Cluster-concealed algebras

Claus Michael Ringel

Abstract. The cluster-tilted algebras have been introduced by Buan,
Marsh and Reiten, they are the endomorphism rings of cluster-tilting ob-
jects T in cluster categories; we call such an algebra cluster-concealed in
case T is obtained from a preprojective tilting module. For example, all
representation-finite cluster-tilted algebras are cluster-concealed. If C is
a representation-finite cluster-tilted algebra, then the indecomposable C-
modules are shown to be determined by their dimension vectors. For a
general cluster-tilted algebra C, we are going to describe the dimension
vectors of the indecomposable C-modules in terms of the root system of
a quadratic form. The roots may have both positive and negative coordi-

nates and we have to take absolute values.

Let k£ be an algebraically closed field. For any finite-dimensional k-algebra R, we
consider its Grothendieck group Ko(R) of (finitely generated) R-modules modulo exact
sequences: it is the free abelian group with basis the set of isomorphism classes of sim-
ple R-modules. Using this basis, we identify Ky(R) with Z™, where n is the number of
isomorphism classes of simple R-modules. For any R-module N, we denote by dim N
the corresponding element in K((R). With respect to our identification Ky(R) = Z™, the
coefficients of dim N are just the Jordan-Holder multiplicities of N and the set of simple
R-modules which occur as composition factors of N will be called the support of N and
denotes by supp N.

Throughout the paper, A will denote a finite-dimensional hereditary k-algebra. Recall
that a k-algebra B is said to be tilted provided B is the endomorphism ring of a tilting
A-module T, where A is a finite-dimensional hereditary algebra. If B is a tilted algebra,
one may consider the corresponding trivial extension algebra B¢ = B x I, where [ is the
B-B-bimodule I = Ext%(DB, B), with D = Hom(—, k) the k-duality. The algebras of the
form B¢ are called the cluster tilted algebras; this is not the original definition as given by
Buan, Marsh and Reiten [BMR], but it is an equivalent one, due to Zhu [Z] and Assem,
Briistle and Schiffler [ABS]. The definition shows that B is both a subalgebra as well as a
factor algebra of B¢, and that the C-modules N with IN = 0 are just the B-modules.

Theorem 1. Let C be a representation-finite cluster-tilted algebra. If N, N’ are
indecomposable C-modules with dim N = dim N’, then N and N’ are isomorphic.

After finishing a first version of this paper, we were informed about a parallel investi-
gation by Geng and Peng [GP] which gives a different proof of this result using mutations.

2000 Mathematics Subject Classification. Primary 16D90, 16GG60. Secondary: 16G20, 16G70.

1



The paper by Geng and Peng also outlines the link to cluster algebras and shows in which
way Theorem 1 settles a conjecture of Fomin and Zelevinsky concerning cluster variables.

The next result will provide a description of the set of dimension vectors dim N
in Ko(C) with N indecomposable. This will be done in a more general setting. Recall
that a tilted algebra B is said to be concealed provided B is the endomorphism ring of
a preprojective tilting A-module. If B is a concealed algebra, then we will say that B¢
is a cluster-concealed algebra. Of course, representation-finite cluster-tilted algebras are
cluster-concealed algebras, but there are also many cluster-concealed algebras which are
tame or wild.

A famous theorem of Kac asserts that the dimension vectors of the indecomposable
A-modules are just the positive roots of the (Kac-Moody) root system ® 4 in Ky(A) corre-
sponding to the underlying graph of the quiver of A. Note that g4(z) <1 for any x € ®4,
here g4 is the Euler form on Ky(A) (the definition will be recalled in section 10).

The reason for us to exhibit cluster-tilted algebras as B¢ = B x I is that this allows
to identify the Grothendieck groups Ko(B€¢) and Ko(B). Let T be a tilting A-module with
endomorphism ring B, and let gg be the Euler form of B on Ky(B). Since we identify
the Grothendieck groups Ko(B) = Ky(B¢), we can apply ¢p to the dimension vectors of
the indecomposable B¢modules; this is what we will do. On the other hand, consider
the tilting functor G = Hom 4 (7', —): mod A — mod B. Let T, ..., T, be indecomposable
direct summands of T, one from each isomorphism class. Then dimTjy,...,dim7T, is a
basis of Ky(A), whereas dim G(T}),...,dim G(T},) is a basis of Ky(B), and we denote by
g: Ko(A) — Ko(B) the linear bijection such that g(dim7;) = dimG(T;), for 1 < i <
n. We set &5 = g(P4). If z € Py, then it is well-known that =z or —x belongs to N,
but, usually, ®p will contain elements for which some coefficients are positive, and some
negative. For any element = = (z1,...,2,) € Z", let absxz = (|z1],...,|xn|). We use this
function abs in order to attach to any vector z € @5 an element in N”.

Theorem 2. Let B be a concealed algebra and C = B¢ the corresponding cluster-

concealed algebra,

(a) The dimension vectors of the indecomposable C-modules are precisely the vectors abs x
with x € Pp.

(b) If Z is an indecomposable C-module, then qp(dim N) < 1 if and only if Z is a B-
module; if N is not a B-module, then qg(dim N) is an odd integer (greater than
2).

(¢) If N is an indecomposable C-module which is not a B-module, then End(N) = k.

The special case when A is of type A, has been considered already in the thesis of
Parsons [P], using a different approach. As Robert Marsh has pointed out, some further
cases have been considered by Parsons and him in this way but this work is still ongoing.



Remarks.

1. The quadratic form gp. We want to stress that the quadratic form qp used
here in order to deal with B°-modules depends on the choice of B: it is the Euler form
for B, not for B¢ (there may not even exist a Euler form for B¢, since usually the global
dimension of B¢ is infinite). Also, for a given cluster-concealed algebra C, there usually
will exist several concealed algebras B with C' = B¢ and then we will obtain different
quadratic forms gp on Ky(C'), see Example 13.2.

2. About the proof. The upshot of our investigation is Proposition 4. A direct proof
of this result (as well as a generalization to tilting modules which are neither preprojective
nor preinjective) would be of interest. Our proof invokes a second quadratic form rg which
concerns the extension behavior of two torsion pairs. Here, we deal with what Drozd [D]
has called E-matrices where FE is a bimodule. The preprojectivity of 7" is used in order to
show that the corresponding categories of E-matrices are essentially directed: according to
de la Penia and Simson [DP] this then implies that the indecomposable objects correspond
bijectively to the positive roots of the corresponding quadratic forms. But actually, these
quadratic forms coincide, in this way we obtain the required bijection. We should stress
that the equality of the quadratic forms used follows from the fact that the bimodules F
which arise can be written as Extl(f ,G) and as Hom(G, 7.F), respectively, and, of course,
one of the basic results of Auslander-Reiten theory asserts that these bimodules are dual
to each other.

