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ABSTRACT. This is an outline of the combinatorial approach to the
representation theory of finite-dimensional algebras, as it was developed
and successfully used during the last thirty years. We will present an
overview of the essential ideas and open problems. The blooming period
say between 1970 and 1985 was followed by a sort of stagnation: with
still hundreds of papers but no real final results. This slow down seems to
be surprising if one keeps in mind the many open, but feasible problems
and the wealth of new methods not yet used to their full potentiality.
These notes are based on two invited lectures given by the author at the
International Conference on Representations of Algebras ICRA 9, held
at Beijing Normal University 2000.

0. The Basic Examples: Representation-finite Algebras.

Let k be a field. The algebras to be considered will be associative k -algebras
with sufficiently many idempotents, usually they will be finite-dimensional (and
then with unit element). Given such a k -algebra A , representation theory consid-
ers representations of A , these are the algebra homomorphisms φ : A → Endk(V )
where V is a k -space and End(V ) denotes the algebra of all endomorphisms of
V . Equivalently, one may deal with the map φ : A × V → V adjoint to φ; the
vector space V together with the bilinear map obtained in this way is called an
A-module. For a fixed algebra A we denote by mod A the category of all finite-
dimensional A -modules, it is a length category: an abelian category such that
every object has finite length.

Recall that an algebra A is said to be representation-finite, provided there
are only finitely many isomorphism classes of indecomposable A -modules, and
then all indecomposable A -modules are finite-dimensional and any A -module can
be written as a direct sum of indecomposables. In case k is algebraically closed,
a basic result due to Bautista, Gabriel, Roiter and Salmeron [BGRS] asserts that
a representation finite k -algebra A has a multiplicative Cartan basis B : the
multiplicativity means that the product of two elements of B is either zero or
belongs again to B , to say that we deal with a Cartan basis means that B contains
sufficiently many primitive idempotents and that B contains a generating set for
the radical NA of A (and then we find in B generating sets for all the powers of
the radical of A). Of course, algebras with a multiplicative basis are combinatorial
objects, but their representation theory usually will depend on the given field k ,
in particular on the characteristic of k : the modular representation theory of finite
groups gives ample evidence (and by the very definition these groups algebras have
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a multiplicative basis). It is the requirement to deal with a Cartan basis which
allows a combinatorial construction of the representations of A and then even of
the category of all A -modules. The relevant references are the following: Let us
first assume that we deal with what is called a standard algebra A , then we may
invoke Gabriel’s covering theory [G3]: it yields a G-grading on A , where G is a
finitely generated free group, with the following two properties: every A -module
is gradable and the category of graded A -modules is directed. As we want to
stress, there is a strong relationship between directedness conditions on length
categories and the possibility to describe them in combinatorial terms. Starting
with a representation-finite k -algebra A , where k is algebraically closed, covering
theory reduces the classification problem for the indecomposable A -modules to
the corresponding problem for k -algebras which are in addition tilted algebras
[HR], and the latter problem is well-known to be a purely combinatorial one: it
amounts to knit preprojective translation quivers. The procedure of covering,
tilting and knitting is very powerful and provides a clear picture of the individual
representations as well as the structure of the category mod A itself. In particular,
Dräxler [Dx1] was able to show along these lines that for any finite dimensional
representation φ : A → Endk(V ) , we can choose a basis of V such that the only
entries of the matrices φ(b) with b ∈ B are 0 and 1. Similarly1 , we can write
any A -module as the cokernel of a map between free modules whose entries are
just 0, 1 and −1. Of course, such assertions stress the combinatorial nature of the
objects we are dealing with.

We have assumed that A is a standard algebra. Only in case the character-
istic of k is 2, there do exist algebras A which are not standard (see Riedtmann
[Rm]) and then we cannot directly use covering theory. However, according to
Bongartz [Bn], A will still have sufficiently many standard factor algebras in the
following sense: given an indecomposable A -module M , there exists an ideal I
which annihilates M such that A/I is standard. This means that all the inde-
composable modules are combinatorially given, and the problem of dealing with
non-standard algebras is only to patch together a finite number of combinatorially
given categories, indeed a feasible and still combinatorial situation.

In order to describe the category modA globally, one relies on investigations
of Auslander and Reiten which lead to the so called Auslander-Reiten quiver of A ,
its vertices are the isomorphism classes of the indecomposable A -modules, and the
arrows indicate the existence of irreducible maps. Indeed, for a standard algebra
the Auslander-Reiten quiver yields a presentation of the category mod A by gen-
erators and relations: Note that an additive category is an algebraic object like a
group or a ring, thus one may look for presentations by generators and relations. In
fact, an additive category is really just a ring if one extends the only partially de-
fined composition by zero in order to obtain an everywhere defined multiplication;
thus, additive categories are often called “rings with several objects”.

1 We are grateful to Brüstle, Simson and Crawley-Boevey for pointing this out
after the lecture.
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We have outlined here in which way representation-finite algebras over an
algebraically closed field may be handled combinatorially; as starting point one
has to refer to the treatment of hereditary algebras by Gabriel in 1972 [G1] using
quivers (in order to describe the algebras) and positive roots (in order to describe
the indecomposables). For any object M in a length category A , the first invariant
to be mentioned is its class in the Grothendieck group K0(A) of objects in A
modulo exact sequences; note that K0(A) is free abelian with basis S the set of
isomorphism classes of simple objects. We usually will denote the class of M in
K0(A) by dim M and call it the dimension vector; the coefficients of dim M in
terms of the basis S are the Jordan-Hölder multiplicities of the simple objects
in M . Of course, these Jordan-Hölder multiplicities are combinatorial invariants,
whereas the study of the class of all objects with a fixed dimension vector tends
to be of algebraic-geometrical nature.

But combinatorial methods are by no means restricted to representation-finite
cases; indeed, already the 1970 classification of pairs of annihilating operators on a
vector space due to Gelfand and Ponomarev [GP] used a combinatorial description
of the indecomposables as strings and bands, namely words in some alphabet.

