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Let k be a field. Let I be a ordered set (what we call an ordered set is
sometimes also said to be a totally ordered set or a chain). Let k[I] be the
incidence algebra of I ; it is the k -algebra with basis the pairs (i, j) where i, j ∈ I
and i ≤ j , with multiplication (i, j)(i′, j′) = (i, j′) provided j = i′ and equal to
zero, otherwise. In case I is an infinite set, then the algebra k[I] does not have
an identity element, but it always has sufficiently many idempotents, namely the
pairs (i, i) with i ∈ I .

The aim of this note is to consider the following special case: Let T be an

ordered set, let I = T
→

×Z be the product T ×Z with the lexicographical ordering.
We consider the category D(I) of all k[I] -modules which are finitely generated
and finitely cogenerated and we will show that this category is a hereditary abelian
k -category without non-zero projective objects, but with almost split sequences.
In particular, D(I) is a hereditary abelian k -category with Serre duality as con-
sidered by Reiten and Van den Bergh [RV]. Recall that in this paper [RV], Reiten
and Van den Bergh have classified all the hereditary abelian k -category with Serre
duality which are derived equivalent to a noetherian one. The examples presented

here are usually non-noetherian. In fact, we show (Corollary 2) that D(T
→

×Z) is
derived equivalent to a noetherian hereditary abelian category if and only if the
cardinality of T is 1 or 2.

The categories of the form D(I) are of interest also for another reason:
we may construct in this way nice abelian categories with arbitrary finite Krull-
Gabriel dimension. Namely, we will show (Corollary 3) that the category D(T ) ,
where T = Z

n with lexicographical ordering, has Krull-Gabriel dimension n − 1.

The author is indebted to Henning Krause and and Idun Reiten for questions
and remarks which stimulated these investigations. In particular, Idun Reiten has
pointed out that categories which are derived equivalent to the ones presented
here, have already been studied in her joint work with M. Auslander [AR], see the
final remark of the paper.

1. The serial representations of an ordered set.

Let T 6= ∅ be an ordered set. Let us construct the serial k[T ] -modules
(recall that a module is said to be serial provided its submodules are ordered).
As usual, we call a subset J ⊆ T an ideal provided for any j ∈ J any element
i ∈ T with i < j belongs to J . If J is an ideal of T , we may consider the vector
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space M(J) = kJ with basis J as an k[T ] -module with scalar multiplication
(i, i′) ∗ j = i in case i′ = j and zero otherwise (here, (i, i′) is considered as a
basis element of k[T ] , thus we assume that i ≤ i′ , whereas the letter j as well
as the letter i on the right side of the equality sign are basis elements of M ). Of
course, if I ⊆ J are ideals of T , then M(I) is a submodule of M(J) . We denote
M(J/I) = M(J)/M(I) . Note that we obtain a bijection between the submodules
of M(J/I) and the ideals I ′ with I ⊆ I ′ ⊆ J ; in particular, all these modules
M(J/I) are serial, and any serial modules is obtained (up to isomorphism) in this
way. We denote by S(T ) the full subcategory of Mod k[T ] given by all finite direct
sums of serial modules.

Let us consider some maps and some extensions in the category S(T ) . If
I ⊆ I ′ ⊆ J are ideals of T , there is the canonical projection M(J/I) → M(J/I ′) ,
and such a map will be denoted by π ; if I ⊆ J ⊆ J ′, there is the canonical
inclusion M(J/I) → M(J ′/I) . it will be denoted by ι . In general, we have

Hom(M(J/I), M(J ′/I ′)) =

{

k in case I ⊆ I ′ ⊂ J ⊆ J ′,

0 otherwise .

In case I ⊆ I ′ ⊂ J ⊆ J ′ , a non-zero map M(J/I) → M(J ′/I ′) is given by the
composition map in the following commutating diagram:
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ι

Of course, the commutative diagram yields also the following exact sequence

(∗) 0 −→ M(J/I)

[ ι

π

]

−−−→ M(J ′/I) ⊕ M(J/I ′)
[ π −ι ]
−−−−→ M(J ′/I ′) −→ 0

A similar exact sequence is obtained in case we deal with I ⊆ I ′ = J ⊆ J ′ :

0 −→ M(J/I)
ι
−→ M(J ′/I)

π
−→ M(J ′/I ′) −→ 0.