A second ingredient of our proof is the following separation property (see section 2):
Let T be a preprojective tilting module, and M an indecomposable A-module. Then we
show that the B-modules G(M) = Homy (T, M) and F(M) = Ext*(T, M) have disjoint
supports. This property is the reason for the appearance of absolute values in Theorem
2. In case T has an indecomposable regular direct summand, the separation property no
longer holds, see Proposition 7. Thus, one cannot expect that a generalization of the main
theorem for arbitrary cluster-tilted algebras will use the vectors absz with = € ® 5.

Invariants such as quadratic forms or root systems have often been used in order to
obtain a classification of the indecomposable R-modules, for an algebra R. Usually, one
starts to guess all these objects, then one shows that they are pairwise non-isomorphic and
that all the indecomposable R-modules have been obtained in this way, and finally, one
tries to describe the structure of the module category. In our case of dealing with a cluster-
tilted algebra, the procedure is completely reversed: the module category is known from
the beginning, but one is lacking sufficient information concerning the modules themselves.

3. The relevance of cluster-concealed algebras. The importance of the con-
cealed algebras should be mentioned here. The tame ones have been classified by Happel
and Vossieck [HV], and are used by the Bongartz criterion for determining whether a finite-
dimensional algebra is representation-finite or not. The list of all the possible “frames”
of tame concealed algebras can be found in several books and papers, the corresponding
cluster algebras have been considered by Seven [S], the relationship has been discussed in
[BRS]. Wild concealed algebras have been considered by Unger [U].

Acknowledgment. The results presented in the paper have been obtained during
a stay at the Newton Institute in Cambridge, February and March 2009. The author is

3



grateful to the Institute for its hospitality. Also, the author is indebted to Idun Reiten
and the referee for a careful reading of a first version.

1. Notation.

If R is a finite-dimensional k-algebra, the modules considered usually will be finite-
dimensional left modules, and homomorphisms will be written at the opposite side of the
scalars. Let mod R be the category of R-modules, and ind R a set of indecomposable R-
modules, one from each isomorphism class, or also the corresponding full subcategory of
mod R.

We denote by A a finite-dimensional hereditary k-algebra which is connected. Let T
be a tilting A-module with endomorphism ring B. As usually, we let

F=FT)={M €ind A | Hom(T, M) = 0},
G=G(T)={M €ind A | Ext'(T, M) = 0},
X=X(T)={M €c€indB | T ® M = 0},

Y =Y(T)={M € ind B | Tor,(T, M) = 0}.

The pair (F,G) is a torsion pair in mod A. Given an A-module M, we denote its torsion
submodule by tM. The pair (), X) is a torsion pair in mod B which is even split.

Tilting theory asserts that the functor G = Hom(7', —) gives an equivalence G(T') —
V(T) and that the functor F = Ext'(T, —) gives an equivalence F(T') — X(T). We should
stress that for any A-module M

2
=
I

Hom(7T, M) = Hom(T,tM) = G(tM),
Ext' (T, M) = Ext! (T, M/tM) = F(M/tM).

g2
s
I

In this paper, the main interest will concern
M = M(T) = {M € ind A | Hom(T, M) # 0, Ext* (T, M) # 0},

as well as

N = N(B) = {N €ind B°| IN # 0},

these are the indecomposable B°-modules which are not B-modules.

2. M(T) for T preprojective.

Recall the following: Given a B-module IV, its support is the set of isomorphism classes
of the simple B-modules which occur as composition factors of N. The indecomposable
projective B-modules are of the form G(7;), thus the simple B-modules are indexed by the
natural numbers 1,2,..., n. Tilting theory shows that for any A-module M, the support
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supp G(M) of G(M) is the set of indices i such that Hom(7;, M) # 0, and that the support
supp F(M) of F(M) is the set of indices i such that Ext* (T}, M) # 0.

Lemma 1. Let M, M’ be indecomposable A-modules. Assume that there is an in-
dex i in the intersection of supp F(M') and supp G(M) such that T; is preprojective or
preinjective. Then supp F(M) and supp G(M') do not intersect.

Proof: Since i € supp F(M') Nsupp G(M), we have
Ext'(T;, M') #0 and Hom(T;, M) # 0.
Assume that there is j in the intersection of supp F (M) and supp G(M'), thus
Ext'(Tj, M) #0 and Hom(Tj, M') # 0.

Note that Ext'(T;, M') = D Hom(M', 7T;) and Ext'(Tj, M) = D Hom(M, 7T}). Thus, we
obtain a proper cycle
T, M1 <T;, < M'x7T; < T,
whereas T} is preprojective or preinjective, thus directing.
The case M = M’ yields the following corollary:

Corollary. Let M be an indecomposable A-module. Assume that there is an index
i in the intersection of supp F(M') and supp G(M), then T; is neither preprojective nor
preinjective.

Thus we have the following

Separation Property. If T is a preprojective tilting module, and M is indecompos-
able, then the supports of F(M) and G(M) are disjoint.

For the remainder of this section, we assume that 7" is a preprojective tilting module.
Let D be the set of predecessors of the modules 77T}, where T; is an indecomposable direct
summand of T'.

Lemma 2. We have F C D.

Proof: Let X be in F. Since F: F — X is an equivalence, we have Ext' (T, X) =
FX # 0, thus 0 # Ext' (T}, X) = DHom(X,7T;) for some 4. This means that X is a
predecessor of 775, thus is in D.

Lemma 3. If M belongs to M, then any indecomposable direct summand of M, tM,
M /tM belongs to D.

Proof: For any module M, the indecomposable direct summands of M /tM belong to
F, thus to D, according to Lemma 2. For M € M, the factor module M /tM is non-zero,
thus M has an indecomposable factor module M’ which belongs to F, thus also M belongs
to D. But then also any indecomposable summand of any submodule of M belongs to D.
In particular, any indecomposable summand of tM belongs to D.
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Lemma 4. If M € M, then Hom(M /tM,tM) = 0 and both tM and M/tM have no
self-extensions.

Proof: Since M is indecomposable and preprojective, its endomorphism ring is k. Any
non-zero homomorphism M /tM — tM would yield a non-zero nilpotent endomorphism of
M, which is impossible.

Let M’ be an indecomposable direct summand of tM. Then we get the following exact

sequence
Hom(M', M/tM) — Ext'(M’', tM) — Ext'(M’, M).

Here, the first term is zero, since M’ is torsion, and M /tM torsion-free. Also, the last
term is zero, since M’ is a predecessor of M, thus there cannot be a proper path from M
to M’'. Thus Ext'(M’,tM) = 0 and therefore Ext! (tM,tM) = 0.