1. The Basic Setting: Algebras, Modules, Categories.

Let us describe the general procedure of the combinatorial approach to rep-
resentation theory. As we have mentioned in the previous section, we deal succes-
sively with

• algebras,
• modules,
• categories,

and aim at a combinatorial description at all three levels. Actually, this is a repet-
itive scheme2 , since the categories obtained are additive categories, thus they may
be considered again as algebras (with several objects) and one may start anew.
To put it differently, given an algebra A , the category mod A may be just con-
sidered as a functor category with values in the category of all k -spaces, and we
may continue to consider functor categories modmodA and so on. On the other
hand, instead of dealing with the whole category modA of all finite-dimensional
A -modules, it may be appropriate to look for small subcategories and their be-
havior. In particular, if we are interested in a finite number of indecomposables
M1, . . . , Mm , the full subcategory of all their direct sums is encoded in the en-
domorphism ring E of the direct sum

⊕m
i=1 Mi ; and such an E is again a finite

dimensional algebra. These successive steps from algebras to modules to algebras
form the core of representation theory, and we are going to discuss in which way
combinatorial data at one stage yield combinatorial ones at the next step.

2 The repetitive character of comparing A and modA by iterating this process
and looking also at mod modA and mod modmodA and so on, was stressed in
particular by Auslander, for an outline of some relevant features we refer to [R8].
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What kind of combinatorial data one may use in order to describe algebras,
modules and additive categories?

Algebras. The idea of describing finite-dimensional algebras by quivers and
relations is due to Gabriel [G1], but the concept of a quiver and its representations
is much older: it was used by Grothendieck under the name diagram scheme
in order to deal with say commutative diagrams as they appear everywhere in
homological algebra. Note that two rings are said to be Morita equivalent provided
their module categories are equivalent; finite dimensional algebras A, B are Morita
equivalent if and only if the categories modA and modB are equivalent. Any
finite dimensional algebra A is Morita equivalent to a basic algebra B (basic
means that B/NB is a finite product of division rings) and B is unique up to
isomorphism. Thus, we always may assume that we deal with a basic algebra A .
In case the base field k is algebraically closed, A is the factor algebra of the path
algebra kQ of a finite quiver modulo an admissible ideal I (to be admissible
means Jm ⊆ I ⊆ J2 , for some m ≥ 2, where J is the ideal of kQ generated by
the arrows). Such an ideal is generated by linear combinations

∑
w∈W (a,b) cww ,

where W (a, b) is the set of paths w starting at a and ending at b , with length l(w)
bounded by 2 ≤ l(w) ≤ m , coefficients cw ∈ k and arbitrary vertices a, b. Note
that the quiver Q is uniquely determined by A , and this is a purely combinatorial
invariant. There are usually many possible choices for I and its generators and
only for very special choices of the coefficients cw one may interpret A as being
combinatorially given. This is the case if one may choose coefficients cw in {0, 1}
(or in {0, 1,−1}). In particular, we should mention the incidence algebra of a
finite poset P , here one deals with a quiver without oriented cycles and without
multiple arrows, and one takes as generators for I all possible differences w−w′ ,
where w, w′ are paths starting at a vertex and ending at some other vertex.

Modules. As we have mentioned already, the first invariant of a module
of finite length is its dimension vector, often it turns out that the dimension
vectors for the indecomposable A -modules are just the roots of a quadratic form q
defined on the Grothendieck group K0(A) . The root systems which one encounters
in this way are related to those which one knows from Lie theory and here one has
a very fruitful connection to be discussed at the end of these lectures.

But there are other ways to use combinatorial concepts for characterizing or
specifying indecomposable modules. In the case of a special biserial algebra, one
follows Gelfand and Ponomarev [GP] using words in some finite alphabet (given
by the arrows in the quiver and formal inverses of the arrows); the modules which
can be described in this way are called strings and bands and the corresponding
word indicates in which way a suitable basis of the algebra operates on a suitable
basis of the module in question. For the so called clannish algebras one has to
modify this procedure slightly, taking into account the internal symmetry of such
words. In general, for any representation of a quiver one may work with matrices
and consider the corresponding coefficient quiver [R7], a well-known object of
interest in linear algebra.
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Additive Categories. The main combinatorial data for describing additive
categories are translation quivers. As long as we deal with a category with
almost split sequences such as the category modA where A is an artin algebra,
there is defined its Auslander-Reiten quiver Γ(A) . The shape of its components
often gives a lot of insight. Since an artin algebra A has only finitely many
isomorphism classes of indecomposable modules which are projective or injective,
all but finitely components of Γ(A) are stable.

Some kinds of components allow to recover the precise structure of the cor-
responding modules without any further knowledge. In particular, this is true
for preprojective and for preinjective components (in case we work over an alge-
braically closed base field).

The study of tame algebras and their representations tends to be the study of
one-parameter families of homogeneous tubes (a homogeneous tube is a component
of the form ZA∞/〈τ〉). The modules belonging to a homogeneous tube will be
said to be homogeneous modules, those on the mouth of the tube will be said
to be primitive homogeneous. Note that in a homogeneous tube there is a unique
primitive homogeneous module M and all the modules in the tube have a filtration
with all factors isomorphic to M . Let A be a tame k -algebra, k algebraically
closed. According to Crawley-Boevey [C1], for any natural number d almost all
indecomposable A -modules of dimension d are homogeneous.

Other translation quiver which have been used in combinatorial representa-
tion theory are all kinds of hammocks, see in particular [RV] and [Sr].

CREP. The combinatorial approach to representation theory allows an ef-
fective use of computer algorithms. Such programs have been developed by several
mathematicians and a package of programs has been made available by Dräxler
under the name CREP, an abbreviation of what is also title for these lectures:
Combinatorial REPresentation theory. We refer to the manuals [DN1] and the
survey [DN2] by Dräxler and Nörenberg.

2. The representation type of an algebra.

We have mentioned above that a representation-finite algebra over an alge-
braically closed field always has a multiplicative Cartan basis. If P is any property
an algebra may have or not have, we say that an algebra A is minimal with the
property P , provided A has this property, but any proper factor algebra does not
have property P . For example, an algebra A is said to be minimal without a mul-
tiplicative Cartan-basis, provided A does not have multiplicative Cartan-basis,
but any proper factor algebra of A has one.

