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Brick chain filtrations. A report.

Claus Michael Ringel

Abstract. We consider the category of finitely generated modules over an
artin algebra A. Recall that an object in an abelian category is said to be a brick
provided its endomorphism ring is a division ring. Simple modules are, of course,
bricks, but in case A is connected and not local, there always do exist bricks which
are not simple. The aim of this survey is to focus the attention to filtrations of
modules where all factors are bricks, with bricks being ordered in some definite
way, namely according to a so-called brick chain.

In general, a module category will have many cyclic paths. Recently, Demonet
has proposed to look at brick chains in order to deal with a very interesting
directedness feature of an arbitrary module category.

The following survey relies on investigations by a large group of mathemati-
cians. We have singled out some important observations and have reordered them
in order to provide a self-contained (and elementary) treatment of the role of bricks
in module categories. (Most of the papers we rely on are devoted to what is called
τ -tilting theory, but for the results we are looking at, there is no need to deal with
τ -tilting, not even to invoke the Auslander-Reiten translation τ itself).

Outline. This is a report on a very important development in the last 15 years: it
focuses the attention to the use of bricks in order to describe the structure of arbitrary
modules over artin algebras. The report relies on the work of a quite large number of math-
ematicians, see section 11. We have singled out decisive observations and have reordered
them in order to obtain a self-contained and elementary (however incomplete) treatment
of the role of bricks in module categories.

The first three sections describe the main results presented in this survey, they deal
with brick chain filtrations and their background. Theorem 1.2 and its strengthening 3.2
concerns the existence of brick chain filtrations (and 3.2 includes a corresponding finiteness
assertion). The main tool is the study of torsion classes and their lower neighbors. Theorem
2.3 asserts that finitely generated torsion classes are always generated by finite semibricks.
Theorem 2.8 describes the lower neighbors of the torsion class generated by a module M
in terms of the so-called top bricks of M .

Given a brick B, we denote by E(B) the class of all modules which have a filtration
with all factors isomorphic to B; these modules will be said to be homogeneous of brick
type B. The brick type of a non-zero homogeneous module is uniquely determined (see
10.1). The brick chain filtrations studied in this report concern filtrations of modules with
factors in suitable subcategories E(B), namely using bricks which occur in a brick chain.
The existence of brick chain filtrations is derived from a result for neighbor torsion classes.
Neighbor torsion classes T ′ ⊂ T come with a label: this is a brick B with the following
property: any module M in T has a submodule M ′ in T ′ such that M/M ′ belongs to
E(B), see Theorem 2.7.
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1. All modules have brick chain filtrations.

1.1. We deal with an artin algebra A; the modules to be considered are the left A-
modules of finite length. Given a set X of modules, let E(X ) be the class of modules which
have a filtration with all factors in X . If M1, . . . ,Mm are modules, let E(M1 , . . . ,Mm) =
E({M1 , . . . ,Mm}) (such a convention is used throughout the paper in similar situations).

We recall that a brick is a module whose endomorphism ring is a division ring. If B
is a brick, the modules in E(B) will be said to be homogeneous of brick type B. A finite
sequence (B1, . . . , Bm) is called a brick chain, if all Bi are bricks and Hom(Bi, Bj) = 0 for
i < j. A filtration 0 = M0 ⊂ M1 ⊂ · · · ⊂ Mm = M will be called a brick chain filtration,
provided there is a brick chain (B1, . . . , Bm) (its type) such that Mi/Mi−1 is homogeneous
of brick type Bi, for all 1 ≤ i ≤ m.

1.2. Theorem. Any module has brick chain filtrations.

The result will be strengthened in 3.2; the proof of 3.2 is given in section 9.

1.3. Some examples of brick chain filtrations.

(1) Let S1, . . . , Sn be the simple A-modules. Obviously, (S1, . . . , Sn) is a brick chain.
Let us now assume that Ext1(Si, Sj) = 0 for all i > j. If M is any A-module, let Mi be
the submodule of M which is maximal with the property that all its composition factors
are of the form S1, . . . , Si. Then (Mi)i is a brick chain filtration. If M is sincere, then we
obtain a brick chain filtration of type (S1, . . . , Sn).

In particular, recall that A is said to be directed, provided the simple modules S1, . . . , Sn

can be ordered in such a way that Ext1(Si, Sj) = 0 for all i ≥ j. For a directed algebra A,
any sincere A-module M has a brick chain filtration of type (S1, . . . , Sn) with the additional
property that the factors of the filtration are semisimple.

(2) Let A be a connected Nakayama algebra with n simple modules. Any indecompos-
able module M has a brick chain filtration of length at most two: If the length of M is at
most n, then M itself is a brick. Now assume that the length of M is equal to an + r with
a ≥ 1 and 0 ≤ r < n. Let B be the factor module of M of length n. Then B is a brick. If
r = 0, then M has a brick chain filtration of type (B). If r 6= 0, then B has a brick chain
filtration of type (B′, B), where B′ is the factor module of B of length r.

(3) In contrast to many questions in representation theory, looking for brick chain
filtrations of modules, it does not seem to be helpful to consider first indecomposable
modules. Namely, brick chain filtrations of modules M and M ′ usually do not provide a
brick chain filtration of M ⊕M ′, see 10.8. (However, a brick chain filtration of a direct
sum yields brick chain filtrations of the direct summands, see 10.7.)

(4) (Duality) Let us denote by D the usual duality functor. Given a brick chain
filtration 0 = M0 ⊂ M1 ⊂ · · · ⊂ Mm = M of type (B1, . . . , Bm), then clearly D yields a
corresponding brick chain filtration (Ni)i of N = DM, namely Ni = DM/D Mm−i, for
0 ≤ i ≤ m. The type of the filtration (Ni)i is (D Bm, . . . ,D B1).

(5) Our proof of 1.2 will yield quite special brick chain filtrations, namely “torsional”
ones, see section 3. Let us note already here: if a filtration (Mi)i of a module M is
torsional, then the top of any Mi is generated by the top of M . Thus, even in the case of
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a directed algebra, the brick chain filtrations which we will construct are usually different
from the obvious filtrations mentioned in (1).

2. Torsion classes, in particular the finitely generated ones.

The proof of Theorem 1.2 and its strengthening 3.2 will be based on the use of torsion
classes. Definition and properties of torsion classes will be recalled in this section. they
are essential for all considerations.

2.1. A class T of modules is said to be a torsion class provided T is closed under
factor modules and extensions. The set of all torsion classes is a complete lattice; the
meet of a set of torsion classes is just the set-theoretical intersection. Given a class X of
modules, we denote by T (X ) the smallest torsion class which contains X (thus, the closure
of X under factor modules and extensions, or, equivalently, the set-theoretical intersection
of all torsion classes containing X ). The Noether theorems show that T (X ) is the class of
modules which have a filtration whose factors are factor modules of modules in X . The
torsion submodule of a module M with respect to the torsion class T is by definition the
largest submodule of M which belongs to T . Given a module class Y, we denote by ⊥Y
the class of all modules X such that Hom(X,Y ) = 0 for all modules Y in Y. It is clear
that ⊥Y is closed under factor modules and extensions, thus it is a torsion class.

A torsion class T is said to be finitely generated provided there is a module M with
T = T (M). Of course, any torsion class T is the set-theoretical union of the finitely
generated torsion classes contained in T .

2.2. Let (Mi)i be a brick chain filtration of the module M , say of type (B1, . . . , Bt).
Then Mi is the torsion submodule of M with respect to the torsion class T (B1, . . . , Bi)
and also the torsion submodule of M with respect to the torsion class ⊥{Bi+1, . . . , Bt}.
Thus, we see: Given a module M with a brick chain filtration (Mi)i, the submodules Mi

are uniquely determined by the type of the filtration.

2.3. Bricks B,B′ are defined to be Hom-orthogonal provided Hom(B,B′) = 0 =
Hom(B′, B). A semibrick is a set of pairwise Hom-orthogonal bricks. A torsion class
which is generated by a semibrick is said to be widely generated. When we deal with sets
of (pairwise non-isomorphic) modules, for example when we consider semibricks, these
sets are not necessarily finite (so that we cannot or better do not want to deal with the
corresponding direct sum).

Theorem. For any artin algebra A, the map M 7→ T (M) provides a bijection between
finite semibricks and the finitely generated torsion classes.

The surjectivity of the map asserts that any finitely generated torsion class is widely
generated. The injectivity assertion can be extended as follows: the map B 7→ T (B) is a
bijection between arbitrary semibricks and the widely generated torsion classes, see 2.8.