Similarly, let M’ be an indecomposable direct summand of M/tM. There is the
following exact sequence

Hom(tM, M') — Ext'(M/tM, M') — Ext' (M, M’").

Again, the first term is zero, since tM is torsion and M’ is torsion-free. The last term is
zero, since M’ is a successor of M, thus there cannot be a proper path from M’ to M.
Therefore, Ext! (M /tM, M’) = 0, thus Ext' (M /tM, M /tM) = 0.

3. The matrix category of a bimodule.

Given two additive categories A and B, an A-B-bimodule 4FEp is by definition a
bilinear functor A°P x B — mod k. Given such an A-B-bimodule ¥ = 4Epz, let Mat E be
the category of E-matrices as introduced by Drozd [D]: its objects are triples (A, B, m),
where A is an object of A, B is an object of B and m € E(A, B). A morphism (A, B, m) —
(A’, B’,m') is a pair («, 3), where a: A — A’ and 3: B — B’ are morphisms in A, and B
respectively, such that mgG = am’.

Given a bimodule 4 Eg, one may introduce a quadratic form rg as follows: it is defined
on the direct sum of the Grothendieck groups K (A, @) and K(B,®). If X is an object in
A, and Y an object in B, then one calls the pair (X,Y) € K(A,®)® K(B,®) a coordinate
vector and one puts

re((X,Y)) =dimEnd4(X) + dim Endp(Y) — dim E(X,Y),

and this extends in a unique way to a quadratic form on K (A, ®)® K (B, @). This quadratic
form can be presented by drawing a graph with two kinds of edges, say solid ones and dotted
ones.

We recall the following: Assume there is given a free abelian group K with a fixed
basis B and a quadratic form ¢ on K with integer values such that ¢(b) =1 for all b € B,
then we draw the following graph: its vertices are the elements of B; and for b # b in B,
we consider cppy = q(b+b'). If cpp is negative, then we draw —cpp solid edges between b
and b’, otherwise we draw ¢y, dotted edges between b and b’. In the case of the quadratic
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form rg on K = K(A, @) @ K(B,®), we take as B the set of indecomposble objects in .4
and B and observe that the required condition rg(b) = 1 for b € B is satisfied. Thus, in
our case the vertices are the isomorphism classes of the indecomposable objects in A and
B, there are solid edges between vertices for A and B, and there are dotted edges between
the vertices for A as well as between the vertices for B; in this way, the graph is bipartite.
The number of edges is as follows: for indecomposable objects X, X’ both in A, or both
in B, the number of dotted edges is dimrad(X, X’) + dimrad(X’, X'), whereas the number
of solid edges between an isomorphism class A in A and an isomorphism class B in B is
dim E(A, B).

A Krull-Remak-Schmidt category with finitely many isomorphism classes of indecom-
posable objects is said to be directed, provided the endomorphism rings of all the indecom-
posable objects are division rings and there is a total ordering < on the set of isomorphism
classes of indecomposable objects such that Hom(M, M') = 0 for M’ < M.

There is the following important result of de la Pena and Simson ([DS], Propositions
1.1, 4.2 and 4.13): If the category Mat E is directed, then rg is weakly positive, and the
use of coordinate vectors provides a bijection between the indecomposable objects in Mat E
and the positive roots of rg.

When dealing with a bimodule E' = 4FEg, we sometimes will write £ = (A, E, B) in
order to stress the categories A, B. As usually, we may factor our the annihilators, thus we
may consider £ = (A, E, B), where A is obtained from A by factoring out the ideal of all
maps a € A such that E(a,1p) = 0 for all objects B in B, where similarly B is obtained
from B by factoring out the ideal of all maps 8 € B such that E(1p, ) = 0 for all objects
Ain A, and E(@, 8) = E(a, 3). We say that E = (A, E, B) is essentially directed, provided

that E = (A, E, B) is directed.

4. The category Mat Extl(]-", G) for T preprojective.

The first bimodule to be considered is Ext'(F,G): here, A = F, B = G and the
functor is E = Ext'(—, —).

Proposition 1. If M is an A-module, let n(M) = (M/tM,tM;e), where € is the
equivalence class of the canonical exact sequence 0 — tM — M — M/tM — 0. This
defines a functor n: mod A — Mat Extl(]-", G) which is full and dense and its kernel is the
ideal generated by all maps F — G.

Proof: well-known and easy (see the appendix).

Corollary. Assume that T is preprojective. The category Mat Extl(f, G) is essen-
tially directed.

Proof: The functor n maps D onto Mat Extl(]:, GND). Now, D is directed, thus also
Mat Ext!(F,G N D) is directed.

5. The bimodule [ and the algebra Bs.
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We consider the B-B-bimodule I = Ext% (DB, B). According to [ABS] (see also [R]),
this bimodule can be identified with Ext! (T, 771T) = F(r—'T).

Lemma 5. For X € F, the B-modules Homp (I, F(X)) and Hom (T, 7X) are iso-
morphic.

Proof:

Homy (T, 7X) = HomA(T_lT, X)
>~ Homp(F (1~ 'T), F(X)) = Hompg(I, F(X)).

First, we have used that 7—! and 7 are adjoint, and then the fact that F yields a bijection
Homa (M, X) — Homp(F(M), F(X)), for any A-module M, since X belongs to F (note
that this bijection for M = 77T is B-linear, since 7717 is an A-B-bimodule).

Lemma 6. For any B-module N, the module I @ N belongs to add X, and the
module Homp (I, N) to add ).

Proof: Note that I = Ext' (T, 7= 'T) belongs to add X. Let p: B* — N be a free cover
of N,then I®p: I' = I ®p B! — I ®p N is surjective. Thus, with I also I @5 N belongs
to add X.

In order to show that Hompg (I, N) belongs to add Y, decompose N = N’ @ N with
N’ € add X and N” € add Y. Then Homp (I, N) = Hompg(I, N'), thus we can assume that
N € add X. The previous lemma asserts that Hompg (I, N) is isomorphic (as a B-module)
to Hom (T, 7M), with M € addF. But Homa(T,7M) = Homa (T, t(TM)) belongs to
add Y.

Remark. Lemma 6 implies the (well-known) fact that I ® g I = 0. Namely, consider
the adjoint map 6: I — Homp(I,I x I) of the identity map. We know that I € add X,
whereas Homp(I,I x I) belongs to add Y. Thus § = 0, and therefore I ® I = 0. — Note
that I ® I = 0 means that the trivial extension B¢ = B x I can be considered also as the
tensor algebra of the B-B-bimodule I.