Problem 1. Determine all minimal algebras without a multiplicative Cartan-

basis.

Of course, according to [BGRS], all algebras without a multiplicative Cartan-
basis have to be representation-infinite. But having the list of all minimal algebras
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without a multiplicative basis, it should be easy to show directly that these algebras
are representation-infinite. Thus, a solution of problem 1 should yield a new (and
hopefully shorter) proof for the multiplicative basis theorem.

When looking at the representation type of an algebra, there clearly is a hi-
erarchy of behavior, starting with the representation-finite ones, then the so-called
domestic ones, and so on, finally ending with the wild ones. The hierarchy of com-
plication should not be thought as a linear ordering of complications (see [R5]),
but it clearly is a partial ordering. Now, given such a property P of complicated-
ness, one may be interested to know all the algebras not having this property. But
in general it turns out that there may be a vast number of such algebras, whereas
the number of minimal algebras having the property P may be rather small.

For example, the last 25 years have seen a strong endeavor to find all tame
algebras, but it seems that such a list should be really large and thus quite useless.
In contrast, one may hope to be able to deal with the minimal wild algebras. It
seems that if A is minimal wild, then the number s(A) of isomorphism classes of
simple A -modules should be quite small:

Problem 2. Are there minimal wild algebras A with s(A) > 10?

The answer should be NO. When dealing with algebras with a preprojective
component, the Unger list [U] provides typical minimal wild algebras; of course,
for all of them we have s(A) ≤ 10. Note that the minimal wild algebras A with
s(A) = 1 (this means that A is local) have been classified in [R1] - there are only
few and anyone satisfies (NA)3 = 0. The partial results in order to classify the
minimal wild algebras A with s(A) = 2 due to Hoshino and Miyachi [HM] have
now been completed by Brüstle and Han [BH,H2].

A more subtle minimality concept has been introduced by Nagase. Again,
let P be an algebra property. We say that A is Nagase-minimal with respect to
P provided A is minimal with respect to this property, and, in addition, if B is
an algebra with property P and there is a full exact embedding modB → mod A ,
then s(B) ≥ s(A) . Of course, the second condition usually will reduce the number
of cases: there will be less Nagase-minimal algebras than minimal algebras. For
example, there is only one Nagase-minimal strictly wild algebra, namely the path
algebra K(3) of the quiver

◦ ◦
......................

.............................................................................................

..................................................................................................................

........................................................................................................
...........

...................... ..........
.......
...

......................

...............
.....

......................

....................

whereas there are many minimal strictly wild algebras. On the other hand, there
is the following obvious observation:

Lemma. Let A be an algebra with property P . Then there is a Nagase-

minimal algebra B with respect to P and a full exact embedding mod B → modA .

Proof, by induction on s(A) and the dimension of A . If A is not minimal
with respect to P , then there is a proper factor algebra A′ of A with property P ,
and, of course, there is a full and exact embedding modA′ → modA . Note that
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the dimension of A′ is smaller than that of A . If A is minimal with respect to P
and A is not Nagase-minimal with respect to B , then there exists an algebra B
with s(B) < s(A) and a full exact embedding modB → mod A .

If we are interested in module theoretical properties of all the algebras with
property P , then the Lemma shows that usually it will be sufficient to consider
just the Nagase-minimal algebras with respect to B .

Problem 3. Determine all Nagase-minimal wild algebras.

What happens if we bound the nilpotency index of the radical NA of A , say
if we assume that (NA)t = 0? And how much information about A is encoded
into A/(NA)t for a given t?

Let us start with t = 1. The condition NA = 0 means that A is semisimple,
thus all the A -modules are semisimple: the only indecomposable A -modules are
the simple ones. For a general algebra A , the modules annihilated by NA are
the semisimple ones, thus we see that the information which we may recover form
A/NA is just that concerning all the simple A -modules.

Next, let t = 2. If (NA)2 = 0, then one knows that A is stably equiv-
alent to a hereditary algebra, the reduction process was outlined by Auslander
[A,AR1] and by Gabriel [G1]. Thus the indecomposable A -modules correspond
to the indecomposable B -modules for some hereditary algebra B , and thus at
least the corresponding dimension vectors are known by Kac [K]. The regular
Auslander-Reiten components of A are just the same as the regular Auslander-
Reiten components of B : they are of tree class A∞ . For a general algebra A , the
A -modules annihilated by (NA)2 are just those of Loewy length at most 2, thus
the factor algebra A/(NA)2 encodes all the information concerning A -modules of
Loewy length 2. Note that the algebras A with (NA)2 = 0 are very special. For
example, such an algebra can be tame only if it is domestic!

Let us consider t = 3. Whereas for t ≤ 2 the algebras A with (NA)t = 0
where very special, it seems to us, that all the possible representation theoretical
behavior occur already for t = 3.

Problem 4. Determine the representation type of algebras with (NA)3 = 0.
Second: which algebras A have the same representation type as A/(NA)3 ?

Let k be algebraically closed and A a k -algebra. Recall that an algebra
is tame, provided for every dimension d there is a finite number n of A -k[T ] -
bimodules M such that almost all primitive homogeneous modules of dimension
d are of the form M/M(T−λ) with λ ∈ k. The smallest number n will be denoted
by πA(d) . If p = maxd πA(d) is finite, then A is said to be domestic or better
p-domestic.

Problem 5. Assume A is tame. Are all the regular components which are

not tubes of the form ZA∞
∞ and ZD∞ ?
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Crawley-Boevey’s result implies that a tame algebra has at most countably
many components which are not homogeneous tubes. There do exist already 2-
domestic algebras which have countably many components which are of the form
ZA∞

∞ , for example

◦ ◦

◦ ◦......................................................................

................................................................................
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but no 1-domestic algebra with this property is known.

Problem 6. Assume that A is 1-domestic. Are all but finitely many com-

ponents homogeneous tubes?