The proof of Theorem 2.3 is given in 5.6 (the surjectivity of the map), and in section
8 (the injectivity of the map). In Section 5, we construct explicitly an inverse of the map
B 7→ T (B), for T (B) being finitely generated. Let us outline the construction already here.

Addendum to Theorem. Given a module M , we define in 5.4 its “iterated endotop”
X = et∞ M ; this is a factor module of M . The indecomposable direct summands of X
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are called the top bricks of M and we denote by B(M) the set of top bricks of M . The
surjectivity assertion in Theorem 2.3 can be strengthened as follows, see sections 5 and 8.
Given any module M , then T (M) = T (B) for a uniquely determined semibrick B, namely
the finite semibrick B = B(M) of the top bricks of M . In particular: T (M) is generated
by a finite semibrick B whose members are factor modules of M .

2.4. Remark. The bijection provided by Theorem 2.3 is of great interest, since it
allows to consider the set of finite semibricks as a partially ordered set, using the natu-
ral partial ordering of the set of torsion classes, given by set-theoretical inclusion. This
poset structure on the set of finite semibricks (thus also on the set of bricks) provides the
foundation for the notion of a brick chain as used in Theorem 1.2.

2.5. The algebra A is said to be brick finite provided there is only a finite number
of isomorphism classes of bricks, and torsion class finite provided there is only a finite
number of torsion classes.

Corollary. For any algebra, the number of finite semibricks is equal to the number of
finitely generated torsion classes. An algebra is brick finite iff it is torsion class finite, and
in this case any torsion class is finitely generated.

Actually, also the converse of the last sentence is true: If all torsion classes are finitely
generated, then the algebra is brick finite. And there are many more characterizations of
the brick finite algebras. For both assertions, see 11.13.

Proof of Corollary. The first assertion follows directly from Theorem 2.3.

If A is torsion class finite, then A has only finitely many finitely generated torsion
classes, thus only finitely many semibricks, thus only finitely many bricks.

Conversely, assume that A is brick finite, thus A has only finitely many finitely gener-
ated torsion classes. Given a torsion class T , one can start to construct an inclusion chain
of finitely generated torsion classes T = T0 ⊂ T1 ⊂ · · · ⊂ Tt ⊆ T . This process has to stop
after finitely many steps, thus T is finitely generated. But if all torsion classes are finitely
generated, there are only finitely many torsion classes. �

2.6. Neighbors. The torsion classes T ′ ⊂ T will be said to be neighbors provided
there is no torsion class N with T ′ ⊂ N ⊂ T . If T ′ ⊂ T are neighbor torsion classes, T ′

is called a lower neighbor of T and T is called an upper neighbor of T ′.

Let T be a torsion class. We will say that T has sufficiently many lower neighbors
provided any torsion class N with N ⊂ T is contained in a lower neighbor of T . Similarly,
we say that T has sufficiently many upper neighbors provided any torsion class N with
T ⊂ N contains an upper neighbor of T .

2.7. Theorem. Assume that T ′ ⊂ T are neighbor torsion classes. Then there is a
unique brick B in T such that T ′ = T ∩ ⊥B. This module B is also the unique brick in
T with the following property: Any module M in T has a submodule M ′ in T ′ such that
M/M ′ belongs to E(B). This brick B is called the label of the inclusion T ′ ⊂ T .

For the proof, see 7.2. Next, we consider the lower neighbors of some torsion classes.
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2.8. Theorem. A torsion class T is widely generated iff T has sufficiently many lower
neighbors. If T is widely generated, say T = T (B) for the semibrick B, then B 7→ T ∩ ⊥B
is a bijection between the elements of B and the lower neighbors of T .

The proof will be given in section 8. Note that Theorem 2.8 implies that the map
B 7→ T (B) is a bijection between the set of semibricks and the set of widely generated
torsion classes.

2.9. A torsion class T is said to be completely join irreducible provided the join T∗ of
the torsion classes properly contained in T is still properly contained in T (and thus T∗ is
a lower neighbor of T ). Note that T is completely join irreducible iff T has a unique lower
neighbor and has sufficiently many lower neighbors.

Corollary. The map B 7→ T (B) provides a bijection between the isomorphism classes
of the bricks and the completely join irreducible torsion classes.

Proof. Theorem 2.3 sends a brick to the torsion class T (B). According to 2.8, T (B)
has a unique lower neighbor, namely T∗ = T (B) ∩ ⊥B and any torsion class properly
contained in T is contained in T∗. This shows that T (B) is completely join irreducible.

Conversely, assume that T is a completely join irreducible torsion class. Clearly, T
is finitely generated: Let M be any module in T \ T∗, where T∗ is the join of the torsion
classes properly contained in T , then T = T (M). Let B1, . . . , Bt be the top bricks of M ,
thus T = T (M) = T (B1, . . . , Bt). According to 2.8, T has t lower neighbors. Since T is
completely join irreducible, we have t = 1, thus T is generated by a brick. �

2.10. Warnings. Let M be a module. If T (M) is a finitely generated torsion class
and B a top brick of M , the lower neighbor torsion class T (M) ∩ ⊥B is not necessarily
finitely generated! A typical example will be mentioned in 2.11.

Also, we have seen in 2.8 that T (M) has only finitely many lower neighbors. What
about upper neighbors? If T (M) is finitely generated and T ′′ is an upper neighbor of
T (M), then trivially T ′′ is again finitely generated, namely equal to T (M ⊕N), where N
is any module in T ′′ \ T (M). However, whereas a finitely generated torsion class has only
finitely many lower neighbors, it may have infinitely many upper neighbors. For a typical
example, we again refer to 2.11.

2.11. An example: The Kronecker algebra. For the benefit of the reader, we
want to consider one example in detail, the Kronecker algebra A, the path algebra of the
quiver with two vertices 1, 2 and two arrows 1 ⇔ 2. (Actually, it is the usual example
which everyone interested in torsion classes of artin algebras has in mind).

If x is a vertex of a quiver, the simple representation corresponding to x will also be
denoted by x; and Px and Ix will denote the projective cover or the injective envelop
of x, respectively (provided they exist). For the Kronecker algebra A, there is the well-
known trisection of the indecomposable A-modules: there are the preprojective modules
P , the regular modules R and the preinjective modules I. In terms of torsion classes, this
trisection gives rise to two important torsion classes: the torsion class T (I) given by the
direct sums of preinjective modules, and the torsion class T (R) given by the direct sums of
preinjective and regular modules. Both torsion classes T (I) and T (R) (as many others)
are not finitely generated.
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The torsion class T (I) is the union of a properly ascending chain of torsion classes, thus
it is not finitely generated. Note that T (I) has no lower neighbor, but it has infinitely many
upper neighbors. On the other hand, the torsion class T (R) is widely generated, namely
by the (infinite!) semibrick of the simple regular modules. Thus, T (R) is not finitely
generated. Also, T (R) has no upper neighbor, but infinitely many lower neighbors.
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..T (1)

{0}

T (2)

T (I1)

T (I)

T (R)

T (P2)

mod A

The dotted part is the lattice of all torsion classes T with T (I) ⊆ T ⊆ T (R). If X is a
non-empty set of pairwise non-isomorphic simple regular Kronecker modules (thus X is a
semibrick), then T (X ) is a torsion class with T (I) ⊂ T ⊆ T (R). Taking also T (I) into
account, we see that the torsion classes T with T (I) ⊆ T ⊆ T (R) correspond bijectively to
the subsets of P1(k) (by definition, P1(k) is the union of the one element set {∞} and the
set of monic irreducible polynomials with coefficients in k). Note that for any torsion class
T with T (I) ⊆ T ⊆ T (R), the number of neighbors of T is always equal to max(|k|,ℵ0),
in particular, infinite. (Note that the dotted part is very large: the set of subsets of P1(k)
is always uncountable, even if k is just the field with 2 elements!)

If R is a simple regular module, then T (R) is (of course) finitely generated, however
its unique lower neighbor T (R) ∩ ⊥R is the torsion class T (I) (and we repeat: T (I) is
not finitely generated). On the other hand, T (R) has infinitely many upper neighbors.
Namely, if R′ is a simple regular Kronecker module, not isomorphic to R, then T (R⊕R′)
is an upper neighbor of T (R), and there are infinitely many such modules R′.

Finally, let us stress that here all torsion classes but one are widely generated, the only
exception is T = T (I).

3. Torsional brick chain filtrations.

In order to strengthen Theorem 1.2, we need an additional notion.