B I

0 B]' The Bs-modules can be written in

Let us consider the matrix ring By = {

the form
(No, Ni;7v: I ®p N1 — Np)

where Ny, N7 are B-modules and v is a B-homomorphism; in terms of matrices, we write

N in the form { NO] (and then we can use matrix multiplication, taking into account the
1

map 7).
. . 9 B 0 - . .
Consider the subring B = Bx B = 0 B of By. We will identify mod B with the
Bs-modules of the form (N, 0; 0), thus with those annihilated by the idempotent e; = [8 (1)] .
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We also consider a second embedding functor mod B — mod Bs; it sends the B-module N

to N[1] = (0, N;0); the Bo-modules of the form N[1] are just the Bs-modules annihilated
10

0 0} (the reason for writing N[1] will become clear when we deal

by the idempotent ey = [
with By).

Let A/ denote the indecomposable By-modules which are not B2-modules, thus those
indecomposable Bo-modules N with IN # 0 (again, we take just one module from each
isomorphism class).

Lemma 7. For any By-module N = (Ny, N1;7) in K/’, we have Ny € add X and
Ny € add ).

Note that this means: There exists an exact sequence 0 — X — N — Y[1] — 0 with
X €add X and Y € add Y, namely the sequence (Ny,0;0) — N — (0; N1;0).

Proof: We have shown in Lemma 6 that I ®p N; belongs to add X. Decompose
No = X & Nj with X in add X and N} € add). Since Hom(X, NV}) = 0, we see that we
can split off (N}, 0;0) from N, thus Njj = 0 and therefore Ny = X belongs to add X.

Instead of looking at the homomorphism v: I ® g N7 — Ny, we also may consider
the adjoint map v’': Ny — Homp (I, Ny). Since Hompg (I, Ny) belongs to add ), any direct
summand of N7 which belongs to add X’ has to lie in the kernel of 4/, thus can be split off.
This shows that N; belongs to add ).

We may illustrate the structure of mod By in the following way:

e —

Z

Here, Z denotes the indecomposable Bs-modules N with an exact sequence 0 — X —
N — Y[1] — 0 with X € add X and Y € add Y. Note that Z consists of X', Y[1] and N.

6. The equivalence of Mat Hom(G, 7F) and Z.

The second bimodule to be considered is Hom(G, 7F). Here, A = G, B = F and
E(X,Y)=Hom(X,7Y).

Proposition 2. There is an equivalence of categories
n: Mat Hom(G,7F) — Z
such that n(My, M2, ¢) = (G(M1), F(Maz), ¢') for some ¢'.
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Proof: Let (M7, Ms, ¢) be given, with My € G, My € F, ¢ € Hom(My,7Ms). Applying
G = Homyu (T, —) to ¢, we obtain

G(¢): G(My1) — G(TMsy) = Homyu (T, 7M>)
>~ Hom (17T, M>)
>~ Homp(F(77'T), F(M,)) = Homp(I, F(M,)).

First, we have used again that 7—! and 7 are adjoint, and then the fact that F yields a
bijection Homy (X, My) — Homp(F(X), F(Ms)), for any A-module X, since Ms belongs
to F (note that this bijection is B-linear, since 71T is an A-B°P-bimodule). The required
map ¢’ is the adjoint of the map G(M;) — Homp (I, F'(Ms)).

For the converse, we only have to observe that G yields a bijection Hom 4 (M7, X) —
Homp(G(M;),G(X)) for any A-module X, since M; belongs to G.

7. The algebras B¢ and B..

We also consider the (Z x Z)-matrix ring

o o~

of (Z x Z)-matrices with only finitely many non-zero entries: on the main diagonal, there
are copies of B, above the main diagonal, there are copies of I (since I ® I = 0, we do not
have to worry about multiplying elements from different copies of I). Note that here we
deal with a ring without identity element, but at least it has sufficiently many idempotents.
The Bs,-modules are of the form (V;,;);, indexed over Z, with B-modules N; and B-
linear maps 7;: I ® g N; — N;_1. Note that B, is locally bounded (this means that any
simple B..-modules has a projective cover and an injective envelope, both being of finite
length).

We will consider mod Bs as the full subcategory of mod By, with objects (N;,y;) where
N; =0 for i ¢ {0,1}. In this way, we consider Z as a fixed subcategory of mod B,. Also,
we define for any ¢ € Z a shift functor [t]: mod Bo, — mod By by N[t] = (Ni—t,Vi—t)i,
for N = (Nu’)/z)z

Proposition 3. The indecomposable By,-modules of finite length are of the form N|t]
with N € Z and t € Z, and N,t are uniquely determined.

Proof: Let N = (N;,7;); be a Bs-module of finite length. Decompose N; = X; @Y;
with X; € X and Y; € ), for all i € Z. The discussion of the Bs-modules shows that
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~; vanishes on I ® X; and maps into Y;_1, thus we see that there is the following direct

decomposition of By,-modules M®) = (Mi(t), ’yi(t))i where

Xt—l Z =1— 1
Mi(t) = Y; for 1=t
0 otherwise

and where %ﬁ“ is given by 7;. Obviously, M) belongs to Z[t]. As a consequence, if N is

an indecomposable B.,-module of finite length, then it belongs to Z|t] for some ¢ € Z.

Recall that a locally bounded ring R is said to be locally support-finite provided for any
simple R-module S there exists a finite set of simple R-modules S(S) with the following
property: if M is an indecomposable R-module of finite length which has S as a composition
factor, then any composition factor of M belongs to S(5).

Corollary. The algebra B, is locally support-finite.

Proof. Let S be a simple By-module, say S = (5;,0); with S; = 0 for i # ¢,
and assume that N = (N;,7;); is an indecomposable B,,-module of finite length with
composition factor S. Then N belongs to Z or to Z[—1]. This shows that there are only
finitely many simple B°-modules which can occur as composition factors of N.

Our interest lies in the cluster-tilted algebra B¢ = B x I. Obviously, the algebra B,
is a Galois covering of B¢ with Galois group 7Z given by the shift functors [t|] with t € Z.
The covering functor 7: mod B, — mod B¢ sends (N;,v;); to (D, Ni,v) with v being
given by the ~;.

According to Dowbor-Lenzing-Skowronski [DLS], the Proposition 3 and its Corollary
have the following consequences:

Corollary. The covering functor m is dense and induces a bijection between Z and
mod B°.

Of course, this bijection yields a bijection from N onto N (B).

Besides the covering functor 7: mod B, — mod B¢ itself, we also may look at its

restriction to mod By. Note that the subring of By of all matrices of the form [8 i}

with b € B and x € [ is just B¢, and this inclusion gives rise to the restriction of the
covering functor
mod B, C mod Bs, — mod B¢.