Actually, this may be the most urgent problem: To develop a structure theory
for modA , where A is domestic. Domestic algebras are the closest relatives of
those of finite type, and it seems to be of great interest in which way domestic
module categories deviate from those of finite type. Actually, the usually infinite
τ -orbits for a representation-infinite algebras should show a more regular behavior
than the always finite τ -orbits of a representation-finite algebra. As long as the
module categories even for domestic algebras are not yet understood, we are far
away from a general theory of tame algebras. The most innocent question to be
asked seems to be the following:

Problem 7. What are the domestic algebras A with a faithful homogeneous

tube?

We conjecture that such an algebra has to be 1-domestic. There are several
such algebras obtained from a connected tame hereditary algebra by glueing to-
gether parts of the preprojective and the preinjective components. Here is a less
trivial example:
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(with two zero relations of length 2 and one of length 3). It has a family of
homogeneous tubes, index by k \ {0} and one planar component with a hole.

In general, the study of algebras with faithful homogeneous tubes should
be very rewarding. Of course, they usually will not be domestic. For example,
all the tubular algebras belong to this class, the pg-critical ones, and many non-
domestic special biserial ones. There are also wild algebras which have faithful
homogeneous tubes. For example, let B be a self-injective local algebra and let
A = B[T ]/〈T 2, NB · T 〉. Then B = A/TA (considered as an A -module) belongs
to a faithful homogeneous tube in Γ(A) .

It should be stressed that combinatorial representation theory is mainly con-
cerned with combinatorial invariants of modules, not of algebras. Algebras are less
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combinatorial objects than modules, even if we work with algebras k , where k is
an algebraically closed field. The case of representation-finite algebras is definitely
misleading: here, all the modules are given by 0-1-matrices, but also the algebras
themselves have a multiplicative basis, thus they also can be exhibited using as
structure constants just 0 and 1. But if we consider tame algebras, the situation
gets more complicated: it seems that all the indecomposables can be exhibited by
matrices using as entries 0, 1 and at most one additional λ ∈ k . whereas there are
families of connected tame algebras depending on several parameters, for example
there is a 5-parameter family of tame algebras with the following quiver
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with eight relations of length 2; there is one which starts at any of the four sources,
and one which ends at any of the four sinks. Thus, the algebras are obtained from
the Kronecker algebra by forming four tubular extensions and four tubular coex-
tensions and we require that the extension modules and the coextension modules
belong to pairwise different tubes. Altogether we see that eight tubes are fixed,
thus eight points on a projective line. Three of these points may be labeled 0, 1,∞ ,
then the remaining 5 points are invariants. Note that all the algebras are tame,
they are iterated tubular. Deleting one sink and one source we obtain a still
three-parameter family of 1-domestic algebras.

Problem 8. Assume A is a tame algebra with a faithful homogeneous tube.

Does there exist a basis B of A such that for any indecomposable representation φ
of A , if we consider the set of matrices φ(b) with b ∈ B with respect to a suitable

basis, all but at most one of all the entries are 0 or 1 .

Let us add one question concerning wild hereditary algebras (the tree modules
considered here are those as introduced in [R7]: there are appropriate bases so that
the coefficient quivers are trees).

Problem 9. Let d be a positive root. Is there an indecomposable tree module

with dimension vector d? If d is imaginary, then there should be more than one

isomorphism classes of indecomposable tree modules with dimension vector d .

3. Controlled Embedding and Fractal Behavior of Algebras.

Recall that additive categories may be considered just as rings. When com-
paring different rings, one may ask whether one is isomorphic to a subring or a
factor ring of the other. Thus, comparing additive categories, we may ask whether
one is isomorphic (or at least equivalent) to a subcategory or a factor category
of the other. Such questions have to be considered when we deal with the old
concept of wildness of algebras. First of all, we note the following: To assert that
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an additive category A has many different kinds of exact subcategories (without
further specification of these embeddings) is not really of interest, just look at
the category A = mod k of all finite dimensional k -spaces: for any k -algebra
B , the category modB embeds as an exact subcategory into A via the forgetful
functor. The strongest assertion seems to be to require that for any k -algebra B ,
there is a full and exact embedding of modB into modA ; then A will be said
to be strictly wild. It is clear that a strictly wild algebra A will have A -modules
with prescribed endomorphism ring: if we need a module with endomorphism ring
B , just take the image of the regular representation BB under a full embedding
mod B → mod A . However, there are obvious examples of algebras which have to
be called “wild”, but which are not strictly wild. For example, no local k -algebra
A can be strictly wild, since the endomorphism ring E of any A -module is quite
special: for example, the only central idempotents of such a ring E are 0 and
1. In particular k × k can never occur as endomorphism ring of an A -module.
The old concept of wildness was based on the condition that the wild algebras A
should be characterized by the property that any k -algebra B occurs as a factor
ring of the endomorphism ring of an A -module. Let us call the algebras with this
property the algebras with prescribed endomorphism rings.

The notion of wildness used nowadays is due to Drozd [Dr]. It is based on
the use of tensor functors F = M ⊗B − , where M is an A -B -bimodule, with B a
strictly wild k -algebra: often one uses B = k〈X, Y 〉 , the free algebra in two gener-
ators, or, if one prefers to work with finite-dimensional algebras, B = K(3). Since
one wants that F is an exact embedding, one has to require that MB is faithful
and projective. Without further conditions on M we are in the situation of having
just an exact embedding of modB into modA , a quite useless fact. What Drozd
requires in addition is that F respects indecomposability and detects isomorphy.
Unfortunately, it does not seem to be obvious that the wild algebras in the sense
of Drozd are just the algebras with prescribed endomorphism rings. Indeed, if A
is wild, how can one use a given embedding functor F = M ⊗B − in order to
produce factor algebras of endomorphism rings? But also the opposite implication
is not clear at all: after all, there do exist tame algebras where already small mod-
ules have quite large endomorphism rings; what is needed here are results which
provide restrictions on the endomorphism rings say of indecomposable modules
over tame algebras. Only few results are known in this direction. In particular,
Krause [Kr] discussed the endomorphism rings of the string modules for a special
biserial algebra and showed that the factor algebras with two generators are very
restricted.