Actually, we don’t have to distinguish the two cases, the exact sequence (∗) exists
for all quadruples I, I ′, J, J ′ with I ⊆ I ′ ⊆ J ⊆ J ′ , and reduces to the second
one in case I ′ = J so that M(J ′/I) = 0. In general, the sequence (∗) is non-split
provided I ⊂ I ′ and J ⊂ J ′ .

The description of the Hom-sets of indecomposable objects has the following
consequence: For any ordered set T , the category S(T ) is directed.

We will use certain full subcategories G of S(T ) which are constructed as
follows: Let I = (I0, I1, . . . , Im) be a chain of ideals of T , thus I0 ⊂ I1 ⊂ · · · ⊂
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Im . Denote by G = G(I) the full subcategory of all k[T ] -modules which have a
finite filtration with factors of the form Nr = M(Ir/Ir−1) , for 1 ≤ r ≤ m. This
subcategory G will be said to be the grid subcategory given by I . Note that G
is a full exact abelian subcategory and the objects Nr are simple objects in G .
Since dimk Ext1(Nr, Ns) = 1 for s = r − 1 and 0 otherwise, we see that G is
equivalent to the category of finitely generated B -modules, where B is a factor
algebra of the path algebra kQ of the linearly oriented quiver Q of type Am . The
module M(Im/I0) belongs to G ; it is indecomposable and has a filtration with all
the factors N1, . . . , Nm . This shows that actually B = kQ .

Let M1, . . . , Mn be serial k[T ] -modules. Let Mr = M(Jr/J ′

r) , for 1 ≤ r ≤ n
and ideals J ′

r ⊆ Jr of T . Let {Jr, J
′

r | 1 ≤ r ≤ n} = {I0, . . . , Im} = I with
I0 ⊂ I1 ⊂ · · · ⊂ Im. Of course, m ≤ 2n−1. Let G = G(I) be the grid subcategory
given by I, we call it the grid subcategory generated by M1, . . . , Mn and write
G = G(M1, . . . , Mn).

These considerations may be interpreted as follows: The category S(T ) is a

filtered union of grid subcategories, and any of these subcategories is equivalent to

the category of mod kQ where Q is the linearly oriented quiver of type Am for

some finite m . We will use this observation quite often.

Remark: As we have seen, the grid category G generated by the serial k[T ] -
modules M1, . . . , Mn is a full exact abelian subcategory of S(T ) containing the
given modules M1, . . . , Mn, but it is not necessarily the smallest such subcategory.
For example, if we start with ideals J0 ⊂ J1 ⊂ J2 ⊂ J3 and take M1 = M(J3/J0)
and M2 = M(J2/J1) , then the category of all direct sums of copies of M1 and
M2 is a full exact abelian subcategory and contains both M1 and M2 , but this is
a proper subcategory of G(M1, M2) .

2. The diamond category D(T ) of an ordered set T .

Since (i, i) with i ∈ T is a primitive idempotent of A = k[T ] , the module
P (i) = A(i, i) is projective and serial. Of course, P (i) = M(〈i〉) , where 〈i〉 is the
ideal generated by i , namely the set of all elements j ≤ i. Also, let 〈̂i〉 be the
ideal of all elements j < i. Then S(i) = M(〈i〉/〈̂i〉) is a simple module and one
obtains all the simple modules in this way.

For i ≤ j , let us denote M(i, j) = M(〈j〉/〈̂i〉) . The module M(i, j) has
a simple top isomorphic to S(j) and a simple socle isomorphic to S(i) . The
following assertion is quite obvious:

Lemma 1. The following assertions are equivalent for an A-module M .

(i) M is finitely generated and finitely cogenerated.

(ii) M is a finite direct sum of modules of the form M(i, j) .

We denote by D = D(T ) the full subcategory of mod k[T ] given by all
modules which are finitely generated and finitely cogenerated (the modules M(i, j)
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are said to be the diamonds of mod k[T ] ). Note that D(T ) is a full subcategory
of S(T ). In general, the category D(T ) is not closed under kernels or cokernels.