The original definition of a cluster-tilted algebra C' as introduced by Buan-Marsh-
Reiten [BMR] implies that the module category mod C is a factor category of a cluster
category C4. Namely, one starts with the derived category D°(mod A), say with shift
functor ¥ and Auslander-Reiten translation 7, and considers the orbit category C4 =
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D’(mod A)/o with ¢ = X77L. Then, one takes the factor category C/(7T) (here, (7T)
is the ideal of all maps which factor through add 77"). It turns out that 7', considered as
an object of C4/(7T) is a progenerator, and its endomorphism ring is B¢, thus one can
identify

mod B¢ = C4 /(7T).

We may change the procedure slightly: Starting with the derived category D?(mod A),
we now first want to factor out the ideal (¢*(77") | z € Z) and only in the second step form
the orbit category with respect to the action of . We can make the identification

mod By, = D’(mod A)/{c*(7T) | z € Z)

so that the shift functor M — M][1] on the left coincides with the operation of o on the
right. In particular, the covering functor

7: mod Bo, — mod By /[1] = mod B

is nothing else than forming the orbit category (D®(mod A)/(c*(7T) | z € Z)) Jo.

Let us remark that the importance of By and B, for dealing with a cluster-tilted
algebra B¢ has been stressed already in [R].

8. The category Mat Hom(G, 7F) for T preprojective.
In case T is preprojective, we can improve the assertion of Lemma 7.

Lemma 8. Assume that T is preprojective. For any Ba-module N = (No, N1,7) in
N we have Ny € add X and N; € add G(GN D).

Proof: According to Lemma 7, we know that Ny € add X and N; € add), thus
Ny = F(My) for some M,y € addF and N; = G(M;) for some M; € addG. Instead of
looking at v: I ® N1 — Ny we look again at the adjoint map

v': Ny = G(My) — Homp (I, Ng) = Homp (I, F(My))
Using Lemma 5, we see that
Homp (I, F(My)) = Homa (T, 7My) = Homa (T, t7My) = G(tTM).

Since G is an equivalence between G and ), there is a homomorphism f: M; — t7Mj such
that 7' = G(f).

Now we use that N belongs to N. If Mj is an indecomposable direct summand
of M, then there must exist an indecomposable direct summand M} of My such that
Hom (M7, tTM[) # 0. Note that M| belongs to F, thus to D, according to Lemma 2. But
then also M belongs to D, since by definition, D is closed under predecessors. This shows
that M7 belongs to G N D, thus N; belongs to add G(G N D).

12



Corollary. Let T be preprojective. Then Mat Hom(G N'D, 7F) is directed.

Proof: Under the equivalence 7, the matrix category Mat Hom(GND, 7.F) is mapped to
a subcategory Z’ of Z. We claim that Z’ is directed. This is clear in case A is representation
finite, since in this case we deal with a subcategory of a factor category of D?(mod A),
and D’(mod A) is directed, thus also Z’ is directed. Thus, we can assume that A is
representation infinite (and connected). Let us recall the structure of the categories mod A
and DP’(mod A). The category mod A decomposes into three parts: the preprojectives P,
the regular modules R and the preinjectives Q. Looking at D’(mod A), the subcategories
¥#(Q) and ¥*T1(P) combine to form a transjective component, and any finite subcategory
of such a component is directed. But Z’ is a factor category of a finite subcategory of the
transjective component with the objects Q@ and X (P), thus Z’ is directed.

9. The bijection between M(T) and N (B).

Proposition 4. Let T be preprojective. There is a bijection v: ind A — ind B¢, such
that for M € ind A, the restriction of «(M) to B is G(M) & F(M).

Remark. Note that for any A-module M, we have
GM)=G({tM) and F(M)=F(M/tM).

Thus we could write ¢«(M) = G(tM) ® F(M/tM). This would stress that we deal with the
middle terms of the exact sequences

0—>tM— M — M/tM — 0,
0— F(M/tM) — «(M) — G(tM) — 0.

Proof: For M in F,let «(M) = F(M); for M in G, let «(M) = G(M); thus, it remains
to consider M in M(T).

We consider the categories A = F, B =GN D and the bimodule E = Ext*(F,GND).
The quadratic form rg is defined on

K=KF,®)oKGND,o)

We also may consider the bimodule £ = Hom(G N D, 7.F) with quadratic form rg on K.
According to Auslander-Reiten, the bimodules E and E’ are dual to each other, thus the
quadratic forms rg and rg/ coincide.

The indecomposable objects both in M(T') and in N (B) correspond bijectively to the
positive non-simple roots of the quadratic form rp = rg/, according to the theorem of de
la Pena and Simson quoted in section 3. This completes the proof.

Remark. As we see, a key ingredient of the proof is the duality of the bimodules
Ext'(F,G) and as Hom(G,7F), which is one of the basic results of Auslander-Reiten
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theory, since we have to deal with the matrices over these bimodules. (Note that we could
write Hom instead of Hom, since the only maps from injective modules to 7F are the zero
maps. )

Corollary. Let T be preprojective. Let Z € N'(B). Then End(Z) = k.

Proof. We can write Z = (V) for some indecomposable By-module N = (N7, Na, 7).
Now, Endg(N) = k. Also, Hom(NN7, N2) = 0 according to the separation property. Thus
End(Z) = k.

Observe that this is the assertion (c¢) of Theorem 2.

10. The quadratic form ¢p.
Given a finite-dimensional algebra R of finite global dimension, we denote by (—, —)

the bilinear form on K((R) with

(dim M, dim M') =) "(~1)" dimy Ext} (M, M)

t>0
for all R-modules M, M’, and we write gg(z) = (z,z) for x € Ky(R); in this way, we
obtain a quadratic form which is called the Euler form.

Let us return to the hereditary algebra A with tilting module 7" and B = End(T).
Recall that we have denoted by Ti,...,T, indecomposable direct summands of 7T, one

from each isomorphism class and g: Ky(A) — Ky(B) was defined to be the linear bijection
such that ¢g(dimT;) = dim G(T;), for 1 <i < n.

Addendum to Proposition 4. We have dim¢(M) = abs g(dim M ).

Proof. Since tM belongs to G, we have dimG(M) = dimG(tM) = g(dimtM).
Since M/tM belongs to F, we have dim F(M) = dim F(M/tM) = —g(dim M /tM).
Altogether, it follows from dim M = dimtM + dim M /tM that

g(dim M) = g(dimtM) + g(dim M /tM) = g(dim G(M)) — g(dim F(M)).

The separation property now implies that

abs g(dim M) = g(dim G(M)) + g(dim F(M)).

Lemma 9. Let M € M(T). Then

ga(dimtM) = dim End(tM), qa(dim M /tM) = dim End(M/tM).

Proof: Since A is hereditary, ¢4(dim X) = dimEnd(X) — dim Ext' (X, X) for any
A-module X. According to Lemma 4, both tM and M/tM are modules without self-
extensions.