Drozd’s wildness definition is based on prescribing subrings of endomorphism
rings, the classical concept aimed at a realization as factor rings. An optimal
solution would be to obtain a semidirect product: a subring which is complemented
by an ideal. In order to present the relevant definition, we need the following
preparation: Let C be a set (or class) of objects in the additive category A .
Given objects A, A′ in A , we denote by HomA(A, A′)C the set of maps A → A′
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in A which factor through a finite direct sum of objects in C . We obtain in
this way an ideal in the category A , more precisely we obtain an ideal which is
generated by idempotents (namely the identity maps of the objects in C ); thus
we call it the ideal generated by C . As usual, we denote by add C the additive
closure of C , it consists of all finite direct sums of direct summands of objects in
C . Clearly, add C and C generate the same ideal.

Let A, B be abelian (or at least exact) categories. We say that an embedding
functor

F : B → A

is controlled by a class C of objects in A provided for all objects B, B′ in B , we
have

HomA(F (B), F (B′)) = F HomB(B, B′) ⊕ HomA(F (B), F (B′))C.

For rings, the parallel situation would be as follows. One has to consider
rings with identity, without requiring that ring inclusions preserve the identity. A
subring R of a ring S is a controlled subring provided there exists an idempotent
e in S such that 1RS1R = R ⊕ 1RSeS1R.

In order to show that a functor F : B → A is controlled, one often proceeds
as follows: First, select a full subcategory U of A which contains the image of B ,
for example the full subcategory given by all the objects F (B) , where B is an
object of B . Next, look for a functor G : U → B such that G ◦ F is equivalent to
the identity functor on B . Finally, show that the kernel of G is the intersection
of U with an ideal of A generated by some class C of objects.

Lemma. Let A be a length category. Let F : B → A be an embedding,

controlled by C = add C. If B is indecomposable in B , then F (B) = A⊕U where

A is indecomposable and does not belong to C , whereas U belongs to C . If B, B′

are non-isomorphic objects of B , and F (B) = A⊕U, F (B′) = A′⊕U ′ with A, A′

indecomposable and not in C , whereas U, U ′ ∈ C , then A, A′ are not isomorphic.

For the proof, we just note the following: Since A is a length category, we
may write every object A as a direct sum A = A′ ⊕ A′′ with A′′ ∈ C and such
that A′ has no indecomposable direct summand in C . The controlled embedding
functors F used in representation theory often have the additional property that
F preserves indecomposability3 . We say that a k -algebra A is controlled wild

provided there is a controlled exact embedding modK(3) → modA . Of course,
any strictly wild algebra is controlled wild, since a full embedding is controlled by
the zero module. Another class of example: any wild algebra A with (NA)2 = 0
is controlled wild, with control class consisting of semisimple modules. It has been
shown by Rosenthal and Han [H1] that all the wild local algebras are controlled
wild.

3 But it should be stressed that also other cases are definitely of interest, see
for example wildness results for separable abelian groups [E]!

11



C. M. Ringel

If A is controlled wild, say with an embedding functor F : modK(3) →
mod A controlled by C , and if B is any k -algebra, then we may choose a K(3)-
module M with endomorphism ring B (this is possible since K(3) is strictly
wild) and consider F (M) . Under F the endomorphism ring B of M embeds
into EndA(F (M)) and there is the complementary ideal I = EndA(F (M))C, thus
EndA(F (M))/I is isomorphic to B .

Problem 10. Is every wild algebra controlled wild?

For partial results see Han [H1] and Dräxler [Dx2]; in particular, note that
these investigations show that the notion of controlled embeddings fits well to
covering and cleaving functors.

Given two algebras A, B , one may ask whether there is a controlled exact
embedding modB → modA . In particular, one may wonder whether for a given
algebra A there is a proper controlled exact embedding of modA into itself (where
proper means that the image of the functor is a proper subcategory of modA).
If A is controlled wild, then clearly there do exist proper controlled embeddings
mod A → mod A . This is a kind of fractal behavior: we obtain a nice subquotient
of the category which is equivalent to the category itself.

Example [RSr]. Let k[X, Y ] be the polynomial ring in two variables. We
denote by A the category of all finite-dimensional k[X, Y ] -modules such that both
X and Y operate as nilpotent endomorphisms. Let A = k[X, Y ]/〈XY, X3, Y 3〉 .
There is a controlled exact embedding of A into mod A . Its restriction to mod A
is a proper controlled exact embedding of modA into itself.

As usual, we consider words w = l1l2 . . . lt−1lt with letters li ∈ {X, Y −1};
in particular, let z = XY −1. If w = l1l2 . . . lt−1lt is such a word, let e(w) =
zl1zl2z · · · lt−1zltz . Example: the word e(w) , for w = X2Y −1X
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e(w)

Similarly, if w = l1 . . . lt is a primitive cyclic word, let c(w) = zl1zl2z · · · ln−1zlt .
Consider the functor F which sends M(w) to M(e(w)) for any word w and
which sends M(w, λ, n) to M(c(w), λ, n) , where w is primitive cyclic, λ ∈ k and
n ∈ N1 . We claim that F is a full embedding and controlled by the string modules
of length at most 2.

For the proof, let U be the full subcategory of all modules M in A such that
the kernels of the multiplications by X and by Y are contained in the radical of
M . Define a functor

G : U −→ modK[X, Y ] by G(M) = (topM, Y −1X2, X−1Y 2),

where top M = M/ radM . The assumption that the kernel of Y is contained in
radM implies that Y −1X2 is an endomorphism of topM , similarly X−1Y 2 is
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an endomorphism of topM . It is easy to see that G ◦ F is the identity on A ,
thus it remains to consider the kernel of G . Given two modules M, M ′ in U and
a map f : M → M ′ , then G(f) = 0 if and only if the image of f is contained
in radM ′. However, for every object M ′′ in A , the radical of F (M ′′) is a direct
sum of copies of the three string modules M(1), M(X), M(Y ) of length at most
2. This completes the proof.

Problem 11. Let A be a tame algebra. For which algebras B does there

exist a controlled exact embedding modB → modA ?