3.1. A submodule U of a module M is said to be torsional provided U belongs to
T (M). A filtration 0 = M0 ⊆M1 ⊆ · · · ⊆ Mm will be said to be torsional provided Mi−1

is a torsional submodule of Mi, for all 1 ≤ i ≤ m.
If (Mi)i is a torsional filtration of M , then Mi−1 belongs to T (Mi), for all 1 ≤ i ≤ t,

thus we have the inclusion chain 0 = T (M0) ⊆ T (M1) ⊆ · · · ⊆ T (Mm) = T (M), and
therefore all the submodules Mi are torsional submodules of M . If a brick chain filtration
(Mi)i, say of type (B1, . . . , Bm) is torsional, then all the bricks Bi belong to T (M), since
Bi is a factor module of Mi and Mi belongs to T (M).
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Warning. Note that a brick chain filtration (Mi)i of a module M with all Mi being
torsional submodules of M, may not be a torsional filtration. Here is an example: Let Q be
the quiver with vertices 1, 2, 3 and with arrows 1→ 2, 2→ 1, 2→ 3, such that the paths
2 → 1 → 2 → 3 and 2 → 1 → 2 → 1 → 2 → 1 are zero relations. The projective module
M = P (2) has the following brick chain filtration: 0 ⊂ M1 ⊂ M2 ⊂ M with M1 = 2

3
,

M2/M1 = 2

1
. Both M1 and M2 are isomorphic to factor modules of M , thus torsional

submodules, but M1 is not contained in T (M2).

3.2. Theorem. Any module has at least one, but only finitely many torsional brick
chain filtrations.

The proof will be given in section 9. As we will see, the torsional brick chain filtrations
of a module M can be constructed easily by induction: Let B be a top brick of M Then
M has a proper submodule M ′ which belongs to T (M) ∩⊥B, such that M/M ′ belongs to
E(B). Since M ′ is a proper submodule of M , by induction there is a torsional brick chain
filtration of M ′, say 0 = M0 ⊂M1 ⊂ · · · ⊂Mm−1 = M ′. Let Mm = M. Then (Mi)0≤i≤m

is a torsional brick chain filtration of M .

Note that Theorem 3.2 shows that any module M determines a finite set of bricks
which may be considered as the building blocks for the construction of M , namely the
bricks which occur in the types of the finitely many torsional brick chain filtrations of M .

Question. Theorem 3.2 assert that any module M has only finitely many torsional
brick chain filtrations. Usually, there are plenty additional brick chain filtrations of M
which are not torsional. Are there modules with infinitely many brick chain filtrations?

3.3. A brick B has just one torsional brick chain filtration: namely the trivial filtration
(0 ⊂ B); after all, a brick has no non-zero proper torsional submodules, see 4.3.

3.4. Remark. If (Mi)i is a torsional brick chain filtration of type (B1, . . . , Bm), then
by definition all the bricks Bi belong to T (M). The brick Bm is a factor module of M , but
the remaining bricks Bi do not have to be factor modules of M . Here is a typical example:
Let M be serial with composition factors going up: 1, 2, 2, 1, 2, with torsional brick chain
filtration 0 ⊂M1 ⊂M , where M1 is of length three; here, M1 is not generated by M .

4. Some preliminaries.

4.1. Lemma. Let M ′ be a non-zero module in T (M). Then Hom(M,M ′) 6= 0.

Proof: M ′ has a filtration 0 = M ′
0 ⊂ M ′

1 ⊂ · · · ⊂ Mm = M , where all the factors
Mi/Mi−1 are non-zero factor modules of M . Since M ′

1 it is a factor module of M , we get
a non-zero homomorphism M →M ′

1 →M ′. �

4.2. Examples of non-isomorphic bricks B′, B with B′ ∈ T (B). According to Lemma
4.1, Hom(B,B′) 6= 0. (On the other hand, we will see in 6.3 that Hom(B′, B) = 0.) We
sometimes will specify modules by a display of the composition factors. For example, in
the following example 1, we may deal with a quiver with two vertices, labeled 1 and 2,
with an arrow 1← 2, and a loop at 1. The display 2

1
stands for a serial module of length

two with socle 1 and top 2, and so on . . . .
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Example 1: B = 2

1
and B′ = 2. Here, we have an epimorphism B → B′. (Or, if we

want to have the same support: Let B =
2

1

1
, and B′ = 2

1
.)

Example 2: B = 2

1
, and B′ =

2

2

1

. Here, we have a monomorphism B → B′ and B,B′

have the same support.

Example 3: B = 2

1
, and B′ = 3

2
. Here, we have a non-zero map B → B′ which is

neither epi nor mono.

4.3. Lemma. A non-zero module is a brick iff it has no non-zero proper torsional
submodules.

Proof. Let M be a module. If M is not a brick, there is an endomorphism f of M
such that f(M) is non-zero and a proper submodule. Since f(M) belongs to T (M), we
see that f(U) is a torsional submodule of M .

Conversely, let U be a non-zero proper submodule which is torsional. Since U belongs
to T (M), there is a non-zero submodule U ′ of U which is a factor module of M . We get a
non-zero and not invertible endomorphism M → U ′ ⊆ U ⊂M , thus M is not a brick. �

5. The endotop and the iterated endotop of a module.

We are going to show the surjectivity assertion of Theorem 2.3. We need the notion
of the endotop et M of a module M .

5.1. Endotop. Denote by E = End(M) the endomorphism ring of M (operating on
the left of M), and radE its radical. Then (radE)M is a submodule of M and we define
et M = M/(radE)M , and call it the endotop of M ; by definition, the endotop of M is a
factor module of M .

5.2. Examples. (1) If M is an indecomposable module, et M may be decomposable.
For example, let A be a local algebra with radical-square-zero and AA of length 3. If M
is the indecomposable injective module, then et M is the direct sum of two copies of the
simple module.

(2) Let A be given by the quiver Q with one vertex and two loops and with relations
all paths of length 3 (thus A is a local algebra of dimension 7). There is a serial module M
of length 3 with radM not isomorphic to M/ socM. Then et M = M/ soc M , thus et M
is indecomposable of length two, and not a brick, in particular, et(et M) is a proper factor
module of etM. This leads us below to consider not only et, but the iterations eti, see
5.4. (Instead of A, we may consider a proper factor algebra A′ of A, namely the subring
A′ = k + J of the ring of all 3 × 3-matrices with coefficients in k, where J is the set of
nilpotent upper triangular matrices; let M = k3 be the A′-module of column vectors.)

(3) If A is the Kronecker algebra, and M a regular Kronecker module, then etM is
just the regular top of M .

5.3. Proposition. Let M be a module. Then M belongs to T (et M), therefore
T (M) = T (et M). The kernel of the canonical map M → etM is torsional.
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Proof. Let f1, . . . , ft be a basis of E = radEndM . Let (rad EndM)m = 0. The
image of g = (fi) :

⊕
i M → M is (radE)M = radE M = M1 and et M = M/M1. Let

Mj+1 = g(Mj) for all j ≥ 0 with M0 = M . Then Mm = 0. By induction, all modules
Mj/Mj+1 are generated by et M. This shows that T (M) ⊆ T (et M). On the other hand,
we also have T (et M) ⊆ T (M), since et M is a factor module of M . Thus M and et M
generate the same torsion-class.

The kernel M ′ of the canonical map M → etM is by definition the image of the map
g, thus generated by M . Therefore M ′ belongs to T (M). �

5.4. We iterate the construction et and get epimorphisms

M → et M → (et)2M → · · · .

Since M is of finite length, the sequence stabilizes eventually; in this way we get the iterated
endotop et∞ M = eta M for a� 0.

Example. Let A be a suitable artin algebra with two simple modules 1 and 2. For
n ≥ 0, let M [n] be a serial module of length n + 2, with composition factors going up:
(1, . . . , 1, 2, 1) (thus starting with n factors of the form 1). Then, for 0 ≤ i ≤ n, we have
eti M [n] = M [n − i]. For 0 ≤ i < n, the module M [i] is not a brick, but etn M [n] = M [0]
is a brick of the form 1

2
.

5.5. Proposition. Let M be a module. The iterated endotop X = et∞ M is the direct
sum of modules which belong to a semibrick B and T (M) = T (X) = T (B); the kernel of
the canonical map M → et∞ M is a torsional submodule of M .

Proof. It is obvious that the iterated endotop of a module is always the direct sum
of modules which belong to a semibrick, since the sequence M → et M → (et)2M → · · ·
stabilizes precisely when End(eta M) is semisimple. Proposition 5.3 yields that the torsion
classes T (eti M) are equal, for all i ≥ 0.