14



We have denoted by Ti, ..., T, indecomposable direct summands of 7', one from each
isomorphism class. If we define

g: Ko(A) — Ko(B) by g(z) = ({t;, 7)),

then g(dim7T;) = dim G(T;), for 1 < i < n, thus g is the linear bijection between Ky(A)
and Ky(B) mentioned in the introduction.

Proposition 5. Let M € M(T).

gp(absg(dim M)) = 2(dim End(¢tM) + dim End(M /tM)) — 1.

Proof: Let x = dim M. Since M is preprojective, g4(x) = 1. Write y = dimtM, and
z=dim M /tM. Since x = y+ z and g is linear, g(z) = g(y) + g(z). Now g(y) is positive
and g¢(z) is negative. Since the support of F(M) and G(M) are disjoint (the separation
property), we see that abs g(z) = g(y) — g(2). Thus

qp(abs g(x)) (9(y) — 9(2))
(9(y)) +aB(9(2)) —2(9(y),9(2)) B
(y) +qa(z) —2(y,2) a.

qB
qB
qga

On the other hand,

1 =qa(z) =qaly +2) = qa(y) + qa(z) +2(y, 2) a.

If we add the two equalities, we obtain

qp(absg(r)) +1 = 2(qa(y) + qa(2)).

Now, we apply Lemma 9 in order to see that
gp(absg(x)) + 1 = 2(dimEnd(tM) + dim End (M /tM)).

This completes the proof.
Corollary. If M € M(T), then qg(abs g(dim M)) is an odd integer greater than 2.
This shows the assertion (b) of Theorem 2.

Proof: For M € M(T), both modules tM and M/tM are non-zero, and therefore
dim End(¢tM) > 1 and dim End(M/tM) > 1.

Corollary. If M € M(T), then qg(abs g(dim M)) = 3 if and only if tM and M /tM
are both indecomposable.

We will discuss this situation in the next section.

11. The mixed pairs.
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In order to determine the quadratic form rg, one needs to know the pairs (X,Y) of
indecomposable A-modules with X € F and Y € G such that Ext'(X,Y) # 0.

We call (X,Y) a mized pairprovided X is an indecomposable module in F(7"), whereas
Y is an indecomposable module in G(T'), and finally Ext'(X,Y") # 0.

Proposition 6. Let T be preprojective. Then any mized pair (X,Y) is an orthog-
onal exceptional pair consisting of preprojective A-modules such that Extl(X, Y) is one-
dimensional. Let M be the middle term of a non-split exact sequence 0 - Y — M — X —
0, then M 1is indecomposable and preprojective, and Extl(X, M) =0 and Extl(M, Y)=0.

Proof: Let 0 - Y — M — X — 0 be a non-split exact sequence. Since Hom(Y, X) =
0, it follows that M is indecomposable. Since M is a predecessor of X, we see that M is
preprojective. Since Y is a proper predecessor of X, it follows that Hom(X,Y) = 0 and
Ext' (Y, X) = 0, thus (X,Y) is an orthogonal and exceptional pair. The full subcategory
C of modules with a filtration with factors X and Y consists of X, Y and some modules
in M(T), thus it is of finite type, therefore Ext’(X,Y) is at most one-dimensional, thus
one-dimensional.

It is well-known (and easy to see) that C is equivalent to the category of representations
of the quiver of Dynkin type Ao, and M, considered as an object of C is both projective
and injective. In particular, we have Ext' (X, M) = 0 and Ext'(M,Y) = 0.

Remark. There is the following converse: If (X,Y) is an orthogonal exceptional pair
consisting of preprojective A-modules, then the dimension of Extl(X, Y) is at most 1. If
dimy Ext'(X,Y) = 1, then there is a preprojective tilting module T with X € F(T) and
Y € G(T) (and therefore (X,Y) is a mixed pair for T).

Proof. First, if dimy Ext'(X,Y) > 2, then there are infinitely many indecomposable
A-modules M which have a submodule M’ which is a direct sum of copies of Y such that
M/M' is a direct sum of copies of X, and all these modules are predecessors of X, this is
impossible. This shows that dimy Ext'(X,Y) < 1.

Second, assume that dimj Ext'(X,Y) = 1. We claim that 77'X @ Y is a partial
tilting module. Since Y is a predecessor of X, it is also a predecessor of 77! X, therefore
Ext’(Y,77'X) = 0. On the other hand, also Ext'(r='X,Y) = DHom(Y,X) = 0. The
Bongartz completion T of this partial tilting module is a preprojective tilting module and
XeF(T)and Y € G(T).

12. Proof of Theorem 1.
A quadratic form ¢ defined on Z" with values in Z is said to be an integral form.

Proposition 7. Let q be an integral quadratic form on Z" which is positive definite.
If z,2" € 77" satisfy q(xz) =1 = q(a’) and absx = absz’, then x = +a'.

Proof. Let y € Z™ be defined by y; = z; provided z; = z and y; = 0 otherwise. Let
z=x—y,thusx =y+ 2z and 2/ =y — z. Let (—, —) be the bilinear form (with values in
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17) corresponding to q. Then

shows that (y,z) = 0, thus

1 =q(z) = q(y) + q(2).
Since we assume that ¢ takes values in Z and since ¢ is positive definite, it follows that
y=0o0rz=0.1f 2=0, then z = 2/. If y =0, then z = —2'

Proof of Theorem 1. Let C be representation-finite and cluster-tilted, say C = B¢
with B = End4(T"), where T is a tilting A-module and A is hereditary and representation-
finite. Let N, N’ be indecomposable C-modules with dim N = dim N’. Proposition 4
provides indecomposable A-modules M, M’ such that the restriction of (M) to B is N,
and the restriction of ((M’) to B is N’. Let z = dim M, 2’ = dim M’. Then dim N =
abs g(x), and dim N’ = abs g(z’) according to the addendum to Proposition 4. Now,
qp(9(z)) = qa(xz) = 1, and also ¢p(g(z’)) = qa(z’) = 1. With g4 also ¢p is positive
definite. Thus we can apply Proposition 7 in order to see that g(z) = +g(2’) and therefore
x = +x’. However, both x,x’ are non-negative vectors, thus x = 2’ and therefore M, M’
are isomorphic (since any real root module is determined by its dimension vector). Since
¢ is a bijection of isomorphism classes, it follows that N, N’ are isomorphic.

13. Examples.

13.1. Let us exhibit one example in detail. In particular, we will see that the categories
M(T) and N (B) can be quite different!