We may call A, B controlled equivalent provided there are controlled exact
embeddings modA → modB and modB → mod A . The corresponding equiv-
alence classes seem to be of interest, they provide a hierarchy of algebras which
should be studied carefully.

Problem 12. Let L be the exact subcategory of mod K(2) of all K(2)
modules without simple direct summands (thus, a K(2)-module M belongs to L
if and only if the radical of M is equal to the socle of M ). Given a tame connected

algebra A over an algebraically closed field, is any homogeneous tube in the image

of a controlled exact embedding L → mod A ?

4. Artin Algebras.

When dealing with problems in representation theory, the usual procedure
was to look first for a solution in the case of an algebraically closed base field and
only afterwards for the general case. The general case always introduces some
additional complications, but one never did encounter insurmountable difficulties
to extend the results. For example, when dealing with the representation-finite
hereditary algebras, Gabriel discovered that in case the base field is algebraically
closed one has to deal with quivers of type An, Dn, E6, E7, E8 ; in the joint work
with Dlab we extended this to arbitrary base fields and it turned out that one
obtains in addition the remaining Dynkin diagrams Bn, Cn, F4, G2 . For k being
algebraically closed, the algebra itself and all their representations are given purely
combinatorially; in contrast, when dealing with the additional cases Bn, Cn, F2 ,
a field extension of degree 2, in case G2 a field extension of degree 3 comes into
play, a really non-combinatorial ingredient which plays a role both for the algebra
as well as its representation. However, as soon as we fix the algebra and thus the
necessary field extension, the corresponding module category can be derived in a
purely combinatorial way, without any further non-combinatorial construction.

A very interesting result of Crawley-Boevey [C2] has to be mentioned: As-

sume that A is a representation finite algebra, and M an indecomposable A-

module. Then there exists a simple A-module S such that End(M)/N End(M) is

isomorphic to EndS .

It clearly is desirable to delete the condition of dealing with an algebraically
closed base field, but up to this point our discussion still concentrated on k -
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algebras, where k is a field. But as we know from the work of Auslander and Re-
iten, all the basic results of modern representation theory are valid in the broader
context of artin algebras, and there is a definite need to do so: one of the basic
sources for artinian rings is in number theory, and the rings A considered there are
k -algebras where k is a factor ring of the integers, such that A as a k -module has
finite length. But already in abelian group theory there are several problems for
which the use of methods from the representation theory of artin algebras seems
to be very helpful.

Given an artin algebra A , it is a quite natural, but usually hopeless question
to ask for the classification of all the indecomposable A -modules. Only for few
classes of algebras such a classification is known, one of the first such class were the
serial (or generalized uniserial or Nakayama) algebras: here one requires that the
indecomposable projective A -modules as well as the indecomposable projective
Aop -modules are serial (i.e. have a unique composition series). This then implies
that all the indecomposable modules are serial, and are uniquely determined by
the length and the isomorphism class of the socle. The prominent examples of
such algebras are the proper factor rings of Z , thus artin algebras which definitely
are not algebras (in case the radical is non-zero). It is the combinatoric of parti-
tions and the corresponding Young diagrams which is used in order to deal with
questions concerning representations of serial algebras. We will return to these
considerations in the last section.

Let me draw attention to a more complicated classification problem in abelian
group theory, this report is based on joint work with Schmidmeier [RSm]. Let Λ
be an artin algebra. We denote by S(Λ) the category of pairs (M, U) , where
M is a finitely generated Λ-module and U ⊆ M is a submodule of M ; a map
f : (M, U) → (M ′, U ′) in S(Λ) is just a Λ-linear map f : M → M ′ such that
f(U) ⊆ U ′. The case of Λ = Z/pn

Z with p a prime number and n a positive
integer has attracted a lot of interest since the categories S(Z/pn

Z) describe the
possible subgroups of finite abelian p-groups.

Problem 13. Assume that A is a representation-finite artin algebra. Is it

possible to obtain mod A from A purely combinatorially?

Let A be an artin algebra. Of course, we can assume that A/NA is a product
of division rings. One expects that for a sincere representation-finite artin algebra
A , at most two different division rings occur as factors of A/NA and in case two
different ones do occur, then one should be an extension of the other of degree at
most 2. Of course, a structure theory for artin algebras in general never will be
purely combinatorial, since division rings will be involved.

Problem 14. Definition of one-parameter families for tame artin algebras.

Whereas for k -algebras A with k being separable one may hope to get all
one-parameter families by looking for controlled embeddings mod B → mod A ,
where B is a finite-dimensional tame hereditary algebra with two simple modules,
it seems to be more difficult to describe the source for the one-parameter families
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for a general artin algebra. For example, it will be necessary to take into account
also categories of a form like modB , where B = Z[T ]/〈p2, pT, T 2〉.

Let me return to the abelian group theory problem mentioned above. In
order to handle the problem of finding the representation type of S(Λ), where
Λ = Z/pn

Z , it is helpful first to look at the corresponding case where Λ = k[T ]/Tn

with k a field. The objects in S(k[T ]/Tn) are just the representations of the quiver
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which satisfy the relations αβ = βγ , and γn = 0 such that the map β is an
inclusion map. Using the universal covering
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one can show that S(k[T ]/Tn) has finitely many indecomposables, for n ≤ 5, is
tame for n = 6 and wild for n ≥ 7. In fact, one can present a complete classification
of the indecomposable objects in S(k[T ]/Tn) for n ≤ 6. Note that S(k[T ]/Tn) is
an exact category, and one can show easily that there are sufficiently many relative
projective objects as well as sufficiently many relative injective objects and they
coincide; also, it is a category with almost split sequences. The stable Auslander-
Reiten quivers have tree class A2, D4, E6, E8 for n = 2, 3, 4, 5 respectively; for
n = 6 one obtains a tubular behavior, of tubular class E8

.....

.....
......
.....................................................................

. For n ≥ 7, each of the
categories S(k[T ]/Tn) has wild representation type, but it is possible to determine
the representation type of all the full categories Sm(k[T ]/Tn) consisting of those
representations of Q for which the additional relation αm = 0 is satisfied, see
[RSm].