Let I be an ordered set. Let i < j in I be neighbors (i.e. there is no t ∈ T
with j′ < t < j ), then we write j = i + 1 or i = j − 1.

Lemma 2. The following conditions are equivalent:

(i) D(T ) is closed under kernels.

(ii) For any non-minimal element j ∈ T , there exists j′ < j such that j′ and j
are neighbors.

(iii) The k[T ]-modules M(i, j) are finitely presented, for all i < j in T .

Proof: (i) =⇒ (ii): If j ∈ T is non-minimal, let i < j . The kernel of
π : M(i, j) → S(j) is M(〈ĵ〉/〈̂i〉) . The latter module belongs to D(T ) only in case
〈ĵ〉 is of the form 〈j′〉 , but this means that j′ < j is a neighbor of j .

(ii) =⇒ (iii) is clear: M(i, j) = P (j)/P (i− 1).
(iii) =⇒ (i): Let f : N → N ′ be a map in D(T ) . It follows from (iii) that

the kernel of f is finitely generated. As a submodule of N , the kernel is also
finitely cogenerated. Thus, the kernel of f belongs to D(T ) .

3. Ordered sets which are locally discrete.

We say that I is locally discrete provided no element of I is an accumulation
point: this means, first, that for any non-maximal element i ∈ I , the neighbor
i + 1 exists, and second, that for any non-minimal element i ∈ I , the neighbor
i − 1 exists.

The previous lemma together with its dual yields the following result.

Corollary 1. D(I) is an exact abelian subcategory of S(I) if and only if I
is locally discrete.

Lemma 3. Let I 6= ∅ be a locally discrete ordered set. The following condi-

tions are equivalent:

(i) I has a minimal element.

(ii) D(I) has at least one indecomposable projective object.

(iii) D(I) has projective covers.

Proof: (ii) =⇒ (i): Let M(i, j) be indecomposable projective. Assume i
is not minimal. Then there is i′ < i and the canonical projection π : M(i′, j) →
M(i, j) is an epimorphism which does not split. This contradiction shows that i
has to be minimal.

(i) =⇒ (iii): Let t be minimal in I . Then the canonical projection
π : M(t, j) → M(i, j) is a projective cover for any i ≤ j.

Of course, there is also the dual assertion: I has a maximal element, if and

only if D(I) has at least one indecomposable injective object, if and only if D(I)
has injective envelopes.
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Also we remark: If we start with a finite number of diamonds M1, . . . , Mn ,
then the grid subcategory of S(I) generated by the modules M1, . . . , Mn is a
subcategory of D(I) . Namely, we write Mr = M(jr, j

′

r) , for 1 ≤ r ≤ n , with
elements jr ≤ j′r in I , and consider the set {jr − 1, j′r | 1 ≤ r ≤ n} = {i0, . . . , im}
with i0 < i1 < · · · < im. Then G(M1, . . . , Mn) is the full subcategory of all k[I] -
modules which have a filtration with factors M(ir−1 + 1, ir) , where 1 ≤ r ≤ m .

Proposition 1. Let I be a locally discrete ordered set. Then D(I) has

Auslander-Reiten sequences and the Auslander-Reiten translation τ is given as

follows: τM(i, j) = M(i−1, j−1) , for i ≤ j and i not minimal.

Remark. If i ∈ I is minimal, and i ≤ j , then M(i, j) is projective and its
radical is M(i, j−1) (using again the convention that M(i, i−1) = 0). If I has
no minimal element, then i 7→ i−1 is an injective map I → I , and τ : D(I) →
D(I) is the induced functor. If I has neither a minimal nor a maximal element,
then i 7→ i−1 is bijective and the induced functor τ : D(I) → D(I) will be an
equivalence!