The kernel K of the canonical map M → et∞ M has a filtration whose factors are
the kernels Ki of the canonical maps eti M → eti+1 M , for all i ≥ 0. According to 5.3, all
modules Ki belong to T (M), thus K belongs to T (M). �

5.6. Corollary. A torsion class T is finitely generated iff there is a finite semibrick
B with T = T (B). �

Corollary 5.6 shows that the map B 7→ T (B) from the set of finite semibricks B to the
set of finitely generated torsion classes is surjective. This is part of Theorem 2.3.

5.7. Since the iterated endotop of a module M is given by a semibrick, the inde-
composable direct summands of the iterated endotop are bricks and will be called the top
bricks of M .

Examples. (1) Let M be an indecomposable module. A top brick of M may occur in
et∞ M with multiplicity greater than 1. (In particular, et∞ M may not be indecomposable.)
For example, consider A = k[x, y]/〈x2, y2, xy〉 and M the indecomposable injective module.
The endotop (and the iterated endotop) of M is just the top of M , thus the direct sum of
2 copies of the simple module k.
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(2) The number of top bricks of an indecomposable module M may be arbitrarily large.
We start with the (t−1)-subspace quiver, with sink 1 and sources 2, 3, . . . , t, and add a
loop at the sink 1. We consider the corresponding radical-square-zero algebra. There is an
indecomposable module M of Loewy length two with socle 1 and top 1⊕ 2⊕ · · · ⊕ t. For
this module, et∞ M = et M = 1 ⊕ 2 ⊕ · · · ⊕ t, thus all the simple modules are top bricks
of M .

6. The essential feature: If B is a brick, (⊥B)
...........................................
E(B) is a torsion class.

Given module classes X and Y, we write X
...........................................
Y for the class of all modules M which

have a submodule M ′ in X such that M/M ′ belongs to Y.

We are going to show: If B is a brick, then

T (⊥B,B) = (⊥B)
...........................................
E(B).

This describes very nicely the torsion class T (⊥B,B). Actually, there is the corresponding
description for all the torsion classes T ⊆ T (⊥B,B), see the following general Proposition.

6.1. Proposition. Let B be a brick. Let T be a torsion class which is contained in
T (⊥B,B). Then either T is contained in ⊥B, or else

T = (T ∩ ⊥B)
...........................................
E(B).

In particular, if T is not contained in ⊥B, then B belongs to T (since the displayed
equality asserts that E(B) ⊆ T ).

Let us add: if 0 → M ′ → M → M/M ′ → 0 is an exact sequence with M ′ in
T ′ = T ∩⊥B and M/M ′ ∈ E(B), then M ′ is just the torsion submodule of M with respect
to the torsion class T ′, since Hom(T ′, E(B)) = 0.

Proof of Proposition. Let M ′ be a submodule of M which belongs to T with M/M ′ ∈
E(B), and minimal with these two properties. We claim that M ′ belongs to ⊥B, thus to
T ∩⊥B. (Note that at the moment we do not yet know that B belongs to T , but this does
not matter.)

Thus, assume for the contrary that there is a non-zero map f : M ′ → B. Since M ′

belongs to T , there is a filtration 0 = M0 ⊂ M1 ⊂ · · · ⊂ Mm = M ′ such that all factors
Fi = Mi/Mi−1 are factor modules of B or belong to ⊥B. Let s be minimal such that f |Ms

is non-zero. Thus, f vanishes on Ms−1 and induces a map f : M ′/Ms−1 with non-zero
restriction to Fs = Ms/Ms−1. Let us denote by u : Fs → M ′/Ms−1 the inclusion map.
Thus, the composition f · u : Fs → B is a non-zero map.

Now Fs is a factor module of some B or belongs to ⊥B. Since there is the non-zero
map f · u : Fs → B, we see that Fs is a factor module of B. Also, since B is a brick, there
is no non-zero map from a proper factor module of B to B, thus we see that Fs = B and
that the composition f · u : B = Ms/Ms−1 ⊆ M ′/Ms−1 → B is an isomorphism. This
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shows that u is a split monomorphism. It follows that there is a submodule M ′′ of M ′

with Ms−1 ⊆M ′′, such that Ms ∩M ′′ = Ms−1 and Ms + M ′′ = M ′.
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Ms

Ms−1

Mm = M ′

M ′′

M0 = 0

M

It follows that M ′/M ′′ 'Ms/Ms−1 = B, and that M ′′/Ms−1 'M ′/Ms. Since M/M ′ and
M ′/M ′′ belong to E(B), also M/M ′′ belongs to E(B). On the other hand, M ′′/Ms−1 '
M ′/Ms has a filtration by factors isomorphic to Fi with s + 1 ≤ i ≤ t and Ms−1 has the
filtration with factors Fi where 1 ≤ i ≤ s − 1. Since all the factors Fi belong to T , also
M ′′ belongs to T .

Altogether we see that M ′′ is a submodule of M which belongs to T and such that
M/M ′ ∈ E(B). Since M ′′ is a proper submodule of M ′, this contradicts the minimality of
M ′. It follows that M ′ belongs to ⊥B. Since M/M ′ is a non-zero module in E(B), is has
a factor module of the form B, thus B is a factor module of M , therefore B ∈ T .

Since M ′ belongs to T ∩ ⊥B, and M/M ′ to E(B), we see that M ′ is the torsion
submodule of M with respect to the torsion class T ∩ ⊥B.

The exact sequence 0 → M ′ → M → M/M ′ → 0 for an arbitrary module M in T
shows that T ⊆ (T ∩ ⊥B)

...........................................
E(B). On the other hand, we have T ∩ ⊥B ⊆ T , and, since

B ∈ T , also E(B) ⊆ T : This shows the reverse inclusion (T ∩ ⊥B)
...........................................
E(B) ⊆ T , therefore

T = (T ∩ ⊥B)
...........................................
E(B). �

6.2. Corollary. Let B be a brick. Let M be a module in T (⊥B,B). Then any
non-zero map M → B is surjective.

Proof. Let M be a module in T (B,⊥B) and f : M → B a non-zero map. The existence
of f shows that M does not belong to perpB. According to 6.1, there is a submodule M ′

of M which belongs to ⊥B such that M/M ′ belongs to E(B). Since f vanishes on M ′, we
get an induced map f : M/M ′ → B, and f is non-zero. However, any non-zero map in
E(B) with target B is an epimorphism. Since f is surjective, also f is surjective. �

6.3. Corollary. Let B,B′ be non-isomorphic bricks, and assume that B′ is in T (B).
Then Hom(B′, B) = 0, thus B′ ∈ T (B) ∩ ⊥B.

Proof. Assume there is a non-zero map f : B′ → B. According to 6.2, the map f
is surjective. Since B′ belongs to T (B), we know from 4.1 that there is a non-zero map
g : B → B′. Since f is surjective, the composition gf : B′ → B → B′ is non-zero. Since
B′ is a brick, this means that gf is an isomorphism. Thus f is a (split) monomorphism.
Altogether we see that f is bijective, thus B and B′ are isomorphic. �
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7. Neighbors.

7.1. Lemma. Let T ′ ⊂ T be torsion classes. Any module M in T \ T ′ of minimal
length is a brick and satisfies T ′ ⊆ ⊥M.

Proof. Let M be a module in T \T ′ of minimal length. We form X = et∞ M. According
to 5.5, we have T (X) = T (M), thus also X belongs to T \T ′. There is an indecomposable
direct summand X ′ of X which belongs to T \ T ′ and, as we know, X ′ is a brick (one of
the top bricks of M). On the other hand, there are epimorphisms M → X → X ′, thus
|X ′| ≤ |X|. Since we assume that M is of minimal length, we see that M = X ′ is a brick.

In order to see that T ′ ⊆ ⊥M, consider any homomorphism f : M ′ →M, with M ′ ∈ T ′.
Now f(M ′) belongs to T ′, thus M/M ′ does not belong to T ′. Since M/f(M ′) is a module
in T \ T ′, the minimality of M shows that f(M ′) = 0. �

7.2. Proof of 2.7. We assume that T ′ ⊂ T are neighbors. According to 7.1, there is
a brick B in T such that T ′ ⊆ ⊥B. Thus, we have

T ′ ⊆ T ∩ ⊥B ⊂ T

(the proper inclusion is due to the fact that B does not belong to ⊥B). Since T ′ ⊂ T are
neighbors, we see that T ′ = T ∩ ⊥B.