Having determined the representation types for the problems with Λ =
k[T ]/Tn , where k is a field, it is possible to transfer these results from the case
k = Z/pZ to the corresponding categories with Λ = Z/pn

Z . One obtains in
this way, for all the finite and the tame cases, a natural bijection between the
indecomposable objects in the corresponding categories.

5. Changing Algebras.

If we start with a well-behaved algebra and slightly change the structure
constants, one may expect to keep the well-behavior. For the property of being
representation-finite, this is a well-known result of Gabriel [G2]: Finite represen-
tation type is open. For tameness, the corresponding assertion is not yet known.
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There is however a partial result in this direction due to Geiß [Ge]: If an algebra
B is a degeneration of an algebra A and B is tame, then also A is tame. What is
missing is the following: Assume we have a one-parameter family of algebras, and
one of the algebras is tame, does this imply that almost all of these algebras have
to be tame? Note that Kasjan recently has shown that the class of tame algebras
is axiomatizable (in first order language) and that finite axiomatizability would be
equivalent to know that tame type is open [Kj].

As we have mentioned above, it is the class of domestic algebras which de-
serves to be studied in detail.

Problem 15. Fix some n ∈ N0 . Is the class of algebras which are m-

domestic with m ≤ n open?

Filtered rings. Let R be a ring and R = F0 ⊇ F1 ⊇ · · · ⊇ Fn = 0 a chain
of ideals with FiFj ⊆ Fi+j . Then we call (R, F ) a filtered ring. For example, if
I is a nilpotent ideal, say In = 0, we may take Fi = Ii. Given a filtered ring
R = (R, F ) , consider the polynomial ring R[T ] and note that

R̃ =
⊕

i≥0
FiT

i ⊆ R[T ]

is a subring of R[T ] .
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F1T

F2T 2

Fn−2T n−2

Fn−1T n−1

. . .

We also consider the ideal

J =
⊕

i≥0
Fi+1T

i ⊆ R̃.

If a, b belong to the center of R , we may consider the maps ua:b : J → R̃ defined
by

ua:b(rT
i) = arT i+1 + brT i = rT i(aT + b).

We denote by Ja:b the image of ua:b , this is an ideal of R̃ and we define Ra:b =
R̃/Ja:b. We note the following:

Consider first the special index 0 : 1. Clearly, J0:1 = J, thus R0:1 is the
graded ring R0:1 = gr(R, F ) =

⊕
i≥0 Fi/Fi+1 with respect to F.

16



Combinatorial Representation Theory – History and Future

Next, let a 6= 0, thus we may assume a = 1. The ideal J1:(−λ) is the kernel of

the composition ǫλ of the inclusion R̃ → R[T ] and the evaluation map R[T ] → R,

f(T ) 7→ f(λ) . Note that ǫλ is surjective, thus R̃/J1:λ ≃ R . (Proof: Note that
J1:λ is contained in the principal ideal of R[T ] generated by (T −λ) , and we have

R ⊕ J1:λ = R̃ .)

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

..

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

....

.....

.....

.....

.....

.....

.....

.....

.....

...

.....

.....

.....

.....

..

.

.

.
.
.
.

.

.

.

...............

...............

...............

...............

...............

...............

...............

............... ...............

...............

...............

...............

...............

...............

...............

...............

...............

...............

...............

...............

...............

...............

...............

...............

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.

J = J0:1 = J0

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

..

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

....

.....

.....

.....

.....

.....

.....

.....

.....

...

.....

.....

.....

.....

..

.

.

.
.
.
.

.

.

.

...............

...............

...............

...............

...............

...............

...............

............... ...............

...............

...............

...............

...............

...............

...............

...............

...............

...............

...............

...............

...............

...............

...............

...............

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

.....

.....

.....

.....

.....

.....

.....

.....

.....

...... . .

J1:1 = J1

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

..

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

....

.....

.....

.....

.....

.....

.....

.....

.....

...

.....

.....

.....

.....

..

.

.

.
.
.
.

.

.

.

...............

...............

...............

...............

...............

...............

...............

............... ...............

...............

...............

...............

...............

...............

...............

...............

...............

...............

...............

...............

...............

...............

...............

...............

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.
.
.
.
...
...

J1:0 = J∞

What we have constructed in this way is a one-parameter family of rings Ra:b =
R̃/Ja:b indexed over the projective line P1(k) , where R0:1 = gr(R, F ) is the graded
ring with respect to F , whereas all the remaining rings are isomorphic to R .

......................................................................................................................................................................................................................
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................................................................................................................................................................................................................................................................................................
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.

If R is a finite-dimensional k -algebra, it follows that gr(R, F ) is a degener-
ation of the algebra R (if we consider the variety of the k -algebras of dimension
dim R , then the orbit of gr(R, F ) is contained in the closure of the orbit of R).
According to Geiß [Ge], this has to following consequence: If gr(R, F ) is tame,

then also R itself is tame.

Application 1. Assume that R is a finite-dimensional k -algebra and take
Fi = (NR)i. If gr(R, F ) is tame, then R is tame. In this way, we recover the Geiß
result that the quaternions (and similar algebras) are tame.

Let us return to Problem 4 asking for the representation type of algebras A
with (NA)3 = 0 and for the relationship between the representation type of A
and that of A/(NA)3. Note that in [BH] the following is shown: Let k be an
algebraically closed field and A a finite dimensional k -algebra A with at most
2 simple modules and with no loop in its quiver. Then A is tame if and only if
A/(NA)3 is tame if and only if A degenerates to a biserial algebra.

Application 2. We also may take other filtrations: Take an arbitrary finite
dimensional k -algebra, take its quiver, and add arbitrary positive integers to the
arrows. In this way, any path has a degree, let Fi be the ideal generated by all
paths of degree i .
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For example, consider Erdmann’s example of an algebra A with two vertices
a, b and arrows α : a → a , β : a → b , γ : b → a and η : b → b , with relations

γβ = η2, βη = αβγαβ, ηγ = γαβγ, α2 = βγαβγ + (βγα)2

and all paths of length 7. If we define d(α) = d(β) = d(γ) = 1 and d(η) = 2,
we obtain as corresponding graded algebra a special biserial algebra. This yields
a proof of the Geiß result that the algebra A is tame, again avoiding calculations.