Proof. Let us assume that i ≤ j and that i is not minimal. Then M(i−1, j−1)
is defined. Of course, we may consider the exact sequence

(∗) 0 −→ M(i−1, j−1)

[ ι

π

]

−−−→ M(i−1, j)⊕ M(i, j−1)
[ π −ι ]
−−−−→ M(i, j) −→ 0,

we claim that this is an almost split sequence in S(I) . Consider an indecomposable
object N in S(I) , and take G = G(M(i, j), M(i−1, j−1), N). This category is
equivalent to mod kQ , where Q is a linearly ordered quiver of type Am with
m ≤ 5. The sequence (∗) lies in G, and clearly is an almost split sequence in G .
Thus it has the desired lifting properties with respect to the maps N → M(i, j)
and M(i− 1, j − 1) → N.

4. The locally discrete ordered sets without extremal elements.

By definition, the extremal elements of an ordered sets are the elements which
are minimal or maximal. Our further investigations will deal with locally discrete
ordered sets without extremal elements. First, let us characterize these ordered
sets by providing a construction.

Construction. Let T 6= ∅ be any ordered set and consider the product

I = T ×Z with lexicographical ordering (we will write I = T
→

×Z), thus if t, t′ ∈ T
and z, z′ ∈ Z , then

(t, z) < (t′, z′) ⇐⇒ either t < t′ or t = t′, z < z′.

Given i = (t, z) ∈ I and z′ ∈ Z , we denote by i + z′ = (t, z + z′) . Note that the
operation +z′ provides an automorphism of I .
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We obtain in this way a locally discrete ordered set I with no extreme ele-

ments, and conversely, any locally discrete ordered set with no extreme elements

is obtained in this way. Namely, given a locally discrete ordered set I with no
extreme elements, call two elements i, i′ of I equivalent (and write i ∼ i′ ) pro-
vided the sets {j | i < j < i′} and {j | i′ < j < i} are both finite (one will be

empty), and let T = I/∼ . Then the ordered sets I and T
→

×Z are isomorphic. On

the other hand, any ordered set T is isomorphic to (T
→

×Z)/∼ . This shows that
dealing with a locally discrete ordered set I with no extreme elements, we always

may assume I = T
→

×Z , where T is any ordered set (see also [Sch]).

The Auslander-Reiten quiver Γ of D(T
→

×Z) . Note that two modules
M((t, z), (t′, z′)) and M((t1, z1), (t

′

1, z
′

1)) belong to the same component of Γ if
and only if t = t1 and t′ = t′1 . Thus the components of Γ correspond bijectively
to the pairs (t, t′) of T with t ≤ t′. For t ≤ t′, we denote by Γt,t′ the component
which contains all the modules of the form M((t, z), (t′, z′)) . There are two kinds
of components: For t = t′ , all these modules are of finite length and Γt,t′ is of
the form ZA∞. For t < t′ , the modules M((t, z), (t′, z′)) are neither artinian nor
noetherian and the component Γt,t′ is of the form ZA∞

∞
.

Let us sketch the structure of the Auslander-Reiten quivers in case |T | ≤ 3.
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|T | = 3

Observe that the second category (that for |T | = 2) is one which one knows very
well: its derived category has been considered both in sections 6 and 7 of [R]

Corollary 2. The category D(T
→

×Z) is derived equivalent to a noetherian

hereditary abelian category if and only if the cardinality of T is 1 or 2.

Proof. As we have seen, the category S(I) , and therefore also D(I) is di-

rected, for any ordered set I . Now, let I = T
→

×Z , thus D(I) is abelian. Since D(I)
is directed, also the derived category Db(D(I)) is directed. Now assume D(I) is
derived equivalent to some noetherian hereditary abelian category H . With D(I)
also H is a k -category and satisfies Serre duality, thus H is one of the categories
classified by Reiten and Van den Bergh [RV]. We have to see which of the categories
listed under (a),(b),(c),(d) in [RV] are directed. In case (a), consider the category
of finite dimensional representations of the linearly oriented quiver of type A∞

∞
,

but this category is just the category D(Z) , thus we deal with the case |T | = 1. In
case (b), no category is directed. The case (d) has been discussed in [R], provided
we deal with at least one ray. According to section 7 of [R], the directed categories
are just those of bounded representation type. As we have seen, there are three
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essentially different cases. In one of these cases, we encounter Auslander-Reiten
triangles with three middle terms, this is for Db(D(I)). In the remaining two cases
Db(H) has 1 or 3 shift orbits of Auslander-Reiten components, and for |T | = n ,
the number of shift orbits for Db(D(I)) is

(

n

2

)

, thus n = 1 or n = 2. Of course,
in case (d) without rays, we deal with the category of representations of a quiver
Q without infinite paths: Again, only the cases where Q is of type A∞ or A∞

∞

are of interest, and the corresponding categories Db(mod kQ) have 1 or 3 shift
orbits of Auslander-Reiten components. Finally, the categories noted in case (c)
are derived equivalent to categories already mentioned.