Next, we show: (∗) If B is a brick in T with T ′ = T ∩ ⊥B, then for any module
M ∈ T , there is a submodule M ′ of M which belongs to T ∩⊥B such that M/M ′ in E(B).
Here is the proof. Since T ′ ⊂ T are neighbors, and B is in T , but not in T ′, we have
T (T ′, B) = T . Now T ′ ⊆ ⊥B, thus T = T (T ′, B) ⊆ T (⊥B,B). We see that we can apply
6.1: For any module M ∈ T , there is a submodule M ′ of M which belongs to T ∩⊥B with
M/M ′ in E(B). We have shown that B has the two properties mentioned in 2.7.

It remains to show that B is the unique brick in T with these properties. First,
assume that C is a brick in T such that any module M in T has a submodule M ′ in T ′

with M/M ′ ∈ E(C). Now C cannot belong to T ′ )since otherwise we would have T ′ ⊆ T .
Now, C has a submodule C ′ in T ′ with C/C ′ in E(B). Since C does not belong to T ′, we
have C/C ′ 6= 0, therefore C maps onto B. On the other hand, B has a submodule B′ in
T ′ with B/B′ ∈ E(C). Since B is not in T ′, we see that B/B′ is non-zero, thus B maps
onto C . This shows that C = B.

Finally, assume that C is a brick with T ′ = T ∩ ⊥C. According to (∗), we know that
for any module M ∈ T , there is a submodule M ′ of M which belongs to T ∩⊥B such that
M/M ′ in E(C). But as we have seen already, this implies that C = B. �

7.3. Proposition. Let B be a brick and X ⊆ ⊥B. Then T (X , B) ∩ ⊥B ⊂ T (X , B)
are neighbors with label B.

Proof. We write T (X , B)B = T (X , B) ∩ ⊥B. Now T (X , B)B ⊆ T (X , B), and this
inclusion is proper since B does not belong to ⊥B. Assume that there is a torsion class
T such that T (X , B)B ⊂ T ⊆ T (X , B). Since T (X , B)B ⊂ T , there is a module M ∈ T
which does not belong to ⊥B. Thus, there is a non-zero map f : M → B. Since M belongs
to T (⊥B,B), we can apply Corollary 6.2. We see that f is surjective, thus B belongs to
T . Of course, also X ⊆ T . Therefore T (X , B) ⊆ T . This shows that T (X , B) = T . Thus,
T (X , B)B ⊂ T (X , B) are neighbors. By definition, the label is B. �
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7.4. Corollary. Let T ′ ⊂ T be torsion classes. There there are bricks B in T such
that T ′ ⊆ ⊥B. If B is a brick with T ′ ⊆ ⊥B, let N = T (T ′, B) and N ′ = N ∩ ⊥B, then
we have

T ′ ⊆ N ′ ⊂ N ⊆ T

and the torsion classes N ′ ⊂ N are neighbors with label B.

Proof: It is trivial to see that T ′ ⊆ N ′ ⊆ N ⊆ T. Since B belongs to N , but not to
N ′, we have N ′ ⊂ N . Finally, we use 7.3 with X = T ′ in order to see that N ′ ⊂ N are
neighbor torsion classes with label B. �

7.5. Remark. Dealing with torsion classes T , there are the corresponding module
classes T ⊥ (for any module class X , the module class X⊥ is the class of all modules
Y with Hom(X,Y ) = 0 for all X ∈ X ; these module classes are called the torsionfree
classes); the pair (T , T ⊥) is called a torsion pair. Using this notation, there is the following
characterization of neighbor torsion classes:

Let T ′ ⊂ T be torsion classes. Then these are neighbors iff T ∩ (T ′)⊥ = E(B) for
some brick B, and then B is the label of the inclusion.

7.6. The brick chains explained in terms of neighbor torsion classes. Let
T ′ ⊂ T be neighbors with label B. Then we have on the one hand: B belongs to T and
not to T ′. On the other hand, for every module M in T ′, in particular for the bricks in
T ′, we have Hom(M,B) = 0.

Thus we obtain in this way the Hom-condition which is used in the definition of a
brick-chain: If T1 ⊂ T2 ⊆ T3 ⊂ T4 is a chain of torsion classes with T1 ⊂ T2 as well as
T3 ⊂ T4 being neighbors, and B is the label for T1 ⊂ T2, whereas B′ is the label for T3 ⊂ T4,
then Hom(B,B′) = 0.

7.7. Remark. Let B be a brick. If T ′ ⊂ T are neighbors with label B, we have both
T (T ∩ ⊥B,B) = T and T (T ′ ∩ ⊥B,B) = T ′. In general, for arbitrary torsion classes T
and T ′, we have T (T ∩ ⊥B,B) ⊆ T , provided B belongs to T , and T (T ′, B) ∩ ⊥B ⊇ T ′,
provided T ′ ⊆ ⊥B. However, both inclusions are usually proper inclusions: Look at the
path algebra A of the A2-quiver 1 ← 2 and B the indecomposable module of length
two. For T = mod A, we have T (T ∩ ⊥B,B) = T (B) ⊂ T . For T ′ = {0}, we have
T (T ′, B) ∩ ⊥B = T (2) ⊃ T ′.

8. Widely generated torsion classes.

We are going to provide a proof of Theorem 2.8. If B is a semibrick and B ∈ B, we
write T (B)B = T (B) ∩ ⊥B.

8.1. Lemma. Let B be a semibrick, and T = T (B). If the torsion class T ′ is properly
contained in T , then there is B ∈ B with T ′ ⊆ TB and such that TB ⊂ T are neighbors.

Proof. Since T ′ is properly contained in T , there is a brick B ∈ B which is not
contained in T ′. Let B′ = B \ {B}. Since B is a semibrick, we have B′ ⊆ ⊥B. According
to 7.3, TB ⊂ T are neighbors.
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Also, we claim that T ′ ⊆ ⊥B. Namely, if f : M → B is a non-zero homomorphism
with M ∈ T ′, then 6.2 asserts that f is surjective, thus B ∈ T ′, a contradiction. It follows
that T ′ ⊆ ⊥B, thus T ′ ⊆ T ∩ ⊥B = TB. �

8.2. Proof of Theorem 2.8. First, let B be a semibrick and T = T (B). According
to 8.1, T has sufficiently many lower neighbors, namely the torsion classes TB with B ∈ B.
Also, the map B 7→ TB from B to the set of lower neighbors of T is surjective. On the
other hand, this map is injective by the unicity of the label.

Conversely, let T be a torsion class with sufficiently many lower neighbors. Let B be
the set of labels of the lower neighbors. Then B is a subset of T , thus T (B) ⊆ T . Let us
assume that T (B) ⊂ T . Since T has sufficiently many lower neighbors, there is a lower
neighbor T ′ of T such that T (B) ⊆ T ′. Let B be the label of the inclusion T ′ ⊂ T . Then
B ∈ B. Now T ′ = T ∩⊥B ⊆ ⊥B. Thus we have B ∈ T (B) ⊆ T ′ ⊆ ⊥B, a contradiction. �

8.3. Corollary. If B is a semibrick. Then T (B) is finitely generated iff B is finite.

Proof. If B is finite, then, of course, T (B) is finitely generated. Conversely, assume
that T (B) is finitely generated. By definition, there is a module M with T (B) = T (M).
According to Theorem 2.3, there is a finite semibrick B′ with T (M) = T (B′). According
to 2.8, we have B = B′, thus B is finite. �

9. Torsional brick chain filtrations.

We are going to prove Theorem 3.2.

9.1. Proposition. Let B be a top brick of the module M . Then M has a proper
submodule M ′ which belongs to T (M) ∩ ⊥B, such that M/M ′ belongs to E(B).

Proof. Let X = et∞ M. Then B is a direct summand of X. Then T (M) = T (X) by
Proposition 5.5, thus M belongs to T (X). Now use Proposition 6.1. �

9.2. Existence. According to 9.1, M has a proper submodule M ′ in T (M) ∩ ⊥B
such that M/M ′ belongs to E(B) for some brick B.

By induction, M ′ has a brick chain filtration 0 = M0 ⊂ M1 ⊂ · · · ⊂ Mm−1 = M ′ of
type (B1, . . . , Bm−1) such that any Mi−1 is in T (Mi) for all 1 ≤ i ≤ m− 1. Note that we
have T (M0) ⊆ T (M1) ⊆ · · ·T (Mm−1) = T (M ′).