There is the following general observation: a commutative square αβ = γδ
may be destroyed in forming the graded algebra, provided we attach numbers with
d(α) + d(β) 6= d(γ) + d(δ). This is possible provided {α, β} 6= {γ, δ}. Of interest
here is the case of the local algebra (c) in [R1].

Problem 16. Which algebras degenerate to a special biserial algebra?

When considering degenerations of algebras and modules one always has to
keep in mind that algebras and modules behave quite differently with respect to
degenerations. Just recall that for algebras, the semisimple ones are open, whereas
the semisimple modules form a closed set.

6. Algebraic Combinatorics.

The prototype of the considerations which we will discuss here is the classical
Hall algebra introduced by Ph. Hall as the “algebra of partitions” in 1975, but
actually introduced (and in the meanwhile forgotten) by Steinitz in 1900. Let
us start with a discrete valuation ring Λ with radical NΛ and denote by A
the category of finite length Λ-modules. Since the indecomposable Λ-modules
of finite length are uniquely determined by their length, we see that the set of
isomorphism classes of indecomposables in A can be identified with the set N1 of
natural numbers, the number n ∈ N1 corresponding to the Λ-module Λ/(NΛ)n.
Therefore, the set of isomorphism classes of objects in A can be identified with
the set of partitions. For example, if λ = (λ1, . . . , λt) is a partition (thus all
the λi are natural numbers and λ1 ≥ λ2 ≥ · · · ), then this partition stands
for the Λ-module

⊕
i Λ/(NΛ)λi . It should be stressed that the identification of

the isomorphism classes of objects in A with partitions serves as the guiding
example for the combinatorial representation theory. Of course, we may interpret
partitions as functions N1 → N0 with finite support: here, N1 is the index set for
the indecomposables in A and a(n) denotes the multiplicity of Λ/(NΛ)n when
we write the Λ-module corresponding to a as a direct sum of indecomposables.

The ring of symmetric functions is one of the fundamental objects of math-
ematics. It plays a role in seemingly different parts of mathematics. Its identifi-
cation as the classical Hall-algebra allows the use of methods from representation
theory in order to get a better understanding of this ring. As it turns out, com-
binatorial considerations concerning partitions can be interpreted well in terms of
finite length modules over a discrete valuation ring.
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Now consider the parallel situation of dealing with a root system Φ for a
finite-dimensional complex semisimple Lie algebra g of Dynkin type ∆. Choose a
Cartan subalgebra h and a root basis, thus we obtain a triangular decomposition
g = n− ⊕ h ⊕ n+ and denote by Φ+ the set of positive roots. Let U+ be the
universal enveloping algebra of n+ . The dimension of the weight spaces U+

λ is
given by Kostant’s partition function π , the value π(λ) is the number of ways λ
can be written as a sum of positive roots, thus of functions a : Φ+ → N0 such that∑

α a(α) = λ. For any quiver or species of type ∆, the indecomposable represen-
tations correspond bijectively to the positive roots, thus the isomorphism classes
of finite length modules correspond bijectively to the functions a : Φ+ → N0 . If
we deal with algebras defined over finite fields, we may consider the corresponding
Hall algebras H(~∆), and it turns out that after a multiplicative twist one obtains
a ring which is independent of the chosen orientation. This twisted Hall algebra
H∗(~∆) is just the Drinfeld-Jimbo quantization U+

q of U+ , see [R3].
These considerations have been extended to arbitrary finite quivers or species.

Green [Gr] has shown that in the general case, U+
q can be interpreted as a subring

of the corresponding twisted Hall algebra H∗(~∆), namely the subring generated by

the simple representations. Recent investigations [SV, DX] show that H∗(~∆) itself
is a polynomial ring in countably many variables over U+

q and corresponds to a
quantization of the positive part of a generalized Kac-Moody algebra as introduced
by Borcherds [Bo]. On the other hand, it should be noted that it is possible to
obtain the Drinfeld-Jimbo quantization of the universal enveloping algebra of all
of g (and not only the positive part) by replacing the module category by the
corresponding derived category.

When Green started to work on Hall algebras, he realized that it is possi-
ble to introduce a comultiplication similar to that of the classical Hall algebra
and that one obtains in this way a twisted bialgebra. These considerations are
valid for arbitrary hereditary categories defined over finite fields. Thus it will be
worthwhile to consider the derived categories of the canonical algebras, since it is
well-known that these equivalent to the derived categories of suitable hereditary
abelian categories (introduced by Geigle and Lenzing [GL] as the categories of
coherent sheaves over weighted projective lines). Whereas the quivers and species
correspond to generalized Cartan matrices or generalized Cartan data, the tubular
algebras correspond just to the generalized intersection matrices [Sl,SY] of type

D
(1,1)
4 , E

(1,1)
6 , E

(1,1)
7 , E

(1,1)
8 . Thus, it seems that the Hall algebra approach will

provide quantizations of the universal enveloping algebras of some of the elliptic
Lie algebras first studied by Slodowy and now in great detail by Saito and Yoshii
[SY].

Acknowledgment. The author is indebted to Th. Brüstle, Chr. Geiß, J.
Schröer and the referee for remarks concerning the presentation of the paper. In
particular, Th. Brüstle has outlined examples which helped to prevent some serious
misunderstandings.
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[Sr] J. Schröer: Hammocks for string algebras. Dissertation. Bielefeld 1997.

[SV] B. Sevenhant, M. Van den Bergh: A relation between a conjecture of Kac
and the structure of the Hall algebra. Preprint.

[Sl] P. Slodowy: Beyond Kac-Moody algebras and inside. Can. Math. Soc. Proc.
5 (1986), 361-371.

[U] L. Unger: The concealed algebras of the minimal wild hereditary algebras.
Bayreuther Math. Schriften 31 (1990), 145-154.

Fakultät für Mathematik, Universität Bielefeld,
POBox 100 131, D-33 501 Bielefeld
E-mail address: ringel@mathematik.uni-bielefeld.de

22