5. Krull-Gabriel dimension.

Recall that the existence and then the value of the Krull-Gabriel dimension

of an abelian category A is defined inductively as follows: The zero category has
dimension −1, and A is said to have Krull-Gabriel dimension n + 1 provided the
full subcategory A0 of objects in A of finite length is non-zero, and A//A0 has
Krull-Gabriel dimension n . (Here, B = A//A0 is an abelian category with an
exact functor η : A → B such that any exact functor φ from A to an arbitrary
abelian category which sends all finite length objects to zero, factors uniquely via
η .) It is usually not easy to determine the structure of A//A0 , the categories of

the form A = D(T
→

×Z
→

×Z) seem to be a rare exception.

Proposition 2. Let T be any ordered set. Then D(T
→

×Z
→

×Z)//D(T
→

×Z
→

×Z)0

is equivalent, as a category, to D(T
→

×Z) .

Proof. We define an exact functor

η : D(T
→

×Z
→

×Z)//D(T
→

×Z
→

×Z)0 −→ D(T
→

×Z)

as follows: Let t, t′ ∈ T, and x, x′, y, y′ ∈ Z , with (t, x, y) ≤ (t′, x′, y′) . Define

ηM((t, x, y), (t′, x′, y′)) =











M((t, x), (t′, x′−1)) in case t < t′,

or t = t′ and x < x′,

0 in case t = t′ and x = x′.

The indecomposable modules of finite length are the modules M((t, x, y), (t, x, y′))
with y ≤ y′ , thus we see that η vanishes precisely on the modules of finite length.
In order to see that η is exact, we may restrict to a grid category G ⊂ D . In
order to see that the restriction of η to G is exact, it is sufficient to show that the
almost split sequences in G are sent to exact sequences, see [B]. Thus, we have to
consider only the exact sequences in D with indecomposable end terms, they are
of the form (∗), and it is straight forward to check that these sequences remain
exact when we apply η.
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Note that two indecomposable objects of D(T
→

×Z
→

×Z) which are not of finite
length have images under η which are isomorphic if and only if they belong to the
same Auslander-Reiten component.

Finally, consider any exact functor φ from D(T
→

×Z
→

×Z) to an abelian cate-
gory which sends all finite length modules to zero. But this means that under φ
all the maps in a given Auslander-Reiten component are sent to isomorphisms. It
follows easily that φ factors through η.

Corollary 3. Let T = Z
n with lexicographical ordering. Then D(T ) has

Krull-Gabriel dimension n − 1 .

Remark. Idun Reiten has pointed out the relationship of these investiga-
tions to her joint work with M. Auslander, dealing with hereditary 1-Gorenstein
dualizing k -varieties. In the paper [AR], Auslander and Reiten start with an or-
dered set I ′ which is locally discrete and which has a minimal element as well
as a maximal element and they show that D(I ′) = S(I ′) is such a hereditary
1-Gorenstein dualizing k -varieties ([AR], Theorem 4.7).

In general, we note the following: Call two ordered sets rotational equivalent ,
provided I has an ideal I1 and I ′ has an ideal I ′

1 such that there are order
isomorphisms I1 ≃ I ′ \ I ′

1 and I \ I1 ≃ I ′

1 . If I, I ′ are locally discrete ordered sets

which are rotational equivalent, then the categories D(I) and D′(I ′) are derived

equivalent.

Of course, any locally discrete ordered set I 6= ∅ without a minimal or
maximal element is rotational equivalent to a locally discrete ordered set I ′ with
both a minimal and a maximal element. In this way, one sees that the categories
D(I) considered here are derived equivalent to hereditary 1-Gorenstein dualizing
k -varieties.
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