Let Mm = M and Bm = B. Now, for 1 ≤ i ≤ m−1, the module Mi maps onto Bi. But
Mi ∈ T (M ′) ⊆ ⊥B. As a consequence, Hom(Bi, B) = 0. This shows that (B1, . . . , Bm) is
a brick chain. Of course, the filtration Mi is of type (B1, . . . , Bm). Also, Mi−1 is in T (Mi)
for all 1 ≤ i ≤ m− 1, by induction, and for i = m by 9.1. �

Theorem 2.8 has the following consequence.

9.3. Lemma. Let M be a module, B a brick. Assume that M has a proper torsional
submodule Y in T (M) ∩⊥B such that M/Y belongs to E(B). Then B is a top brick of M
(and Y is the torsion submodule of M with respect to the torsion class T (M) ∩ ⊥B).

Proof. First, we show that T (M) = T (Y,B). Since Y is a proper submodule of M , we
see that M/Y is a non-zero module in E(B), thus it has a factor module isomorphic to B.
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Since B is a factor module of M , we know that B belongs to T (M). Also, by assumption,
Y belongs to T (M). Thus T (Y,B) ⊆ T (M). On the other hand, M has a filtration with
factors of the from Y and B, thus T (M) ⊆ T (Y,B).

Next, we calculate the iterated endotop of Y ⊕B. We calculate inductively eta(Y ⊕B)
for all a ≥ 0. We claim that eta(Y ⊕B) = Ya ⊕B, where Ya is a factor module of Y with
Hom(Ya, B) = 0. For a = 0, we put Ya = Y. Assume we have eta(Y ⊕B) = Ya ⊕B, where
Ya is a factor module of Y with Hom(Ya, B) = 0. Since Hom(Ya, B) = 0, the radical maps
in the endomorphism ring of Ya ⊕B map into Ya. If Ua is the sum of these images, then
eta(Y ⊕B) = Ya+1 ⊕B with Ya+1 = Ya/Ua. Also, we have Hom(Ya+1, B), since any non-
zero homomorphism Ya+1 → B would yield a non-zero homomorphism Ya → Ya+1 → B.
Since we deal with modules of finite length, there is some a such that Ua = 0, and therefore
et∞(Y ⊕B) = Ya ⊕B. This shows that B is a top brick of Y ⊕B.

Since T (M) = T (Y,B), we know from 2.8 that the top bricks of M are just the top
bricks of Y ⊕B. Thus B is a top brick of M. �

9.4. Corollary. Let (Mi)i be a torsional brick chain filtration of M of brick type
(B1, . . . , Bm). Then Bm is a top brick of M and Mm−1 is the torsion submodule of M for
the torsion class T (M) ∩ ⊥Bm.

Proof. We apply Lemma 9.3 to Y = Mm−1 and B = Bm. �

9.5. Finiteness. Let M be a non-zero module. Let T1, . . . Tt be its top bricks. For
1 ≤ i ≤ t, let M (i) be the torsion submodule of M which respect to the torsion class
T (M) ∩ ⊥Ti.

For any module M , let φ(M) ∈ N ∪ {∞} be the number of torsional brick chain
filtrations of M . Of course, we have φ(0) = 1. For M 6= 0, let M (i) be the maximal
submodule of M which belongs to T (M) ∩ ⊥Ti. we claim that

φ(M) =
∑

i

φ(M (i)).

This follows from 9.4, since the torsional brick chain filtrations of M are the filtrations
obtained from a torsional brick chain filtration of M (i) by adding the inclusion M (i) ⊂M.

We use induction on the length of M in order to see that φ(M) is finite for all M . �

9.6. Some examples.

(1) If M is a brick, the only torsional brick chain filtration is (0,M), since a brick has
no non-zero proper torsional submodules, see 4.3. If M is a brick and not simple, then we
will see in 10.4 that M has at least two brick chain filtrations. Thus, not every brick chain
filtration (Mi)i of a module M is torsional.

(2) To see an example of a module M with at least two torsional brick chain filtrations,
take any module with at least two top bricks, see 5.7.

(3) For a Nakayama algebra, any indecomposable module M has only one torsional
brick chain filtration (Mi)i, and this filtration has length at most two. Namely, let S be
the top of M . Then all bricks in T (M) have top S. Assume that M has precisely m
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composition factors of the form S, and U is the unique submodule of M with top S which
is a brick. Then either M is in E(U), then 0 ⊂M is the only torsional brick chain filtration
of M . Else 0 ⊂ U ⊆M is the only torsional brick chain filtration of M .

(4) Duality. We have mention in Section 1 that using the duality functor D, we obtain
from a brick chain filtration (Mi)i of M a corresponding brick chain filtration for DM.
But note: If the filtration (Mi)i is torsional, the dual filtration may not be torsional. As
a typical example, let A be a connected Nakayama algebra with two simple modules and
an indecomposable module M of length three, let U be its socle. Then M has the brick
chain filtration (0 ⊂ U ⊂M). This filtration is torsional, whereas the dual filtration is not
torsional.

There are brick chain filtrations (Mi)i of modules such that neither the filtration (Mi)i

nor the dual filtration (D M/DMi) is torsional. Here is an example: Let A be a connected
Nakayama algebra with three simple modules and M indecomposable of length four. Let
U be the submodule of M of length two. Then (0 ⊂ U ⊂ M) is a brick chain filtration,
however neither this filtration nor its dual is torsional.

10. Further remarks about brick chain filtrations.

10.1. Lemma. Let B be a brick and M a non-zero module in E(B). Then M has an
endomorphism with image a brick, and B is the only brick which occurs in this way.

Proof. First, we show that B occurs as the image of an endomorphism of M . Since
M belongs to E(B), there is a filtration 0 = M0 ⊂ M1 ⊂ · · · ⊂ Mm = M of M such that
all factors are isomorphic to B. A corresponding map M →M/Mm−1 ' B 'M1 ⊆M is
an endomorphism of M which image isomorphic to B.

Conversely, let f be an endomorphism of M whose image is a brick. Since E(B) is
an exact abelian subcategory, the image M ′ of f belongs to E(B). Now M ′ is a non-zero
module in E(B). As we have seen in the first part of the proof, M ′ has an endomorphism
with image f(M ′) being isomorphic to B. But we assume that M ′ is a brick, thus the
image of an endomorphism of M ′ is either zero or M ′ itself. This shows that M ′ = f(M ′),
thus M ′ is isomorphic to B. �

Remark. The Lemma shows: If M is a homogeneous module of brick type B, then the
endomorphism ring of M shows whether M = B or M 6= B. But even for a homogeneous
module M , the ring End(M) gives only limited information about M . In particular,
End(M) may be a k-algebra of dimension 2, whereas M has a filtration with arbitrarily
many factors of the form B. Here is an example. Consider the subring A = k + J of the
ring of (t×t)-matrices with t ≥ 2, where J is the set of nilpotent upper triangular matrices;
and look at the set M = kt of column vectors. Since A is local, there is the unique brick
B = k. The module M is a serial module of length t. The image of any non-invertible
endomorphism of M has length at most one, thus dimEnd(M) = 2.

10.2. A filtration 0 = M0 ⊆ M1 ⊆ · · · ⊆ Mm = M will be said to be solid provided
Hom(Mi/Mi−1,Mj/Mj−1) = 0 for all 1 ≤ i < j ≤ m.

Proposition. Let M be a module with a filtration 0 = M0 ⊂ M1 ⊂ · · · ⊂ Mm = M.
Then (Mi)i is a brick chain filtration iff (Mi)i is a solid filtration and all the factors are
homogeneous.
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Proof. First, assume that (Mi)i is a brick chain filtration, say of type (B1, . . . , Bm).
Since Mi/Mi−1 belongs to E(Bi), all the factors of the filtration are homogeneous. Also,
for i < j, we have Hom(Bi, Bj) = 0. Therefore Hom(Mi/Mi−1,Mj/Mj−1) = 0.

Conversely, assume that (Mi)i is a solid filtration (with proper inclusions) and all
factors are homogeneous. Now Fi = Mi/Mi−1 belongs to E(Bi) for some brick Bi. Since
Fi is non-zero, Bi occurs both as a submodule and as a factor module of Fi. Thus, any
non-zero map f : Bi → Bj yields a non-zero map Fi → Fj . Since the given filtration is
solid, we see that Hom(Bi, Bj) = 0 for i < j. Thus, (B1, . . . , Bm) is a brick chain. �

10.3. The composition factors in the top of a module give rise to brick chain filtrations:

Proposition. Let M be a module. If S is a simple module which occurs in the top of
M , then M has a brick chain filtration of type (B1, . . . , Bm) with Bm = S.

