases but the
last, I(S+) is hereditary).

As we have seen, the incidence algebra of a poset need not to be hereditary, it
is given by a quiver with all possible commutativity relations. In order to deal with
such algebras (but also with related ones which are of interest when we consider a
“species” instead of a quiver) Bautista has introduced the notion of l-hereditary: A
finite dimensional algebra Λ is said to be l-hereditary provided any local submodule
of a projective module is projective again (a local module is by definition a module
with a unique maximal submodule). There is the following equivalent condition: if
f : P → Q is a non-zero homomorphism, where P, Q are indecomposable projective
modules, then f is a monomorphism.

Representation-finite incidence algebras have been investigated already in the
early seventies by several mathematicians (in particular Kleiner and Loupias); in
all cases it turned out to be quite easy to determine inductively all the indecompos-
able modules. The reason is explained by the following result of Bautista which
he published in 1981 [B5]: Any representation-finite l-hereditary algebra Λ is
representation-directed. Thus we are in a setting where we can use the knitting
procedure in order to construct all the indecomposable modules!

The investigation of l-hereditary algebras and their representations has been a
leading theme of Raymundo’s collaboration with several other mathematicians; let
us name at least Martinez, Simson, Kleiner and Norieta. This work stretched over a
long period. As we have mentioned, the category of S -spaces is a full subcategory of
the category mod I(S+) , thus one may wonder whether suitable full subcategories
of a module category have (relative) Auslander-Reiten sequences. Again, this is a
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question which has attracted a lot of interest by many mathematicians, and which
was raised for the first time by the Mexican school. In the Antwerp paper of 1979,
Bautista and Martinez gave the positive answer for this question for the category
of S-spaces.

We have seen that it is of interest to deal with posets with a unique maximal
element. In order to have good duality properties, one may assume that we deal
with posets with the additional property of having a unique minimal element. The
incidence algebra I(S) of such a poset S (with a unique minimal and a unique
maximal element) is an l-hereditary 1-Gorenstein algebra, and such algebras were
studied very carefully by Bautista and his collaborators. The importance of the
1-Gorenstein condition is well-known in ring and module theory, one can read it off
from the various and quite different characterizations of these algebras (the injective
hull of the regular representation is projective; there exists a faithful module which
occurs as a direct summand of any faithful module; there exists a faithful module
which is both projective and injective,...) as well as from the fact that many different
names have been introduced as labels (the 1-Gorenstein algebras are the algebras
of dominant dimension at least 1, they are also just the QF-3 algebras in the sense
of Thrall).

Final Remark. I have quoted at the beginning Raymundo’s comment on the
1976 lectures of Auslander in Mexico: We were impressed mainly in the part of the
lectures related to almost split sequences, then recently discovered by M. Auslander
and I. Reiten. It is clear that this part of the lectures had a very decisive impact
on Raymundo’s further work, with relations to all the developments which we have
covered in this lecture. His pioneering investigations on the structure of Auslander-
Reiten quivers have to be highly praised: Bautista has to be considered as one of
the architects of the modern representation theory of artin algebras which is based
on the combinatorics of the Auslander-Reiten quiver.

References.

[A-S] Auslander, M.; Bautista, R.; Platzeck, M. I.; Reiten, I.; Smalø, S. O.: Almost split sequences
whose middle term has at most two indecomposable summands. Canad. J. Math. 31 (1979),

942–960.

[B1] Bautista, R.: Torsion theories and Auslander-Reiten sequences. An. Inst. Mat. Univ. Nac.
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