Consider the algebra A = Ts3; this is the path algebra of the quiver @ of type Ag,
with a unique sink and indecomposable projective modules of length at most 3. We label
the vertices as exhibited on the left. To the right, we present the Auslander-Reiten quiver
and mark a tilting module using *: it consists of the indecomposable projective modules
of length 1 and 3 and the simple injective modules:

T(a) = P(1), T(b)=P(3), TW)=P®), T(c)=I(3), T()=I().

The class G of indecomposable torsion modules consists of the modules T'(a), T'(b), T(V)
and the five indecomposable injective modules, the class F of indecomposable torsionfree
modules consists of the two modules 77(3) and 71(3’).

A4 3 ()
2 &
1 O/
\O
»
50 T(c)
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The positions of the five mixed modules are denoted by M, in a later table we will provide
more information on these modules.

Here is the quiver with relations for the algebra B = End(47), as well as the
Auslander-Reiten quiver of mod B.

The A-modules in G and F, and the corresponding B-modules obtained by applying the
functors G and F', respectively, are as follows:

P(1) P@B3) P(3) I1) I2) I2) I(3) I(3) 7I(3) 7I(3)
P(a) P() PU) I(a) S(kb) S¥) P() P() Sk S()

Next, we present the shape of the cluster category with circles showing the direct
summands of T, or better, just their labels (these modules are now considered as objects
of C4), always, the dashed lines have to be identified in order to form Moebius strips:

|
Now, we present first the quiver with relations for the algebra B¢, as well as the
Auslander-Reiten quiver of mod B¢. The positions of the five mixed modules are denoted

by N.




The following table shows the bijection ¢ between the modules M in M(T) and the
modules N = (M) in N (B). Below any M we outline its torsion part tM and its tor-
M/tM N/tN

téw ; similarly, under N we show t/T In the lowest

row, one finds the values ¢p(dim N).

sionfree part M /tM by writing

) ) o o %3
2 2 o 2 2
M 12 1” 1 12 1”
2/ o 2/ 2/ \2/
o o o 3/ o
T7I1(3) & 7I(3') 7I(3) T1(3") T1(3) T1(3")
P(1) P(1) P(1) P(3) P(3)
o o o o, b
c c S o : /c / o
N i i a’ a” a
\c’ o ::x.c' \ To A
o o o b o
GP(1) GP(1) GP(1) GP(3) GP(3)
Fri(3) o Fri(3) Fri(3) Fri(3) Fri(3) Fri(3)
gp(dim N) 5 3 3 3 3

Finally, we note that the quadratic form rg has the following graph:
TI(3)

TI(3)

As usual, we have deleted the isolated vertices (here, a vertex is said to be isolated provided
it is not the endpoint of any solid edge).

13.2. Next, let us present two non-isomorphic tilted algebras B, B’ such that the
cluster-tilted algebras B’ and (B’)¢ are isomorphic and representation-finite.
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There are 10 isomorphism classes of indecomposable B®-modules N. The following table
lists the values of ¢p(dim V) and ¢p/(dim ) for these modules.

. 1 0 0 0 1 1 0 0 1
dim N 000 100 ol0 001 100 ol0 110 oll 110 11

= o

gp(dim N) | 1 1 1 1 3 1 1 1 1 1

g (dimN)| 1 1 1 1 1 1 3 1 1 3

13.3. Let us consider now canonical algebras. A canonical algebra C'is a tilted algebra
if and only if it is domestic (thus, the quiver obtained from the quiver of C' by deleting
the source is a Dynkin diagram), and these algebras are cluster-concealed. For example,
let us consider the canonical algebra of type E7, its quiver has the form

0<—0=<—0
O?\O AO/O
o

and there is a single relation: the sum of the paths from the source to the sink. The
corresponding cluster-tilted algebra has one additional arrow ~:

O<—0=<—0

e ™

o

Y

and a lot of zero relations: any path from a vertex x to a vertex y and involving v is a
zero relation, provided the quiver of B contains an arrow y — .

We consider the indecomposable Bs-module N as well as its image Z = 7(N) under
the covering functor =:

dim N dim Z

0<—0=<—1 1<—0<—0 1<—0=<—1

0/ 0<—1<>2<—2/ 0<—0<>0 2 0<—1<>2
e e N

0 0 0

Note that ¢p(dim Z) = 9. Here, both B-modules N7, Ny are decomposable, and it is
easy to see that dim End(N;) = 3, and dim End(N3) = 2; the B-modules Ny, Ny are the

following;:

dim N1 dim N2

0<—0=—1 1<—0=<—0

0/ 0<—1<>2 2/ 0<—0<T—\0

0 0
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We exhibit another indecomposable Bs-module N’ as well as its image Z = m(N)
under the covering functor =:

dim N’ dim 7’
0<—0=<—1 1<—0=<—0 1<—0=<—1
0%—13262%—030 2%—132
0/ o/ w

Note that the composition of the horizontal maps on the left, as well as the composition of
the corresponding maps on the right have to be zero. On the right, we see an indecompos-
able B°-module Z’ such that there is an arrow (namely the one in the center) such that the
corresponding vector space map used in Z’ is the zero map and neither an epimorphism
nor a monomorphism. Here, ¢g(dim Z’) = 7.

14. Tilting modules which are neither preprojective nor preinjective.

The separation property holds only for preprojective (or preinjective) tilting modules,
as we are going to show now. As above, let A be a finite-dimensional hereditary k-algebra.

Proposition 8. Let T; be an indecomposable reqular A-module. Then the compo-
nent containing T; contains infinitely many indecomposable modules M such that both
Hom(T;, M) # 0 and Ext' (T;, M) # 0. If A is wild, then any regular component contains
infinitely many indecomposable modules M with this property.

Proof: In case A is tame, we deal with a stable tube and the stated property is easy
to check. Thus, assume that A is wild. Note that a regular component of a wild hereditary
algebra is of the form ZA.,

We use the following well-known assertion of Baer [B] and Kerner [K]: If X and Y are
indecomposable regular modules, then Hom (X, 7Y) # 0 and Hom(7~™Y, X) # 0 for
m > 0. Thus, consider any regular component of the Auslander-Reiten quiver of A and
let N be an indecomposable module in this component which is quasi-simple. Then, we
have Hom(7;,7™N) # 0 and Hom(7~™N, T;) # 0 for m > 0. Take such a natural number
m > 1 and consider the ray starting in 7" N

TN =71"N[1] - 7"N[2] = -+ = 7"N[t] - -+,
it consists of indecomposable modules and irreducible monomorphisms. Let
M = 1" N[2m)].