Proof. Let M ′ be the minimal submodule of M such that M/M ′ has only S as
composition factor, thus M/M ′ belongs to E(S) and S does not occur in the top of M ′.
Now take a torsional brick chain filtration (Mi)1≤i≤m−1 of M ′, say of type (B1, . . . , Bm−1)
and let Mm = M. Since we deal with a torsional filtration of M ′, the modules Mi, thus
also the bricks Bi are in T (M ′), thus the top of Bi is generated by M ′. As a consequence,
Hom(Bi, S) = 0. This shows that (B1, . . . , Bm) with Bm = S is a brick chain, and that
the filtration (Mi)1≤i≤m is a brick chain filtration of type (B1, . . . , Bm). �

10.4. A module M has usually several brick chain filtrations, and the length of these
filtrations seem to be quite unrelated. As a typical example, let A be the path algebra of
the directed quiver of type An and M the indecomposable sincere A-module. It is easy to
see that M has brick chain filtrations of length m, for any 1 ≤ m ≤ n.

By definition, a module M is homogeneous iff (0 ⊆ M) is a brick chain filtration.
A homogeneous module which is not a brick has only one brick chain filtration, namely
(0 ⊆M). But bricks usually have several brick chain filtrations:

Proposition. A brick which is not simple, has at least two brick chain filtrations.

Proof. Let M be a brick. Then (0 ⊂M) is a brick chain filtration of length one. Let S
be a simple module which occurs in the top of M . According to 10.3, there is a brick chain
filtration (Mi)1≤i≤m with Mm/Mm−1 in E(S). We claim that m ≥ 2. Namely, if m = 1,
then M belongs to E(S). Since M is a brick, M = S, thus M is simple. �

10.5. Brick chain complexity. We say that a module M has brick chain complexity
at most t provided there is a brick chain filtration with t non-zero factors. The brick
chain complexity of an algebra A is the maximum of the brick chain complexity of the
indecomposable A-modules.

Of course, bricks are modules with brick chain complexity 1. Thus, any representation-
directed algebra has complexity 1. Since any indecomposable Kronecker module is homo-
geneous, the Kronecker algebra has also complexity 1. Next, if A is a local algebra, then
again all modules are homogeneous, thus local algebras also have complexity 1.

Nakayama algebras, tame concealed algebras and tubular algebras have complexity at
most 2. For example, if A is a tame concealed, the only indecomposable modules which
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are not homogeneous are the indecomposable modules M which belong to a tube say of
rank r, with regular length not divisible by r and these modules have complexity 2.

Note that any module which belongs to a standard tube has complexity at most 3.
The case 3 is possible: see the non-stable tube for the algebra

◦ ◦ ◦ ◦...................................................................

...................................................................

...................................................................

.................................................................................................
... .....................

....
...
...
..

An indecomposable module M with dimension vector (1, t, t, 1) has brick chain complexity
min(t, 3).

Here is an algebra with brick chain complexity∞. Take the path algebra of the quiver
with two vertices 1, 2, with two arrows 1 ⇔ 2 and with a loop γ at the vertex 1, with
relation γ2 = 0 (thus the algebra has dimension 7). For any m ∈ N1, we construct an
indecomposable module Mm with brick chain complexity m as follows: The restriction
of Mm to the Kronecker quiver 1 ⇔ 2 shall be

⊕m

i=1 Ii, where Ii is the indecomposable
preinjective module of dimension 2i + 1. In order to specify the action of γ, we choose

a basis w
(i)
1 , . . . , w

(i)
i of the socle of Ii and define γw

(i)
1 = w

(i−1)
i−1 provided 2 ≤ i ≤ m,

and γw
(i)
j otherwise (thus γ maps Ii into Ii−1 and satisfies γ2 = 0). We obtain inclusions

0 ⊂M1 ⊂ · · · ⊂Mm. This is a brick chain filtration of Mm of type (I1, . . . , Im).

10.6. Looking at the brick chain complexity, we only deal with brick chain filtrations
of indecomposable modules, and then only few brick chains may play a role.

But in general, one should be interested in all possible brick chains. Here are the brick
chains for the Kronecker algebra. Let us denote by Pi and Ii the indecomposable modules
of dimension 2i + 1, where Pi is preprojective, Ii preinjective. Any (finite) brick chain
different from (P0, I0) is of the form (Ii1 , Ii2 , · · · , Iiq

;R1, . . . , Rr;Pj1 , Pj2 , · · · , Pjp
), where

0 ≤ i1 < i2 < · · · < iq , as well as j1 > j2 > · · · > jp ≥ 0, with pairwise non-isomorphic
simple regular modules R1, . . . , Rr (in any order); here, p, q, r are non-negative numbers.

10.7. We say that a filtration (Mi)i of a module M is proper provided all the inclusions
Mi−1 ⊆Mi are proper. Of course, any filtration (Mi)i yields a proper filtration by deleting
all the submodules Mi with Mi−1 = Mi. Until now, all the filtrations considered in the
paper were proper. Let us call an arbitrary filtration of a module M a brick chain filtrations
with repetitions provided the corresponding proper filtration is a brick chain filtration.

Proposition. (a) Let M,N be modules. Let (Xi)i be a brick chain filtration of X =
M ⊕N . Then (Xi ∩M)i is a brick chain filtration of M with repetition, we say that it is
induced from (Xi)i.

(b) Given a module M and a brick chain filtration (Mi)i, of type (B1, . . . , Bt). Then
there is a module N and a torsional brick chain filtration (Xi)i of X = M ⊕N such that
the filtration (Mi)i of M is induced from (Xi)i.

Proof. (a) Since Xi is the torsion submodule of X for the torsion class T (B1, . . . , Bi),
we have (Xi ∩M)⊕ (Xi ∩N) = Xi. Thus (Xi∩M)/(Xi−1 ∩M)⊕ (Xi ∩N)/(Xi−1 ∩N) =
Xi/Xi−1 belongs to E(Bi), thus (Xi ∩ M)/(Xi−1 ∩ M) belongs to E(Bi). Of course,
(Xi ∩M)/(Xi−1 ∩M) may be zero (thus, the filtration may have repetitions).
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(b) Let N =
⊕t−1

j=1 Bj and X = M ⊕N = Xt. For 0 ≤ i < t, let Xi = Mi ⊕
⊕i

j=1 Bj .
Then Xt/Xt−1 = Mt/Mt−1 ∈ E(Bt). Also, for 1 ≤ i < t, we have Xi/Xi−1 = Mi/Mi−1 ⊕
Bi ∈ E(Bi). Thus, we see that (Xi)i is a brick chain filtration of type (B1, . . . , Bt).

All the bricks Bi with 1 ≤ i < t are factor modules of X, thus T (B1, . . . , Bt−1) ⊆ T (X).
Since Xt−1 belongs to E(B1 , . . . , Bt−1), we see that Xt−1 belongs to T (X). Similarly, for
1 ≤ i < t, we have T (B1, . . . , Bi−1) ⊆ T (Xi). Again, Xi−1 belongs to E(B1 , . . . , Bi−1),
thus Xi−1 belongs to T (Xi). This shows that (Xi)i is a torsional filtration. �

In the proof of (b), we also could have used N =
⊕t−1

j=1 Mj .

10.8. Remark. We have seen in 10.7 that brick chain filtrations of direct sums yield
brick chain filtrations of the summands. The converse is not true. For example, let A be
a cyclic Nakayama algebra with two simple modules and M,N the two indecomposable
modules of length two. Then M,N are bricks, thus they have brick chain filtrations of
length one. Any brick chain filtration of the module M ⊕N has length three and induces
on one of the summands a brick chain filtration of length two.

11. History and Relevance.

11.1. The results presented here are usually considered as part of the so-called τ -
tilting theory (see 11.13). There is a strange reluctance to deal with bricks. For example,
many papers prefer to speak about τ -tilting finiteness instead of brick finiteness, but these
properties are equivalent (see [DIJ]; here, τ -tilting finiteness means that there are only
finitely many τ -tilting modules: In my opinion, brick finiteness is very easy to grasp,
whereas τ -tilting finiteness is much less intuitive). For our report, there is no need to
mention τ -tilting notions, nor even the Auslander-Reiten translation τ itself, thus we have
avoided it. In this way, we stress the completely elementary nature of the corresponding
results. Some remarks on τ -tilting theory will be given in 11.13.

Let me stress that it is astonishing that the relevance of bricks when dealing with
tilting modules, with torsion classes, with module categories was observed only so late!

11.2. Bricks and semibricks. The terminology “semibrick” seems to be due to
Asai [A]. I used to call a semibrick an “antichain” of bricks, but this is in conflict with
Demonet’s important notion of a brick chain (and to say that “an antichain of bricks is a
brick chain”, would sound rather odd).

11.3. Torsion pairs (T ,F). Torsion pairs were introduced by Dickson [Di] as a
generalization of the use of torsion and p-torsion subgroups of abelian groups, for dealing
with arbitrary R-modules, were R is any ring.

11.4. Hereditary torsion pairs, torsional submodules. In contrast to the clas-
sical example, torsion classes in general are not hereditary (where hereditary means that
the torsion class T is closed under submodules). For example, the torsion classes T (M)
considered in our paper are usually not hereditary. On the other hand, it turns out that
dealing with a module M it is important to look at submodules of M which do belong to
T (M), namely its torsional submodules. Thus, our focus on torsional submodules is an
attempt to stress hereditary properties for non-hereditary torsion classes.

The brick-chain theorems 1.2 and 3.2 should be seen in the light of the original example
of abelian group theory: any finitely generated abelian group M has a filtration (Mi)0≤i≤m
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where the factors Mi/Mi−1 with 0 ≤ i < m are in E(Z/piZ), for pairwise different prime
numbers pi, whereas Mm/Mm−1 is in E(Z). Note that this filtration always splits. In
our case, we cannot expect that the filtrations provided in 1.2 and 3.2 split, just look
at indecomposable modules M which are not homogeneous. (It comes as a surprise that
actually in first examples one looks at, for example dealing with Kronecker modules, many
brick chain filtrations do split.)

11.5. Auslander and Smalø (and Demonet). The relevance of torsion classes
when dealing with finite length categories was seen already by Auslander and Smalø [AS].

Looking at a module category, the existence of cyclic paths in the category or even in
the Auslander-Reiten quiver, provides a lot of difficulties. Only the representation-directed
algebras are easy to visualize, but representation-directedness is a very special property.
There have been many attempts to overcome the difficulties which arise from the presence
of cyclic paths. There is the covering theory by Gabriel and his school; also, the book of
Auslander, Reiten, Smalø is full of helpful devices: to avoid short chains, to avoid short
cycles. However, all these methods are designed just for special, well-behaved situations.
If one wants to deal with an arbitrary module category, the use of torsion classes always
works. As we have mentioned in 2.4, the reference to torsion classes allows to consider the
set of semibricks as a partially ordered set. In this way, Demonet’s proposal to look at brick
chains stresses a very interesting directedness feature of an arbitrary module category.

11.6. Wide subcategories and torsion classes. Given an abelian category, the
exact abelian subcategories which are closed under extensions are now often called wide
subcategories. The rather obvious relationship between semibricks and wide subcategories
was mentioned in [R1] under the name “simplification”. The search for semibricks (or wide
subcategories) which generate a given torsion class was initiated by Ingalls and Thomas
[IT]. Theorem 2.3 generalizes some of their considerations.

The relevance of the endotop of a module is well-known and was stressed by Asai when
looking at τ -rigid modules (our proof of 5.5 follows closely Asai [A]). For a general study of
widely generated torsion classes, see Asai and Pfeifer [AP] and Marks and Stovicek [MS].

11.7. Homogeneous subcategories. The homogeneous subcategories are equiva-
lent to the module category of a local algebra (not necessarily an artin algebra) and one
often uses the representation theory of local algebras just as a black box. But, actually,
not much is known about the representation theory of a local algebra A which is not
commutative! The commutative local rings are studied very well in commutative algebra,
whereas there never was much interest in the non-commutative ones. But note that often
they behave rather differently and really deserve attention.

Let us mention at least one phenomenon which is of relevance for our discussion. If
A is a commutative local ring, and M is a serial module, say of length t, then there is an
endomorphism of M with image radM , thus et M is just the simple module. On the other
hand, consider the subring A = k + J of the ring of (t × t)-matrices where J is the set of
nilpotent upper triangular matrices, as mentioned already in 5.2 and 10.1. This is a rather
nice local ring; it is non-commutative provided t ≥ 3. The set M = kt of column vectors is
a serial A-module. Since the image of any non-invertible endomorphism of M has length
at most one, we see that et M has dimension t−1; in particular, it is not a brick provided
t ≥ 3 (for t ≥ 3, we have et∞ M = ett−2 M = k 6= et M).
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11.8. Neighbors of torsion classes. Neighbor torsion classes T ′ ⊂ T ′′ have at-
tracted a lot of interest and several different denominations are used in the literature: that
T ′′ covers T ′, that there is an arrow T ′′ → T ′ in the Hasse quiver of the lattice of torsion
classes, or one speaks about minimal inclusions of torsion classes.

As we have seen, it is easy to determine the lower neighbors of a finitely generated
torsion class (and there are only finitely many), but unfortunately, it is difficult to deal
with the upper neighbors: usually, there may be infinitely many. For any torsion class T ,
the best way to find its upper neighbors seems to be to look at the corresponding torsion
free class F and to try to determine its lower neighbors, since the lower neighbors of F
correspond to the upper neighbors of T .

11.9. Brick labeling. The brick labeling as presented in section 7 was started for
functorially finite torsion classes in [AIR] and Asai [A] identified the labels as bricks. The
general case is due to Barnard, Carroll and Zhu [BCZ]. The brick B used as label for the
neighbor torsion classes T ′ ⊂ T is called a minimal extending module for T ′ in [BCZ]. In
[AHL], the labels are said to be torsion, nearly torsionfree for the torsion pair (T , T ⊥).
The bijection 2.9 between bricks and completely join irreducible torsion classes has been
exhibited in Theorem 1.0.5 in [BCZ].

11.10. Brick chains. Given a chain of torsion classes, the brick labeling of the
neighbor torsion classes yields a brick chain. This observation was used by Demonet [De]
to introduce not only the finite brick chains as considered in the present paper, but to deal
with arbitrarily large totally ordered sets of bricks with the corresponding Hom-condition.
(But note that already for the Kronecker algebra, the sets which occur explode: The
Kronecker algebra A over the field with 2 elements has cardinality 16, thus it is very
easy to envision, but the lattice of torsion classes in modA is uncountable, and there are
uncountably many complete brick chains: one is finite, all others are uncountable!)

11.11. Special brick chain filtrations. Special brick chain filtrations have been
used already a long time ago. We have shown in [R2] that for a hereditary k-algebra, where
k is an algebraically closed field, any exceptional module is a tree module, The basis of
the proof is Schofield induction, dealing with certain brick chain filtrations of length two.
We stress that the brick chain filtrations used in [R2] are never torsional, since they are
filtrations of length two of bricks. We see in this way the relevance of brick chain filtrations
which are not torsional. The brick chain filtrations used in [R2] have type (B1, B2), where
B1, B2 both are again exceptional modules, thus bricks without self-extensions, and B1, B2

are even Hom-orthogonal.

11.12. Artinian rings. In this report, we have assumed to be in the context of
artin algebras. Actually, nearly all the results presented here are valid more generally in
arbitrary length categories, thus for finitely generated modules over left artinian rings.

11.13. Functorially finite torsion classes. Functorially finite torsion classes were
first considered by Auslander and Smalø. In 1984, Smalø formulated the tie between
functorially finite torsion classes and tilting modules for suitable factor algebras. The ba-
sic objects of τ -tilting theory are the τ -rigid modules (a module M is τ -rigid provided
Hom(M, τM) = 0, where τ is the Auslander-Reiten translation): Adachi-Iyama-Reiten
[AIR] showed that the functorially finite torsion classes are just the torsion classes gener-
ated by τ -rigid modules, a very important observation (but actually, the main results of
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[AIR] also follow from investigations by Derksen and Fei which were available in arXiv al-
ready in 2009). An important feature of τ -tilting theory are the mutations which describe
the functorially finite torsion classes which are neighbors. In the setting of tilting theory,
mutations were studied by Happel and Unger, but it took a long time that the relevance
for arbitrary module categories was realized.

We have seen in 2.5 that an algebra is brick finite iff it is torsion class finite. In this
case, all torsion classes are not only finitely generated but even functorially finite. And
conversely, if any torsion class is functorially finite, then the algebra is brick finite.

We cannot give here even a concise summary of the development of τ -tilting theory,
but can refer to the many survey papers devoted to τ -tilting theory.
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