Now M has a filtration going upwards with factors 7N, 7™ 1N, ..., 7™+ N. In partic-
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ular, it follows that M maps onto 7-™ 1N,

M = 1" N[2m]

TN  molN rmtly

We claim that both Hom(Tj, M) and Ext' (T}, M) are non-zero. On the one hand, 0 #
Hom(7;, 7™ N) embeds into Hom(7;, M), since 7 N is a submodule of M. This shows that
Hom(T;, M) # 0. On the other hand, we have 0 # Hom(7~™N, T;) ~ Hom (7™ "' N, 7T;),
since 77! is left adjoint to 7. Composing a surjective map M — 7~ ™! N with a non-zero
map 7™ N — 7T}, we obtain a non-zero map. This shows that Hom(M, 7T;) # 0, and

therefore
Ext!(T;, M) ~ D Hom(M, 7T;) # 0.

This completes the proof.

Proposition 9. If T, is an indecomposable preprojective module, and Ty, is an in-
decomposable preinjective module, then any reqular component contains infinitely many

indecomposable modules M with Hom(Ty, M) # 0 and Ext* (T, M) # 0.

Proof: The proof is similar to the previous proof. Here, we use that for indecomposable
modules P, R, ) with P preprojective, R regular and @) preinjective, Hom(P,7™R) # 0
and Hom(7™™R, Q) # 0 for m > 0.

Corollary. Let A be a finite-dimensional hereditary algebra and T a tilting module.
The following conditions are equivalent:
(i) The tilting module T is neither preprojective nor preinjective.
(ii) M(T) is infinite.
(iii) M(T) contains a regular module.
(iv) M(T') contains indecomposable reqular modules of arbitrarily large length.

Proof: Of course, (iv) implies both (ii) and (iii).

Now assume that (ii) or (iii) holds. If 7" is preprojective, then we have seen in Lemma
3 that M(T) is a finite set of preprojective modules; similarly, if 7" is preinjective, then
M(T) is a finite set of preinjective modules. This contradiction shows that 7' cannot be
preprojective or preinjective, thus (i) holds.

Conversely, let us assume (i). Then either 7" has an indecomposable summand which
is regular, or two indecomposable summands one being preprojective, the other being
preinjective. If A is wild, then the previous two propositions show that M(T') contains
infinitely many indecomposable modules which belong to the same regular component. But
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a regular component cf a hereditary algebra A contains only finitely many indecomposable
modules of a given length (for A wild, see for example [Zg]). Actually, one easily observes
that the proofs of the two previous propositions yield sequences of indecomposable modules
in M(T) of unbounded length.) This shows (iv) in case A is wild. In case A is tame, the
proof is similar.

15. A further remark.

Starting with a finite-dimensional hereditary algebra A and a tilting A-module 7', one
considers T" as an object in C4 and obtains in this way a so-called cluster-tilting object.
However, one knows that not all cluster-tilted objects of C4 are obtained in this way —
it may be necessary to change the orientation of the quiver of A. For the benefit of the
reader let us include an easy recipe for finding an orientation such that a given cluster-
tilting object can be considered as a module. Of course, we only have to consider the cases
when 7' is not regular.

Proposition 10. Let T be a cluster-tilting object in a cluster category C. Let S be
a slice in C such that the sources of S belong to addT’. Then no indecomposable direct
summand of T belongs to 7~ 1S.

Proof: Assume 7" is an indecomposable direct summand of 7" and belongs to 771S.
Then 7T’ € S. There is a source S in S with Hom(S,7T") # 0. Thus Ext'(7",S) =
D Hom(S,7T") # 0, thus S cannot be a direct summand of 7', in contrast to the assump-
tion.

We can apply the proposition as follows: Let T} be any indecomposable direct sum-
mand of 7" which is not regular. Then there is a unique slice in C such that T} is the unique
source.
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Appendix: Torsion pairs and matrix categories.

For the convenience of the reader, we add a proof of the result which seems to be
folklore. Assertions of this kind can be traced back to the Kiev school of Nazarova, Roiter
and Drozd.

Proposition. Let (F,G) be a torsion pair in the abelian category A. Given A € A,
let €4 be the equivalence class of the canonical exact sequence 0 — tA — A — AJ/tA — 0,
and n(A) = (A/tA,tA,en). Then this defines a functor n: A — Mat Ext'(F,G) which is
full and dense and its kernel is the ideal generated by all maps F — G.

In particular, in case A is a Krull-Remak-Schmidt category, then we see that the kernel
of the functor 7 lies in the radical of A and therefore 7 is a representation equivalence.

Proof: Denote the inclusion maps tA — A and tA’ — A’ by u,u/, respectively, and
the projection maps A — A/tA and A" — A'/tA" by p,p’ respectively. Let a: A — A’ be
a morphism in A. Then « maps tA into tA’, thus it induces a map ta: tA — tA’ as well
as a map a: A/tA — A'JtA’, thus ua = (ta)u/, and pa = ap’.
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Using ta, we obtain the following induced exact sequence

0 tA —— A L2 5 AtA —— 0
o ] |
0 tA’ B A/tA —— 0.
v q

Since ua = (ta)u’, there is a map o”: B — A’ such that a = ¢/’ and va/" = u/. Tt

follows that ga = o’’p/, since

o/o/'p' = ozp' = pa = o/qa,

and
vo!'p = u'p =0 = vqa.

Thus we also have a commutative diagram with exact rows:

0 —— tAd —2 - B —1 A/tA —— 0

I

0 —— tA A’ Al JtA —— 0.

u/ p/

The diagram shows that the upper row is induced from the lower one by @, therefore
taes = e a. Thus, we see that n is a functor.

First, we show that n is dense: any element € € Extl(F , G) is the equivalence class of
an exact sequence

0G5 ASF 0.

Here, the image of p has to be tA, let u: tA — A be the inclusion map and A/tA the
canonical projection. We obtain a commutative diagram with exact rows:

0 G 24 —° F ——0
/| | I
0 tA —— A - AJtA —— 0

where p/ and € are isomorphisms.

Next, we show that 7 is full. Let A, A’ be objects and assume that there are given
maps 3: tA — tA" and y: A/tA — A’/tA’ such that feq = e4y. We obtain the following
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commutative diagram with exact rows:

0 —— tA —— A —L2 o A/tA —— 0

ﬁl g’ ‘

0 — tA B AtA —— 0

6 |

0 —— tA —— B —L - A/tA —— 0

v Vl

0 —— tA A’ A JtA) —— 0,

u/ p/

The upper part shows that the second row is induced from the first. the lower part shows
that the third row is induced from the forth. The central part means that the two induced
sequences are equivalent: Altogether we obtain the map o = 3'd9': A — A’ and we have

ta = (3, and @ = ~. Thus, (5,7) = n(a).

It is clear that the maps F — G are in the kernel of 7. Conversely, assume that
a: A — A’ is in the kernel of 7, thus ta = 0 and @ = 0. Then a = pa’u’ for some
o AJtA — tA’, thus « lies in the ideal generated by the maps F — G.
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